//! Patterns telling us certain facts about current syntax element, they are used in completion context use syntax::{ algo::non_trivia_sibling, ast::{self, LoopBodyOwner}, match_ast, AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind::*, SyntaxNode, SyntaxToken, }; #[cfg(test)] use crate::completion::test_utils::check_pattern_is_applicable; pub(crate) fn has_trait_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == ASSOC_ITEM_LIST) .and_then(|it| it.parent()) .filter(|it| it.kind() == TRAIT) .is_some() } #[test] fn test_has_trait_parent() { check_pattern_is_applicable(r"trait A { f<|> }", has_trait_parent); } pub(crate) fn has_impl_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == ASSOC_ITEM_LIST) .and_then(|it| it.parent()) .filter(|it| it.kind() == IMPL) .is_some() } #[test] fn test_has_impl_parent() { check_pattern_is_applicable(r"impl A { f<|> }", has_impl_parent); } pub(crate) fn has_block_expr_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element).filter(|it| it.kind() == BLOCK_EXPR).is_some() } #[test] fn test_has_block_expr_parent() { check_pattern_is_applicable(r"fn my_fn() { let a = 2; f<|> }", has_block_expr_parent); } pub(crate) fn has_bind_pat_parent(element: SyntaxElement) -> bool { element.ancestors().find(|it| it.kind() == IDENT_PAT).is_some() } #[test] fn test_has_bind_pat_parent() { check_pattern_is_applicable(r"fn my_fn(m<|>) {}", has_bind_pat_parent); check_pattern_is_applicable(r"fn my_fn() { let m<|> }", has_bind_pat_parent); } pub(crate) fn has_ref_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == REF_PAT || it.kind() == REF_EXPR) .is_some() } #[test] fn test_has_ref_parent() { check_pattern_is_applicable(r"fn my_fn(&m<|>) {}", has_ref_parent); check_pattern_is_applicable(r"fn my() { let &m<|> }", has_ref_parent); } pub(crate) fn has_item_list_or_source_file_parent(element: SyntaxElement) -> bool { let ancestor = not_same_range_ancestor(element); if !ancestor.is_some() { return true; } ancestor.filter(|it| it.kind() == SOURCE_FILE || it.kind() == ITEM_LIST).is_some() } #[test] fn test_has_item_list_or_source_file_parent() { check_pattern_is_applicable(r"i<|>", has_item_list_or_source_file_parent); check_pattern_is_applicable(r"mod foo { f<|> }", has_item_list_or_source_file_parent); } pub(crate) fn is_match_arm(element: SyntaxElement) -> bool { not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some() && previous_sibling_or_ancestor_sibling(element) .and_then(|it| it.into_token()) .filter(|it| it.kind() == FAT_ARROW) .is_some() } #[test] fn test_is_match_arm() { check_pattern_is_applicable(r"fn my_fn() { match () { () => m<|> } }", is_match_arm); } pub(crate) fn unsafe_is_prev(element: SyntaxElement) -> bool { element .into_token() .and_then(|it| previous_non_trivia_token(it)) .filter(|it| it.kind() == UNSAFE_KW) .is_some() } #[test] fn test_unsafe_is_prev() { check_pattern_is_applicable(r"unsafe i<|>", unsafe_is_prev); } pub(crate) fn if_is_prev(element: SyntaxElement) -> bool { element .into_token() .and_then(|it| previous_non_trivia_token(it)) .filter(|it| it.kind() == IF_KW) .is_some() } #[test] fn test_if_is_prev() { check_pattern_is_applicable(r"if l<|>", if_is_prev); } pub(crate) fn has_trait_as_prev_sibling(element: SyntaxElement) -> bool { previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == TRAIT).is_some() } #[test] fn test_has_trait_as_prev_sibling() { check_pattern_is_applicable(r"trait A w<|> {}", has_trait_as_prev_sibling); } pub(crate) fn has_impl_as_prev_sibling(element: SyntaxElement) -> bool { previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == IMPL).is_some() } #[test] fn test_has_impl_as_prev_sibling() { check_pattern_is_applicable(r"impl A w<|> {}", has_impl_as_prev_sibling); } pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool { let leaf = match element { NodeOrToken::Node(node) => node, NodeOrToken::Token(token) => token.parent(), }; for node in leaf.ancestors() { if node.kind() == FN || node.kind() == CLOSURE_EXPR { break; } let loop_body = match_ast! { match node { ast::ForExpr(it) => it.loop_body(), ast::WhileExpr(it) => it.loop_body(), ast::LoopExpr(it) => it.loop_body(), _ => None, } }; if let Some(body) = loop_body { if body.syntax().text_range().contains_range(leaf.text_range()) { return true; } } } false } fn not_same_range_ancestor(element: SyntaxElement) -> Option { element .ancestors() .take_while(|it| it.text_range() == element.text_range()) .last() .and_then(|it| it.parent()) } fn previous_non_trivia_token(token: SyntaxToken) -> Option { let mut token = token.prev_token(); while let Some(inner) = token.clone() { if !inner.kind().is_trivia() { return Some(inner); } else { token = inner.prev_token(); } } None } fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option { let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev); if let Some(sibling) = token_sibling { Some(sibling) } else { // if not trying to find first ancestor which has such a sibling let node = match element { NodeOrToken::Node(node) => node, NodeOrToken::Token(token) => token.parent(), }; let range = node.text_range(); let top_node = node.ancestors().take_while(|it| it.text_range() == range).last()?; let prev_sibling_node = top_node.ancestors().find(|it| { non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some() })?; non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev) } }