//! FIXME: write short doc here use std::cell::RefCell; use hir::{ diagnostics::{AstDiagnostic, Diagnostic as _, DiagnosticSink}, Semantics, }; use itertools::Itertools; use ra_db::{RelativePath, SourceDatabase, SourceDatabaseExt}; use ra_ide_db::RootDatabase; use ra_prof::profile; use ra_syntax::{ algo, ast::{self, make, AstNode}, SyntaxNode, TextRange, T, }; use ra_text_edit::{TextEdit, TextEditBuilder}; use crate::{Diagnostic, FileId, FileSystemEdit, SourceChange, SourceFileEdit}; #[derive(Debug, Copy, Clone)] pub enum Severity { Error, WeakWarning, } pub(crate) fn diagnostics(db: &RootDatabase, file_id: FileId) -> Vec { let _p = profile("diagnostics"); let sema = Semantics::new(db); let parse = db.parse(file_id); let mut res = Vec::new(); res.extend(parse.errors().iter().map(|err| Diagnostic { range: err.range(), message: format!("Syntax Error: {}", err), severity: Severity::Error, fix: None, })); for node in parse.tree().syntax().descendants() { check_unnecessary_braces_in_use_statement(&mut res, file_id, &node); check_struct_shorthand_initialization(&mut res, file_id, &node); } let res = RefCell::new(res); let mut sink = DiagnosticSink::new(|d| { res.borrow_mut().push(Diagnostic { message: d.message(), range: d.highlight_range(), severity: Severity::Error, fix: None, }) }) .on::(|d| { let original_file = d.source().file_id.original_file(db); let source_root = db.file_source_root(original_file); let path = db .file_relative_path(original_file) .parent() .unwrap_or_else(|| RelativePath::new("")) .join(&d.candidate); let create_file = FileSystemEdit::CreateFile { source_root, path }; let fix = SourceChange::file_system_edit("create module", create_file); res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix: Some(fix), }) }) .on::(|d| { // Note that although we could add a diagnostics to // fill the missing tuple field, e.g : // `struct A(usize);` // `let a = A { 0: () }` // but it is uncommon usage and it should not be encouraged. let fix = if d.missed_fields.iter().any(|it| it.as_tuple_index().is_some()) { None } else { let mut field_list = d.ast(db); for f in d.missed_fields.iter() { let field = make::record_field(make::name_ref(&f.to_string()), Some(make::expr_unit())); field_list = field_list.append_field(&field); } let mut builder = TextEditBuilder::default(); algo::diff(&d.ast(db).syntax(), &field_list.syntax()).into_text_edit(&mut builder); Some(SourceChange::source_file_edit_from( "fill struct fields", file_id, builder.finish(), )) }; res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix, }) }) .on::(|d| { let node = d.ast(db); let replacement = format!("Ok({})", node.syntax()); let edit = TextEdit::replace(node.syntax().text_range(), replacement); let fix = SourceChange::source_file_edit_from("wrap with ok", file_id, edit); res.borrow_mut().push(Diagnostic { range: d.highlight_range(), message: d.message(), severity: Severity::Error, fix: Some(fix), }) }); if let Some(m) = sema.to_module_def(file_id) { m.diagnostics(db, &mut sink); }; drop(sink); res.into_inner() } fn check_unnecessary_braces_in_use_statement( acc: &mut Vec, file_id: FileId, node: &SyntaxNode, ) -> Option<()> { let use_tree_list = ast::UseTreeList::cast(node.clone())?; if let Some((single_use_tree,)) = use_tree_list.use_trees().collect_tuple() { let range = use_tree_list.syntax().text_range(); let edit = text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(&single_use_tree) .unwrap_or_else(|| { let to_replace = single_use_tree.syntax().text().to_string(); let mut edit_builder = TextEditBuilder::default(); edit_builder.delete(range); edit_builder.insert(range.start(), to_replace); edit_builder.finish() }); acc.push(Diagnostic { range, message: "Unnecessary braces in use statement".to_string(), severity: Severity::WeakWarning, fix: Some(SourceChange::source_file_edit( "Remove unnecessary braces", SourceFileEdit { file_id, edit }, )), }); } Some(()) } fn text_edit_for_remove_unnecessary_braces_with_self_in_use_statement( single_use_tree: &ast::UseTree, ) -> Option { let use_tree_list_node = single_use_tree.syntax().parent()?; if single_use_tree.path()?.segment()?.syntax().first_child_or_token()?.kind() == T![self] { let start = use_tree_list_node.prev_sibling_or_token()?.text_range().start(); let end = use_tree_list_node.text_range().end(); let range = TextRange::from_to(start, end); return Some(TextEdit::delete(range)); } None } fn check_struct_shorthand_initialization( acc: &mut Vec, file_id: FileId, node: &SyntaxNode, ) -> Option<()> { let record_lit = ast::RecordLit::cast(node.clone())?; let record_field_list = record_lit.record_field_list()?; for record_field in record_field_list.fields() { if let (Some(name_ref), Some(expr)) = (record_field.name_ref(), record_field.expr()) { let field_name = name_ref.syntax().text().to_string(); let field_expr = expr.syntax().text().to_string(); if