//! Completion of paths, i.e. `some::prefix::<|>`. use hir::{Adt, HasVisibility, PathResolution, ScopeDef}; use rustc_hash::FxHashSet; use syntax::AstNode; use test_utils::mark; use crate::completion::{CompletionContext, Completions}; pub(super) fn complete_qualified_path(acc: &mut Completions, ctx: &CompletionContext) { let path = match &ctx.path_prefix { Some(path) => path.clone(), None => return, }; if ctx.attribute_under_caret.is_some() { return; } let context_module = ctx.scope.module(); let resolution = match ctx.scope.resolve_hir_path_qualifier(&path) { Some(res) => res, None => return, }; // Add associated types on type parameters and `Self`. resolution.assoc_type_shorthand_candidates(ctx.db, |alias| { acc.add_type_alias(ctx, alias); None::<()> }); match resolution { PathResolution::Def(hir::ModuleDef::Module(module)) => { let module_scope = module.scope(ctx.db, context_module); for (name, def) in module_scope { if ctx.use_item_syntax.is_some() { if let ScopeDef::Unknown = def { if let Some(name_ref) = ctx.name_ref_syntax.as_ref() { if name_ref.syntax().text() == name.to_string().as_str() { // for `use self::foo<|>`, don't suggest `foo` as a completion mark::hit!(dont_complete_current_use); continue; } } } } acc.add_resolution(ctx, name.to_string(), &def); } } PathResolution::Def(def @ hir::ModuleDef::Adt(_)) | PathResolution::Def(def @ hir::ModuleDef::TypeAlias(_)) => { if let hir::ModuleDef::Adt(Adt::Enum(e)) = def { for variant in e.variants(ctx.db) { acc.add_enum_variant(ctx, variant, None); } } let ty = match def { hir::ModuleDef::Adt(adt) => adt.ty(ctx.db), hir::ModuleDef::TypeAlias(a) => a.ty(ctx.db), _ => unreachable!(), }; // XXX: For parity with Rust bug #22519, this does not complete Ty::AssocType. // (where AssocType is defined on a trait, not an inherent impl) let krate = ctx.krate; if let Some(krate) = krate { let traits_in_scope = ctx.scope.traits_in_scope(); ty.iterate_path_candidates(ctx.db, krate, &traits_in_scope, None, |_ty, item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } match item { hir::AssocItem::Function(func) => { acc.add_function(ctx, func, None); } hir::AssocItem::Const(ct) => acc.add_const(ctx, ct), hir::AssocItem::TypeAlias(ty) => acc.add_type_alias(ctx, ty), } None::<()> }); // Iterate assoc types separately ty.iterate_assoc_items(ctx.db, krate, |item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } match item { hir::AssocItem::Function(_) | hir::AssocItem::Const(_) => {} hir::AssocItem::TypeAlias(ty) => acc.add_type_alias(ctx, ty), } None::<()> }); } } PathResolution::Def(hir::ModuleDef::Trait(t)) => { // Handles `Trait::assoc` as well as `::assoc`. for item in t.items(ctx.db) { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { continue; } match item { hir::AssocItem::Function(func) => { acc.add_function(ctx, func, None); } hir::AssocItem::Const(ct) => acc.add_const(ctx, ct), hir::AssocItem::TypeAlias(ty) => acc.add_type_alias(ctx, ty), } } } PathResolution::TypeParam(_) | PathResolution::SelfType(_) => { if let Some(krate) = ctx.krate { let ty = match resolution { PathResolution::TypeParam(param) => param.ty(ctx.db), PathResolution::SelfType(impl_def) => impl_def.target_ty(ctx.db), _ => return, }; let traits_in_scope = ctx.scope.traits_in_scope(); let mut seen = FxHashSet::default(); ty.iterate_path_candidates(ctx.db, krate, &traits_in_scope, None, |_ty, item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } // We might iterate candidates of a trait multiple times here, so deduplicate // them. if seen.insert(item) { match item { hir::AssocItem::Function(func) => { acc.add_function(ctx, func, None); } hir::AssocItem::Const(ct) => acc.add_const(ctx, ct), hir::AssocItem::TypeAlias(ty) => acc.add_type_alias(ctx, ty), } } None::<()> }); } } _ => {} } } #[cfg(test)] mod tests { use expect::{expect, Expect}; use test_utils::mark; use crate::completion::{ test_utils::{check_edit, completion_list}, CompletionKind, }; fn check(ra_fixture: &str, expect: Expect) { let actual = completion_list(ra_fixture, CompletionKind::Reference); expect.assert_eq(&actual); } fn check_builtin(ra_fixture: &str, expect: Expect) { let actual = completion_list(ra_fixture, CompletionKind::BuiltinType); expect.assert_eq(&actual); } #[test] fn dont_complete_current_use() { mark::check!(dont_complete_current_use); check(r#"use self::foo<|>;"#, expect![[""]]); } #[test] fn dont_complete_current_use_in_braces_with_glob() { check( r#" mod foo { pub struct S; } use self::{foo::*, bar<|>}; "#, expect![[r#" st S md foo "#]], ); } #[test] fn dont_complete_primitive_in_use() { check_builtin(r#"use self::<|>;"#, expect![[""]]); } #[test] fn dont_complete_primitive_in_module_scope() { check_builtin(r#"fn foo() { self::<|> }"#, expect![[""]]); } #[test] fn completes_primitives() { check_builtin( r#"fn main() { let _: <|> = 92; }"#, expect![[r#" bt bool bt char bt f32 bt f64 bt i128 bt i16 bt i32 bt i64 bt i8 bt isize bt str bt u128 bt u16 bt u32 bt u64 bt u8 bt usize "#]], ); } #[test] fn completes_mod_with_same_name_as_function() { check( r#" use self::my::<|>; mod my { pub struct Bar; } fn my() {} "#, expect![[r#" st Bar "#]], ); } #[test] fn filters_visibility() { check( r#" use self::my::<|>; mod my { struct Bar; pub struct Foo; pub use Bar as PublicBar; } "#, expect![[r#" st Foo st PublicBar "#]], ); } #[test] fn completes_use_item_starting_with_self() { check( r#" use self::m::<|>; mod m { pub struct Bar; } "#, expect![[r#" st Bar "#]], ); } #[test] fn completes_use_item_starting_with_crate() { check( r#" //- /lib.rs mod foo; struct Spam; //- /foo.rs use crate::Sp<|> "#, expect![[r#" st Spam md foo "#]], ); } #[test] fn completes_nested_use_tree() { check( r#" //- /lib.rs mod foo; struct Spam; //- /foo.rs use crate::{Sp<|>}; "#, expect![[r#" st Spam md foo "#]], ); } #[test] fn completes_deeply_nested_use_tree() { check( r#" //- /lib.rs mod foo; pub mod bar { pub mod baz { pub struct Spam; } } //- /foo.rs use crate::{bar::{baz::Sp<|>}}; "#, expect![[r#" st Spam "#]], ); } #[test] fn completes_enum_variant() { check( r#" enum E { Foo, Bar(i32) } fn foo() { let _ = E::<|> } "#, expect![[r#" ev Bar(…) (i32) ev Foo () "#]], ); } #[test] fn completes_struct_associated_items() { check( r#" //- /lib.rs struct S; impl S { fn a() {} fn b(&self) {} const C: i32 = 42; type T = i32; } fn foo() { let _ = S::<|> } "#, expect![[r#" ct C const C: i32 = 42; ta T type T = i32; fn a() fn a() me b() fn b(&self) "#]], ); } #[test] fn associated_item_visibility() { check( r#" struct S; mod m { impl super::S { pub(super) fn public_method() { } fn private_method() { } pub(super) type PublicType = u32; type PrivateType = u32; pub(super) const PUBLIC_CONST: u32 = 1; const PRIVATE_CONST: u32 = 1; } } fn foo() { let _ = S::<|> } "#, expect![[r#" ct PUBLIC_CONST pub(super) const PUBLIC_CONST: u32 = 1; ta PublicType pub(super) type PublicType = u32; fn public_method() pub(super) fn public_method() "#]], ); } #[test] fn completes_enum_associated_method() { check( r#" enum E {}; impl E { fn m() { } } fn foo() { let _ = E::<|> } "#, expect![[r#" fn m() fn m() "#]], ); } #[test] fn completes_union_associated_method() { check( r#" union U {}; impl