//! This is the actual "grammar" of the Rust language. //! //! Each function in this module and its children corresponds //! to a production of the format grammar. Submodules roughly //! correspond to different *areas* of the grammar. By convention, //! each submodule starts with `use super::*` import and exports //! "public" productions via `pub(super)`. //! //! See docs for `Parser` to learn about API, available to the grammar, //! and see docs for `Event` to learn how this actually manages to //! produce parse trees. //! //! Code in this module also contains inline tests, which start with //! `// test name-of-the-test` comment and look like this: //! //! ``` //! // test function_with_zero_parameters //! // fn foo() {} //! ``` //! //! After adding a new inline-test, run `cargo collect-tests` to extract //! it as a standalone text-fixture into `tests/data/parser/inline`, and //! run `cargo test` once to create the "gold" value. //! //! Coding convention: rules like `where_clause` always produce either a //! node or an error, rules like `opt_where_clause` may produce nothing. //! Non-opt rules typically start with `assert!(p.at(FIRST_TOKEN))`, the //! caller is responsible for branching on the first token. mod attributes; mod expressions; mod items; mod params; mod paths; mod patterns; mod type_args; mod type_params; mod types; use crate::{ SyntaxKind::{self, *}, TokenSet, parser::{CompletedMarker, Marker, Parser}, }; pub(crate) fn root(p: &mut Parser) { let m = p.start(); p.eat(SHEBANG); items::mod_contents(p, false); m.complete(p, SOURCE_FILE); } pub(crate) fn reparser( node: SyntaxKind, first_child: Option, parent: Option, ) -> Option { let res = match node { BLOCK => expressions::block, NAMED_FIELD_DEF_LIST => items::named_field_def_list, NAMED_FIELD_LIST => items::named_field_list, ENUM_VARIANT_LIST => items::enum_variant_list, MATCH_ARM_LIST => items::match_arm_list, USE_TREE_LIST => items::use_tree_list, EXTERN_ITEM_LIST => items::extern_item_list, TOKEN_TREE if first_child? == L_CURLY => items::token_tree, ITEM_LIST => match parent? { IMPL_BLOCK => items::impl_item_list, TRAIT_DEF => items::trait_item_list, MODULE => items::mod_item_list, _ => return None, }, _ => return None, }; Some(res) } #[derive(Clone, Copy, PartialEq, Eq)] enum BlockLike { Block, NotBlock, } impl BlockLike { fn is_block(self) -> bool { self == BlockLike::Block } } fn opt_visibility(p: &mut Parser) -> bool { match p.current() { PUB_KW => { let m = p.start(); p.bump(); if p.at(L_PAREN) { match p.nth(1) { // test crate_visibility // pub(crate) struct S; // pub(self) struct S; // pub(self) struct S; // pub(self) struct S; CRATE_KW | SELF_KW | SUPER_KW => { p.bump(); p.bump(); p.expect(R_PAREN); } IN_KW => { p.bump(); p.bump(); paths::use_path(p); p.expect(R_PAREN); } _ => (), } } m.complete(p, VISIBILITY); } // test crate_keyword_vis // crate fn main() { } // struct S { crate field: u32 } // struct T(crate u32); // // test crate_keyword_path // fn foo() { crate::foo(); } CRATE_KW if p.nth(1) != COLONCOLON => { let m = p.start(); p.bump(); m.complete(p, VISIBILITY); } _ => return false, } true } fn opt_alias(p: &mut Parser) { if p.at(AS_KW) { let m = p.start(); p.bump(); if !p.eat(UNDERSCORE) { name(p); } m.complete(p, ALIAS); } } fn abi(p: &mut Parser) { assert!(p.at(EXTERN_KW)); let abi = p.start(); p.bump(); match p.current() { STRING | RAW_STRING => p.bump(), _ => (), } abi.complete(p, ABI); } fn opt_fn_ret_type(p: &mut Parser) -> bool { if p.at(THIN_ARROW) { let m = p.start(); p.bump(); types::type_(p); m.complete(p, RET_TYPE); true } else { false } } fn name_r(p: &mut Parser, recovery: TokenSet) { if p.at(IDENT) { let m = p.start(); p.bump(); m.complete(p, NAME); } else { p.err_recover("expected a name", recovery); } } fn name(p: &mut Parser) { name_r(p, TokenSet::empty()) } fn name_ref(p: &mut Parser) { if p.at(IDENT) { let m = p.start(); p.bump(); m.complete(p, NAME_REF); } else if p.at(SELF_KW) { let m = p.start(); p.bump(); m.complete(p, SELF_KW); } else { p.err_and_bump("expected identifier"); } } fn error_block(p: &mut Parser, message: &str) { assert!(p.at(L_CURLY)); let m = p.start(); p.error(message); p.bump(); expressions::expr_block_contents(p); p.eat(R_CURLY); m.complete(p, ERROR); }