field_name == field_expr { let mut edit_builder = TextEditBuilder::default(); edit_builder.delete(record_field.syntax().text_range()); edit_builder.insert(record_field.syntax().text_range().start(), field_name); let edit = edit_builder.finish(); acc.push(Diagnostic { range: record_field.syntax().text_range(), message: "Shorthand struct initialization".to_string(), severity: Severity::WeakWarning, fix: Some(SourceChange::source_file_edit( "use struct shorthand initialization", SourceFileEdit { file_id, edit }, )), }); } } } Some(()) } #[cfg(test)] mod tests { use insta::assert_debug_snapshot; use join_to_string::join; use ra_syntax::SourceFile; use test_utils::assert_eq_text; use crate::mock_analysis::{analysis_and_position, single_file}; use super::*; type DiagnosticChecker = fn(&mut Vec, FileId, &SyntaxNode) -> Option<()>; fn check_not_applicable(code: &str, func: DiagnosticChecker) { let parse = SourceFile::parse(code); let mut diagnostics = Vec::new(); for node in parse.tree().syntax().descendants() { func(&mut diagnostics, FileId(0), &node); } assert!(diagnostics.is_empty()); } fn check_apply(before: &str, after: &str, func: DiagnosticChecker) { let parse = SourceFile::parse(before); let mut diagnostics = Vec::new(); for node in parse.tree().syntax().descendants() { func(&mut diagnostics, FileId(0), &node); } let diagnostic = diagnostics.pop().unwrap_or_else(|| panic!("no diagnostics for:\n{}\n", before)); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let actual = edit.apply(&before); assert_eq_text!(after, &actual); } /// Takes a multi-file input fixture with annotated cursor positions, /// and checks that: /// * a diagnostic is produced /// * this diagnostic touches the input cursor position /// * that the contents of the file containing the cursor match `after` after the diagnostic fix is applied fn check_apply_diagnostic_fix_from_position(fixture: &str, after: &str) { let (analysis, file_position) = analysis_and_position(fixture); let diagnostic = analysis.diagnostics(file_position.file_id).unwrap().pop().unwrap(); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let target_file_contents = analysis.file_text(file_position.file_id).unwrap(); let actual = edit.apply(&target_file_contents); // Strip indent and empty lines from `after`, to match the behaviour of // `parse_fixture` called from `analysis_and_position`. let margin = fixture .lines() .filter(|it| it.trim_start().starts_with("//-")) .map(|it| it.len() - it.trim_start().len()) .next() .expect("empty fixture"); let after = join(after.lines().filter_map(|line| { if line.len() > margin { Some(&line[margin..]) } else { None } })) .separator("\n") .suffix("\n") .to_string(); assert_eq_text!(&after, &actual); assert!( diagnostic.range.start() <= file_position.offset && diagnostic.range.end() >= file_position.offset, "diagnostic range {} does not touch cursor position {}", diagnostic.range, file_position.offset ); } fn check_apply_diagnostic_fix(before: &str, after: &str) { let (analysis, file_id) = single_file(before); let diagnostic = analysis.diagnostics(file_id).unwrap().pop().unwrap(); let mut fix = diagnostic.fix.unwrap(); let edit = fix.source_file_edits.pop().unwrap().edit; let actual = edit.apply(&before); assert_eq_text!(after, &actual); } /// Takes a multi-file input fixture with annotated cursor position and checks that no diagnostics /// apply to the file containing the cursor. fn check_no_diagnostic_for_target_file(fixture: &str) { let (analysis, file_position) = analysis_and_position(fixture); let diagnostics = analysis.diagnostics(file_position.file_id).unwrap(); assert_eq!(diagnostics.len(), 0); } fn check_no_diagnostic(content: &str) { let (analysis, file_id) = single_file(content); let diagnostics = analysis.diagnostics(file_id).unwrap(); assert_eq!(diagnostics.len(), 0); } #[test] fn test_wrap_return_type() { let before = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; fn div(x: i32, y: i32) -> Result { if y == 0 { return Err("div by zero".into()); } x / y<|> } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; let after = r#" use std::{string::String, result::Result::{self, Ok, Err}}; fn div(x: i32, y: i32) -> Result { if y == 0 { return Err("div by zero".into()); } Ok(x / y) } "#; check_apply_diagnostic_fix_from_position(before, after); } #[test] fn test_wrap_return_type_handles_generic_functions() { let before = r#" //- /main.rs use std::result::Result::{self, Ok, Err}; fn div(x: T) -> Result { if x == 0 { return Err(7); } <|>x } //- /std/lib.rs pub mod result { pub enum Result { Ok(T), Err(E) } } "#; let after = r#" use std::result::Result::{self, Ok, Err}; fn div(x: T) -> Result { if x == 0 { return Err(7); } Ok(x) } "#; check_apply_diagnostic_fix_from_position(before, after); } #[test] fn test_wrap_return_type_handles_type_aliases() { let before = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; type