//! This module is responsible for matching a search pattern against a node in the AST. In the //! process of matching, placeholder values are recorded. use crate::{ parsing::{Constraint, NodeKind, Placeholder, SsrTemplate}, SsrMatches, SsrPattern, SsrRule, }; use hir::Semantics; use ra_db::FileRange; use ra_syntax::ast::{AstNode, AstToken}; use ra_syntax::{ast, SyntaxElement, SyntaxElementChildren, SyntaxKind, SyntaxNode, SyntaxToken}; use rustc_hash::FxHashMap; use std::{cell::Cell, iter::Peekable}; use test_utils::mark; // Creates a match error. If we're currently attempting to match some code that we thought we were // going to match, as indicated by the --debug-snippet flag, then populate the reason field. macro_rules! match_error { ($e:expr) => {{ MatchFailed { reason: if recording_match_fail_reasons() { Some(format!("{}", $e)) } else { None } } }}; ($fmt:expr, $($arg:tt)+) => {{ MatchFailed { reason: if recording_match_fail_reasons() { Some(format!($fmt, $($arg)+)) } else { None } } }}; } // Fails the current match attempt, recording the supplied reason if we're recording match fail reasons. macro_rules! fail_match { ($($args:tt)*) => {return Err(match_error!($($args)*))}; } /// Information about a match that was found. #[derive(Debug)] pub struct Match { pub(crate) range: FileRange, pub(crate) matched_node: SyntaxNode, pub(crate) placeholder_values: FxHashMap, pub(crate) ignored_comments: Vec, // A copy of the template for the rule that produced this match. We store this on the match for // if/when we do replacement. pub(crate) template: SsrTemplate, } /// Represents a `$var` in an SSR query. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub(crate) struct Var(pub String); /// Information about a placeholder bound in a match. #[derive(Debug)] pub(crate) struct PlaceholderMatch { /// The node that the placeholder matched to. If set, then we'll search for further matches /// within this node. It isn't set when we match tokens within a macro call's token tree. pub(crate) node: Option, pub(crate) range: FileRange, /// More matches, found within `node`. pub(crate) inner_matches: SsrMatches, } #[derive(Debug)] pub(crate) struct MatchFailureReason { pub(crate) reason: String, } /// An "error" indicating that matching failed. Use the fail_match! macro to create and return this. #[derive(Clone)] pub(crate) struct MatchFailed { /// The reason why we failed to match. Only present when debug_active true in call to /// `get_match`. pub(crate) reason: Option, } /// Checks if `code` matches the search pattern found in `search_scope`, returning information about /// the match, if it does. Since we only do matching in this module and searching is done by the /// parent module, we don't populate nested matches. pub(crate) fn get_match( debug_active: bool, rule: &SsrRule, code: &SyntaxNode, restrict_range: &Option, sema: &Semantics, ) -> Result { record_match_fails_reasons_scope(debug_active, || { Matcher::try_match(rule, code, restrict_range, sema) }) } /// Checks if our search pattern matches a particular node of the AST. struct Matcher<'db, 'sema> { sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>, /// If any placeholders come from anywhere outside of this range, then the match will be /// rejected. restrict_range: Option, rule: &'sema SsrRule, } /// Which phase of matching we're currently performing. We do two phases because most attempted /// matches will fail and it means we can defer more expensive checks to the second phase. enum Phase<'a> { /// On the first phase, we perform cheap checks. No state is mutated and nothing is recorded. First, /// On the second phase, we construct the `Match`. Things like what placeholders bind to is /// recorded. Second(&'a mut Match), } impl<'db, 'sema> Matcher<'db, 'sema> { fn try_match( rule: &'sema SsrRule, code: &SyntaxNode, restrict_range: &Option, sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>, ) -> Result { let match_state = Matcher { sema, restrict_range: restrict_range.clone(), rule }; let pattern_tree = rule.pattern.tree_for_kind(code.kind())?; // First pass at matching, where we check that node types and idents match. match_state.attempt_match_node(&mut