use super::*; pub(super) const PATTERN_FIRST: TokenSet = expressions::LITERAL_FIRST .union(paths::PATH_FIRST) .union(token_set![BOX_KW, REF_KW, MUT_KW, L_PAREN, L_BRACK, AMP, UNDERSCORE, MINUS]); pub(super) fn pattern(p: &mut Parser) { pattern_r(p, PAT_RECOVERY_SET); } /// Parses a pattern list separated by pipes `|` pub(super) fn pattern_list(p: &mut Parser) { pattern_list_r(p, PAT_RECOVERY_SET) } /// Parses a pattern list separated by pipes `|` /// using the given `recovery_set` pub(super) fn pattern_list_r(p: &mut Parser, recovery_set: TokenSet) { p.eat(T![|]); pattern_r(p, recovery_set); while p.eat(T![|]) { pattern_r(p, recovery_set); } } pub(super) fn pattern_r(p: &mut Parser, recovery_set: TokenSet) { if let Some(lhs) = atom_pat(p, recovery_set) { // test range_pat // fn main() { // match 92 { // 0 ... 100 => (), // 101 ..= 200 => (), // 200 .. 301=> (), // } // } if p.at(T![...]) || p.at(T![..=]) || p.at(T![..]) { let m = lhs.precede(p); p.bump(); atom_pat(p, recovery_set); m.complete(p, RANGE_PAT); } // test marco_pat // fn main() { // let m!(x) = 0; // } else if lhs.kind() == PATH_PAT && p.at(T![!]) { let m = lhs.precede(p); items::macro_call_after_excl(p); m.complete(p, MACRO_CALL); } } } const PAT_RECOVERY_SET: TokenSet = token_set![LET_KW, IF_KW, WHILE_KW, LOOP_KW, MATCH_KW, R_PAREN, COMMA]; fn atom_pat(p: &mut Parser, recovery_set: TokenSet) -> Option { let la0 = p.nth(0); let la1 = p.nth(1); if la0 == T![ref] || la0 == T![mut] || la0 == T![box] || (la0 == IDENT && !(la1 == T![::] || la1 == T!['('] || la1 == T!['{'] || la1 == T![!])) { return Some(bind_pat(p, true)); } if paths::is_use_path_start(p) { return Some(path_pat(p)); } if is_literal_pat_start(p) { return Some(literal_pat(p)); } let m = match la0 { T![_] => placeholder_pat(p), T![&] => ref_pat(p), T!['('] => tuple_pat(p), T!['['] => slice_pat(p), _ => { p.err_recover("expected pattern", recovery_set); return None; } }; Some(m) } fn is_literal_pat_start(p: &mut Parser) -> bool { p.at(T![-]) && (p.nth(1) == INT_NUMBER || p.nth(1) == FLOAT_NUMBER) || p.at_ts(expressions::LITERAL_FIRST) } // test literal_pattern // fn main() { // match () { // -1 => (), // 92 => (), // 'c' => (), // "hello" => (), // } // } fn literal_pat(p: &mut Parser) -> CompletedMarker { assert!(is_literal_pat_start(p)); let m = p.start(); if p.at(T![-]) { p.bump(); } expressions::literal(p); m.complete(p, LITERAL_PAT) } // test path_part // fn foo() { // let foo::Bar = (); // let ::Bar = (); // let Bar { .. } = (); // let Bar(..) = (); // } fn path_pat(p: &mut Parser) -> CompletedMarker { assert!(paths::is_use_path_start(p)); let m = p.start(); paths::expr_path(p); let kind = match p.current() { T!['('] => { tuple_pat_fields(p); TUPLE_STRUCT_PAT } T!['{'] => { field_pat_list(p); STRUCT_PAT } _ => PATH_PAT, }; m.complete(p, kind) } // test tuple_pat_fields // fn foo() { // let S() = (); // let S(_) = (); // let S(_,) = (); // let S(_, .. , x) = (); // } fn tuple_pat_fields(p: &mut Parser) { assert!(p.at(T!['('])); p.bump(); pat_list(p, T![')']); p.expect(T![')']); } // test field_pat_list // fn foo() { // let S {} = (); // let S { f, ref mut g } = (); // let S { h: _, ..} = (); // let S { h: _, } = (); // } fn field_pat_list(p: &mut Parser) { assert!(p.at(T!['{'])); let m = p.start(); p.bump(); while !p.at(EOF) && !p.at(T!['}']) { match p.current() { T![..] => p.bump(), IDENT if p.nth(1) == T![:] => field_pat(p), T!['{'] => error_block(p, "expected ident"), _ => { bind_pat(p, false); } } if !p.at(T!['}']) { p.expect(T![,]); } } p.expect(T!['}']); m.complete(p, FIELD_PAT_LIST); } fn field_pat(p: &mut Parser) { assert!(p.at(IDENT)); assert!(p.nth(1) == T![:]); let m = p.start(); name(p); p.bump(); pattern(p); m.complete(p, FIELD_PAT); } // test placeholder_pat // fn main() { let _ = (); } fn placeholder_pat(p: &mut Parser) -> CompletedMarker { assert!(p.at(T![_])); let m = p.start(); p.bump(); m.complete(p, PLACEHOLDER_PAT) } // test ref_pat // fn main() { // let &a = (); // let &mut b = (); // } fn ref_pat(p: &mut Parser) -> CompletedMarker { assert!(p.at(T![&])); let m = p.start(); p.bump(); p.eat(T![mut]); pattern(p); m.complete(p, REF_PAT) } // test tuple_pat // fn main() { // let (a, b, ..) = (); // } fn tuple_pat(p: &mut Parser) -> CompletedMarker { assert!(p.at(T!['('])); let m = p.start(); tuple_pat_fields(p); m.complete(p, TUPLE_PAT) } // test slice_pat // fn main() { // let [a, b, ..] = []; // } fn slice_pat(p: &mut Parser) -> CompletedMarker { assert!(p.at(T!['['])); let m = p.start(); p.bump(); pat_list(p, T![']']); p.expect(T![']']); m.complete(p, SLICE_PAT) } fn pat_list(p: &mut Parser, ket: SyntaxKind) { while !p.at(EOF) && !p.at(ket) { match p.current() { T![..] => p.bump(), _ => { if !p.at_ts(PATTERN_FIRST) { p.error("expected a pattern"); break; } pattern(p) } } if !p.at(ket) { p.expect(T![,]); } } } // test bind_pat // fn main() { // let a = (); // let mut b = (); // let ref c = (); // let ref mut d = (); // let e @ _ = (); // let ref mut f @ g @ _ = (); // let box i = Box::new(1i32); // } fn bind_pat(p: &mut Parser, with_at: bool) -> CompletedMarker { let m = p.start(); p.eat(T![box]); p.eat(T![ref]); p.eat(T![mut]); name(p); if with_at && p.eat(T![@]) { pattern(p); } m.complete(p, BIND_PAT) }