MyResult = Result; fn div(x: i32, y: i32) -> MyResult { if y == 0 { return Err("div by zero".into()); } x <|>/ y } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; let after = r#" use std::{string::String, result::Result::{self, Ok, Err}}; type MyResult = Result; fn div(x: i32, y: i32) -> MyResult { if y == 0 { return Err("div by zero".into()); } Ok(x / y) } "#; check_apply_diagnostic_fix_from_position(before, after); } #[test] fn test_wrap_return_type_not_applicable_when_expr_type_does_not_match_ok_type() { let content = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; fn foo() -> Result { 0<|> } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; check_no_diagnostic_for_target_file(content); } #[test] fn test_wrap_return_type_not_applicable_when_return_type_is_not_result() { let content = r#" //- /main.rs use std::{string::String, result::Result::{self, Ok, Err}}; enum SomeOtherEnum { Ok(i32), Err(String), } fn foo() -> SomeOtherEnum { 0<|> } //- /std/lib.rs pub mod string { pub struct String { } } pub mod result { pub enum Result { Ok(T), Err(E) } } "#; check_no_diagnostic_for_target_file(content); } #[test] fn test_fill_struct_fields_empty() { let before = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{}; } "; let after = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ one: (), two: ()}; } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_self() { let before = r" struct TestStruct { one: i32, } impl TestStruct { fn test_fn() { let s = Self {}; } } "; let after = r" struct TestStruct { one: i32, } impl TestStruct { fn test_fn() { let s = Self { one: ()}; } } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_enum() { let before = r" enum Expr { Bin { lhs: Box, rhs: Box } } impl Expr { fn new_bin(lhs: Box, rhs: Box) -> Expr { Expr::Bin { <|> } } } "; let after = r" enum Expr { Bin { lhs: Box, rhs: Box } } impl Expr { fn new_bin(lhs: Box, rhs: Box) -> Expr { Expr::Bin { lhs: (), rhs: () <|> } } } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_partial() { let before = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ two: 2 }; } "; let after = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let s = TestStruct{ two: 2, one: () }; } "; check_apply_diagnostic_fix(before, after); } #[test] fn test_fill_struct_fields_no_diagnostic() { let content = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let one = 1; let s = TestStruct{ one, two: 2 }; } "; check_no_diagnostic(content); } #[test] fn test_fill_struct_fields_no_diagnostic_on_spread() { let content = r" struct TestStruct { one: i32, two: i64, } fn test_fn() { let one = 1; let s = TestStruct{ ..a }; } "; check_no_diagnostic(content); } #[test] fn test_unresolved_module_diagnostic() { let (analysis, file_id) = single_file("mod foo;"); let diagnostics = analysis.diagnostics(file_id).unwrap(); assert_debug_snapshot!(diagnostics, @r###" [ Diagnostic { message: "unresolved module", range: [0; 8), fix: Some( SourceChange { label: "create module", source_file_edits: [], file_system_edits: [ CreateFile { source_root: SourceRootId( 0, ), path: "foo.rs", }, ], cursor_position: None, }, ), severity: Error, }, ] "###); } #[test] fn test_check_unnecessary_braces_in_use_statement() { check_not_applicable( " use a; use a::{c, d::e}; ", check_unnecessary_braces_in_use_statement, ); check_apply("use {b};", "use b;", check_unnecessary_braces_in_use_statement); check_apply("use a::{c};", "use a::c;", check_unnecessary_braces_in_use_statement); check_apply("use a::{self};", "use a;", check_unnecessary_braces_in_use_statement); check_apply( "use a::{c, d::{e}};", "use a::{c, d::e};", check_unnecessary_braces_in_use_statement, ); } #[test] fn test_check_struct_shorthand_initialization() { check_not_applicable( r#" struct A { a: &'static str } fn main() { A { a: "hello" } } "#, check_struct_shorthand_initialization, ); check_apply( r#" struct A { a: &'static str } fn main() { let a = "haha"; A { a: a } } "#, r#" struct A { a: &'static str } fn main() { let a = "haha"; A { a } } "#, check_struct_shorthand_initialization, ); check_apply( r#" struct A { a: &'static str, b: &'static str } fn main() { let a = "haha"; let b = "bb"; A { a: a, b } } "#, r#" struct A { a: &'static str, b: &'static str } fn main() { let a = "haha"; let b = "bb"; A { a, b } } "#, check_struct_shorthand_initialization, ); } #[test] fn test_bad_macro_stackover() { check_no_diagnostic( r#" //- /main.rs #[macro_export] macro_rules! match_ast { (match $node:ident { $($tt:tt)* }) => { match_ast!(match ($node) { $($tt)* }) }; (match ($node:expr) { $( ast::$ast:ident($it:ident) => $res:expr, )* _ => $catch_all:expr $(,)? }) => {{ $( if let Some($it) = ast::$ast::cast($node.clone()) { $res } else )* { $catch_all } }}; } fn main() { let anchor = match_ast! { match parent { as => {}, _ => return None } }; } "#, ); } }