//! `mbe` (short for Macro By Example) crate contains code for handling //! `macro_rules` macros. It uses `TokenTree` (from `ra_tt` package) as the //! interface, although it contains some code to bridge `SyntaxNode`s and //! `TokenTree`s as well! mod parser; mod mbe_expander; mod syntax_bridge; mod tt_iter; mod subtree_source; pub use tt::{Delimiter, Punct}; use crate::{ parser::{parse_pattern, Op}, tt_iter::TtIter, }; #[derive(Debug, PartialEq, Eq)] pub enum ParseError { Expected(String), } #[derive(Debug, PartialEq, Eq)] pub enum ExpandError { NoMatchingRule, UnexpectedToken, BindingError(String), ConversionError, InvalidRepeat, } pub use crate::syntax_bridge::{ ast_to_token_tree, syntax_node_to_token_tree, token_tree_to_expr, token_tree_to_items, token_tree_to_macro_stmts, token_tree_to_pat, token_tree_to_ty, TokenMap, }; /// This struct contains AST for a single `macro_rules` definition. What might /// be very confusing is that AST has almost exactly the same shape as /// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident` /// and `$()*` have special meaning (see `Var` and `Repeat` data structures) #[derive(Clone, Debug, PartialEq, Eq)] pub struct MacroRules { pub(crate) rules: Vec, /// Highest id of the token we have in TokenMap pub(crate) shift: u32, } #[derive(Clone, Debug, PartialEq, Eq)] pub(crate) struct Rule { pub(crate) lhs: tt::Subtree, pub(crate) rhs: tt::Subtree, } // Find the max token id inside a subtree fn max_id(subtree: &tt::Subtree) -> Option { subtree .token_trees .iter() .filter_map(|tt| match tt { tt::TokenTree::Subtree(subtree) => max_id(subtree), tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) if ident.id != tt::TokenId::unspecified() => { Some(ident.id.0) } _ => None, }) .max() } /// Shift given TokenTree token id fn shift_subtree(tt: &mut tt::Subtree, shift: u32) { for t in tt.token_trees.iter_mut() { match t { tt::TokenTree::Leaf(leaf) => match leaf { tt::Leaf::Ident(ident) if ident.id != tt::TokenId::unspecified() => { ident.id.0 += shift; } _ => (), }, tt::TokenTree::Subtree(tt) => shift_subtree(tt, shift), } } } impl MacroRules { pub fn parse(tt: &tt::Subtree) -> Result { // Note: this parsing can be implemented using mbe machinery itself, by // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing // manually seems easier. let mut src = TtIter::new(tt); let mut rules = Vec::new(); while src.len() > 0 { let rule = Rule::parse(&mut src)?; rules.push(rule); if let Err(()) = src.expect_char(';') { if src.len() > 0 { return Err(ParseError::Expected("expected `:`".to_string())); } break; } } for rule in rules.iter() { validate(&rule.lhs)?; } // Note that TokenId is started from zero, // We have to add 1 to prevent duplication. let shift = max_id(tt).map_or(0, |it| it + 1); Ok(MacroRules { rules, shift }) } pub fn expand(&self, tt: &tt::Subtree) -> Result { // apply shift let mut tt = tt.clone(); shift_subtree(&mut tt, self.shift); mbe_expander::expand(self, &tt) } } impl Rule { fn parse(src: &mut TtIter) -> Result { let mut lhs = src .expect_subtree() .map_err(|()| ParseError::Expected("expected subtree".to_string()))? .clone(); lhs.delimiter = tt::Delimiter::None; src.expect_char('=').map_err(|()| ParseError::Expected("expected `=`".to_string()))?; src.expect_char('>').map_err(|()| ParseError::Expected("expected `>`".to_string()))?; let mut rhs = src .expect_subtree() .map_err(|()| ParseError::Expected("expected subtree".to_string()))? .clone(); rhs.delimiter = tt::Delimiter::None; Ok(crate::Rule { lhs, rhs }) } } fn validate(pattern: &tt::Subtree) -> Result<(), ParseError> { for op in parse_pattern(pattern) { let op = match op { Ok(it) => it, Err(e) => { let msg = match e { ExpandError::InvalidRepeat => "invalid repeat".to_string(), _ => "invalid macro definition".to_string(), }; return Err(ParseError::Expected(msg)); } }; match op { Op::TokenTree(tt::TokenTree::Subtree(subtree)) | Op::Repeat { subtree, .. } => { validate(subtree)? } _ => (), } } Ok(()) } #[cfg(test)] mod tests;