/// `mbe` (short for Macro By Example) crate contains code for handling
/// `macro_rules` macros. It uses `TokenTree` (from `ra_tt` package) as the
/// interface, although it contains some code to bridge `SyntaxNode`s and
/// `TokenTree`s as well!

macro_rules! impl_froms {
    ($e:ident: $($v:ident), *) => {
        $(
            impl From<$v> for $e {
                fn from(it: $v) -> $e {
                    $e::$v(it)
                }
            }
        )*
    }
}

mod mbe_parser;
mod mbe_expander;
mod syntax_bridge;
mod tt_cursor;
mod subtree_source;
mod subtree_parser;

use ra_syntax::SmolStr;
use smallvec::SmallVec;

pub use tt::{Delimiter, Punct};

#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
    Expected(String),
}

#[derive(Debug, PartialEq, Eq)]
pub enum ExpandError {
    NoMatchingRule,
    UnexpectedToken,
    BindingError(String),
    ConversionError,
}

pub use crate::syntax_bridge::{
    ast_to_token_tree, syntax_node_to_token_tree, token_tree_to_ast_item_list, token_tree_to_expr,
    token_tree_to_macro_items, token_tree_to_macro_stmts, token_tree_to_pat, token_tree_to_ty,
};

/// This struct contains AST for a single `macro_rules` definition. What might
/// be very confusing is that AST has almost exactly the same shape as
/// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident`
/// and `$()*` have special meaning (see `Var` and `Repeat` data structures)
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MacroRules {
    pub(crate) rules: Vec<Rule>,
}

impl MacroRules {
    pub fn parse(tt: &tt::Subtree) -> Result<MacroRules, ParseError> {
        mbe_parser::parse(tt)
    }
    pub fn expand(&self, tt: &tt::Subtree) -> Result<tt::Subtree, ExpandError> {
        mbe_expander::expand(self, tt)
    }
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Rule {
    pub(crate) lhs: Subtree,
    pub(crate) rhs: Subtree,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum TokenTree {
    Leaf(Leaf),
    Subtree(Subtree),
    Repeat(Repeat),
}
impl_froms!(TokenTree: Leaf, Subtree, Repeat);

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum Leaf {
    Literal(Literal),
    Punct(Punct),
    Ident(Ident),
    Var(Var),
}
impl_froms!(Leaf: Literal, Punct, Ident, Var);

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Subtree {
    pub(crate) delimiter: Delimiter,
    pub(crate) token_trees: Vec<TokenTree>,
}

#[derive(Clone, Debug, Eq)]
pub(crate) enum Separator {
    Literal(tt::Literal),
    Ident(tt::Ident),
    Puncts(SmallVec<[tt::Punct; 3]>),
}

// Note that when we compare a Separator, we just care about its textual value.
impl PartialEq for crate::Separator {
    fn eq(&self, other: &crate::Separator) -> bool {
        use crate::Separator::*;

        match (self, other) {
            (Ident(ref a), Ident(ref b)) => a.text == b.text,
            (Literal(ref a), Literal(ref b)) => a.text == b.text,
            (Puncts(ref a), Puncts(ref b)) if a.len() == b.len() => {
                let a_iter = a.iter().map(|a| a.char);
                let b_iter = b.iter().map(|b| b.char);
                a_iter.eq(b_iter)
            }
            _ => false,
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Repeat {
    pub(crate) subtree: Subtree,
    pub(crate) kind: RepeatKind,
    pub(crate) separator: Option<Separator>,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum RepeatKind {
    ZeroOrMore,
    OneOrMore,
    ZeroOrOne,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Literal {
    pub(crate) text: SmolStr,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Ident {
    pub(crate) text: SmolStr,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Var {
    pub(crate) text: SmolStr,
    pub(crate) kind: Option<SmolStr>,
}

#[cfg(test)]
mod tests;