U { fn m() { } } fn foo() { let _ = U::<|> } "#, expect![[r#" fn m() fn m() "#]], ); } #[test] fn completes_use_paths_across_crates() { check( r#" //- /main.rs use foo::<|>; //- /foo/lib.rs pub mod bar { pub struct S; } "#, expect![[r#" md bar "#]], ); } #[test] fn completes_trait_associated_method_1() { check( r#" trait Trait { fn m(); } fn foo() { let _ = Trait::<|> } "#, expect![[r#" fn m() fn m() "#]], ); } #[test] fn completes_trait_associated_method_2() { check( r#" trait Trait { fn m(); } struct S; impl Trait for S {} fn foo() { let _ = S::<|> } "#, expect![[r#" fn m() fn m() "#]], ); } #[test] fn completes_trait_associated_method_3() { check( r#" trait Trait { fn m(); } struct S; impl Trait for S {} fn foo() { let _ = ::<|> } "#, expect![[r#" fn m() fn m() "#]], ); } #[test] fn completes_ty_param_assoc_ty() { check( r#" trait Super { type Ty; const CONST: u8; fn func() {} fn method(&self) {} } trait Sub: Super { type SubTy; const C2: (); fn subfunc() {} fn submethod(&self) {} } fn foo() { T::<|> } "#, expect![[r#" ct C2 const C2: (); ct CONST const CONST: u8; ta SubTy type SubTy; ta Ty type Ty; fn func() fn func() me method() fn method(&self) fn subfunc() fn subfunc() me submethod() fn submethod(&self) "#]], ); } #[test] fn completes_self_param_assoc_ty() { check( r#" trait Super { type Ty; const CONST: u8 = 0; fn func() {} fn method(&self) {} } trait Sub: Super { type SubTy; const C2: () = (); fn subfunc() {} fn submethod(&self) {} } struct Wrap(T); impl Super for Wrap {} impl Sub for Wrap { fn subfunc() { // Should be able to assume `Self: Sub + Super` Self::<|> } } "#, expect![[r#" ct C2 const C2: () = (); ct CONST const CONST: u8 = 0; ta SubTy type SubTy; ta Ty type Ty; fn func() fn func() me method() fn method(&self) fn subfunc() fn subfunc() me submethod() fn submethod(&self) "#]], ); } #[test] fn completes_type_alias() { check( r#" struct S; impl S { fn foo() {} } type T = S; impl T { fn bar() {} } fn main() { T::<|>; } "#, expect![[r#" fn bar() fn bar() fn foo() fn foo() "#]], ); } #[test] fn completes_qualified_macros() { check( r#" #[macro_export] macro_rules! foo { () => {} } fn main() { let _ = crate::<|> } "#, expect![[r##" ma foo!(…) #[macro_export] macro_rules! foo fn main() fn main() "##]], ); } #[test] fn test_super_super_completion() { check( r#" mod a { const A: usize = 0; mod b { const B: usize = 0; mod c { use super::super::<|> } } } "#, expect![[r#" ct A md b "#]], ); } #[test] fn completes_reexported_items_under_correct_name() { check( r#" fn foo() { self::m::<|> } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, expect![[r#" ct RIGHT_CONST st RightType fn right_fn() fn wrong_fn() "#]], ); check_edit( "RightType", r#" fn foo() { self::m::<|> } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, r#" fn foo() { self::m::RightType } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, ); } #[test] fn completes_in_simple_macro_call() { check( r#" macro_rules! m { ($e:expr) => { $e } } fn main() { m!(self::f<|>); } fn foo() {} "#, expect![[r#" fn foo() fn foo() fn main() fn main() "#]], ); } #[test] fn function_mod_share_name() { check( r#" fn foo() { self::m::<|> } mod m { pub mod z {} pub fn z() {} } "#, expect![[r#" md z fn z() pub fn z() "#]], ); } #[test] fn completes_hashmap_new() { check( r#" struct RandomState; struct HashMap {} impl HashMap { pub fn new() -> HashMap { } } fn foo() { HashMap::<|> } "#, expect![[r#" fn new() pub fn new() -> HashMap "#]], ); } #[test] fn dont_complete_attr() { check( r#" mod foo { pub struct Foo; } #[foo::<|>] fn f() {} "#, expect![[""]], ); } }