Phase::First, &pattern_tree, code)?; match_state.validate_range(&sema.original_range(code))?; let mut the_match = Match { range: sema.original_range(code), matched_node: code.clone(), placeholder_values: FxHashMap::default(), ignored_comments: Vec::new(), template: rule.template.clone(), }; // Second matching pass, where we record placeholder matches, ignored comments and maybe do // any other more expensive checks that we didn't want to do on the first pass. match_state.attempt_match_node(&mut Phase::Second(&mut the_match), &pattern_tree, code)?; Ok(the_match) } /// Checks that `range` is within the permitted range if any. This is applicable when we're /// processing a macro expansion and we want to fail the match if we're working with a node that /// didn't originate from the token tree of the macro call. fn validate_range(&self, range: &FileRange) -> Result<(), MatchFailed> { if let Some(restrict_range) = &self.restrict_range { if restrict_range.file_id != range.file_id || !restrict_range.range.contains_range(range.range) { fail_match!("Node originated from a macro"); } } Ok(()) } fn attempt_match_node( &self, phase: &mut Phase, pattern: &SyntaxNode, code: &SyntaxNode, ) -> Result<(), MatchFailed> { // Handle placeholders. if let Some(placeholder) = self.get_placeholder(&SyntaxElement::Node(pattern.clone())) { for constraint in &placeholder.constraints { self.check_constraint(constraint, code)?; } if let Phase::Second(matches_out) = phase { let original_range = self.sema.original_range(code); // We validated the range for the node when we started the match, so the placeholder // probably can't fail range validation, but just to be safe... self.validate_range(&original_range)?; matches_out.placeholder_values.insert( Var(placeholder.ident.to_string()), PlaceholderMatch::new(code, original_range), ); } return Ok(()); } // Non-placeholders. if pattern.kind() != code.kind() { fail_match!( "Pattern had a `{}` ({:?}), code had `{}` ({:?})", pattern.text(), pattern.kind(), code.text(), code.kind() ); } // Some kinds of nodes have special handling. For everything else, we fall back to default // matching. match code.kind() { SyntaxKind::RECORD_FIELD_LIST => { self.attempt_match_record_field_list(phase, pattern, code) } SyntaxKind::TOKEN_TREE => self.attempt_match_token_tree(phase, pattern, code), _ => self.attempt_match_node_children(phase, pattern, code), } } fn attempt_match_node_children( &self, phase: &mut Phase, pattern: &SyntaxNode, code: &SyntaxNode, ) -> Result<(), MatchFailed> { self.attempt_match_sequences( phase, PatternIterator::new(pattern), code.children_with_tokens(), ) } fn attempt_match_sequences( &self, phase: &mut Phase, pattern_it: PatternIterator, mut code_it: SyntaxElementChildren, ) -> Result<(), MatchFailed> { let mut pattern_it = pattern_it.peekable(); loop { match phase.next_non_trivial(&mut code_it) { None => { if let Some(p) = pattern_it.next() { fail_match!("Part of the pattern was unmatched: {:?}", p); } return Ok(()); } Some(SyntaxElement::Token(c)) => { self.attempt_match_token(phase, &mut pattern_it, &c)?; } Some(SyntaxElement::Node(c)) => match pattern_it.next() { Some(SyntaxElement::Node(p)) => { self.attempt_match_node(phase, &p, &c)?; } Some(p) => fail_match!("Pattern wanted '{}', code has {}", p, c.text()), None => fail_match!("Pattern reached end, code has {}", c.text()), }, } } } fn attempt_match_token( &self, phase: &mut Phase, pattern: &mut Peekable, code: &ra_syntax::SyntaxToken, ) -> Result<(), MatchFailed> { phase.record_ignored_comments(code); // Ignore whitespace and comments. if code.kind().is_trivia() { return Ok(()); } if let Some(SyntaxElement::Token(p)) = pattern.peek() { // If the code has a comma and the pattern is about to close something, then accept the // comma without advancing the pattern. i.e. ignore trailing commas. if code.kind() == SyntaxKind::COMMA && is_closing_token(p.kind()) { return Ok(()); } // Conversely, if the pattern has a comma and the code doesn't, skip that part of the // pattern and continue to match the code. if p.kind() == SyntaxKind::COMMA && is_closing_token(code.kind()) { pattern.next(); } } // Consume an element from the pattern and make sure it matches. match pattern.next() { Some(SyntaxElement::Token(p)) => { if p.kind() != code.kind() || p.text() != code.text() { fail_match!( "Pattern wanted token '{}' ({:?}), but code had token '{}' ({:?})", p.text(), p.kind(), code.text(), code.kind() ) } } Some(SyntaxElement::Node(p)) => { // Not sure if this is actually reachable. fail_match!( "Pattern wanted {:?}, but code had token '{}' ({:?})", p, code.text(), code.kind() ); } None => { fail_match!("Pattern exhausted, while code remains: `{}`", code.text()); } } Ok(()) } fn check_constraint( &self, constraint: &Constraint, code: &SyntaxNode, ) -> Result<(), MatchFailed> { match constraint { Constraint::Kind(kind) => { kind.matches(code)?; } Constraint::Not(sub) => { if self.check_constraint(&*sub, code).is_ok() { fail_match!("Constraint {:?} failed for '{}'", constraint, code.text()); } } } Ok(()) } /// We want to allow the records to match in any order, so we have special matching logic for /// them. fn attempt_match_record_field_list( &self, phase: &mut Phase, pattern: &SyntaxNode, code: &SyntaxNode, ) -> Result<(), MatchFailed> { // Build a map keyed by field name. let mut fields_by_name = FxHashMap::default(); for child in code.children() { if let Some(record) = ast::RecordField::cast(child.clone()) { if let Some(name) = record.field_name() { fields_by_name.insert(name.text().clone(), child.clone()); } } } for p in pattern.children_with_tokens() { if let SyntaxElement::Node(p) = p { if let Some(name_element) = p.first_child_or_token() { if self.get_placeholder(&name_element).is_some() { // If the pattern is using placeholders for field names then order // independence doesn't make sense. Fall back to regular ordered // matching. return self.attempt_match_node_children(phase, pattern, code); } if let Some(ident) = only_ident(name_element) { let code_record = fields_by_name.remove(ident.text()).ok_or_else(|| { match_error!( "Placeholder has record field '{}', but code doesn't", ident ) })?; self.attempt_match_node(phase, &p, &code_record)?; } } } } if let Some(unmatched_fields) = fields_by_name.keys().next() { fail_match!( "{} field(s) of a record literal failed to match, starting with {}", fields_by_name.len(), unmatched_fields ); } Ok(()) } /// Outside of token trees, a placeholder can only match a single AST node, whereas in a token /// tree it can match a sequence of tokens. Note, that this code will only be used when the /// pattern matches the macro invocation. For matches within the macro call, we'll already have /// expanded the macro. fn attempt_match_token_tree( &self, phase: &mut Phase, pattern: &SyntaxNode, code: &ra_syntax::SyntaxNode, ) -> Result<(), MatchFailed> { let mut pattern = PatternIterator::new(pattern).peekable(); let mut children = code.children_with_tokens(); while let Some(child) = children.next() { if let Some(placeholder) = pattern.peek().and_then(|p| self.get_placeholder(p)) { pattern.next(); let next_pattern_token = pattern .peek() .and_then(|p| match p { SyntaxElement::Token(t) => Some(t.clone()), SyntaxElement::Node(n) => n.first_token(), }) .map(|p| p.text().to_string()); let first_matched_token = child.clone(); let mut last_matched_token = child; // Read code tokens util we reach one equal to the next token from our pattern // or we reach the end of the token tree. while let Some(next) = children.next() { match &next { SyntaxElement::Token(t) => { if Some(t.to_string()) == next_pattern_token { pattern.next(); break; } } SyntaxElement::Node(n) => { if let Some(first_token) = n.first_token() { if Some(first_token.to_string()) == next_pattern_token { if let Some(SyntaxElement::Node(p)) = pattern.next() { // We have a subtree that starts with the next token in our pattern. self.attempt_match_token_tree(phase, &p, &n)?; break; } } } } }; last_matched_token = next; } if let Phase::Second(match_out) = phase { match_out.placeholder_values.insert( Var(placeholder.ident.to_string()), PlaceholderMatch::from_range(FileRange { file_id: self.sema.original_range(code).file_id, range: first_matched_token .text_range() .cover(last_matched_token.text_range()), }), ); } continue; } // Match literal (non-placeholder) tokens. match child { SyntaxElement::Token(token) => { self.attempt_match_token(phase, &mut pattern, &token)?; } SyntaxElement::Node(node) => match pattern.next() { Some(SyntaxElement::Node(p)) => { self.attempt_match_token_tree(phase, &p, &node)?; } Some(SyntaxElement::Token(p)) => fail_match!( "Pattern has token '{}', code has subtree '{}'", p.text(), node.text() ), None => fail_match!("Pattern has nothing, code has '{}'", node.text()), }, } } if let Some(p) = pattern.next() { fail_match!("Reached end of token tree in code, but pattern still has {:?}", p); } Ok(()) } fn get_placeholder(&self, element: &SyntaxElement) -> Option<&Placeholder> { only_ident(element.clone()) .and_then(|ident| self.rule.pattern.placeholders_by_stand_in.get(ident.text())) } } impl Phase<'_> { fn next_non_trivial(&mut self, code_it: &mut SyntaxElementChildren) -> Option { loop { let c = code_it.next(); if let Some(SyntaxElement::Token(t)) = &c { self.record_ignored_comments(t); if t.kind().is_trivia() { continue; } } return c; } } fn record_ignored_comments(&mut self, token: &SyntaxToken) { if token.kind() == SyntaxKind::COMMENT { if let Phase::Second(match_out) = self { if let Some(comment) = ast::Comment::cast(token.clone()) { match_out.ignored_comments.push(comment); } } } } } fn is_closing_token(kind: SyntaxKind) -> bool { kind == SyntaxKind::R_PAREN || kind == SyntaxKind::R_CURLY || kind == SyntaxKind::R_BRACK } pub(crate) fn record_match_fails_reasons_scope(debug_active: bool, f: F) -> T where F: Fn() -> T, { RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(debug_active)); let res = f(); RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(false)); res } // For performance reasons, we don't want to record the reason why every match fails, only the bit // of code that the user indicated they thought would match. We use a thread local to indicate when // we are trying to match that bit of code. This saves us having to pass a boolean into all the bits // of code that can make the decision to not match. thread_local! { pub static RECORDING_MATCH_FAIL_REASONS: Cell = Cell::new(false); } fn recording_match_fail_reasons() -> bool { RECORDING_MATCH_FAIL_REASONS.with(|c| c.get()) } impl PlaceholderMatch { fn new(node: &SyntaxNode, range: FileRange) -> Self { Self { node: Some(node.clone()), range, inner_matches: SsrMatches::default() } } fn from_range(range: FileRange) -> Self { Self { node: None, range, inner_matches: SsrMatches::default() } } } impl SsrPattern { pub(crate) fn tree_for_kind(&self, kind: SyntaxKind) -> Result<&SyntaxNode, MatchFailed> { let (tree, kind_name) = if ast::Expr::can_cast(kind) { (&self.expr, "expression") } else if ast::TypeRef::can_cast(kind) { (&self.type_ref, "type reference") } else if ast::ModuleItem::can_cast(kind) { (&self.item, "item") } else if ast::Path::can_cast(kind) { (&self.path, "path") } else if ast::Pat::can_cast(kind) { (&self.pattern, "pattern") } else { fail_match!("Matching nodes of kind {:?} is not supported", kind); }; match tree { Some(tree) => Ok(tree), None => fail_match!("Pattern cannot be parsed as a {}", kind_name), } } } impl NodeKind { fn matches(&self, node: &SyntaxNode) -> Result<(), MatchFailed> { let ok = match self { Self::Literal => { mark::hit!(literal_constraint); ast::Literal::can_cast(node.kind()) } }; if !ok { fail_match!("Code '{}' isn't of kind {:?}", node.text(), self); } Ok(()) } } // If `node` contains nothing but an ident then return it, otherwise return None. fn only_ident(element: SyntaxElement) -> Option { match element { SyntaxElement::Token(t) => { if t.kind() == SyntaxKind::IDENT { return Some(t); } } SyntaxElement::Node(n) => { let mut children = n.children_with_tokens(); if let (Some(only_child), None) = (children.next(), children.next()) { return only_ident(only_child); } } } None } struct PatternIterator { iter: SyntaxElementChildren, } impl Iterator for PatternIterator { type Item = SyntaxElement; fn next(&mut self) -> Option { while let Some(element) = self.iter.next() { if !element.kind().is_trivia() { return Some(element); } } None } } impl PatternIterator { fn new(parent: &SyntaxNode) -> Self { Self { iter: parent.children_with_tokens() } } } #[cfg(test)] mod tests { use super::*; use crate::{MatchFinder, SsrRule}; #[test] fn parse_match_replace() { let rule: SsrRule = "foo($x) ==>> bar($x)".parse().unwrap(); let input = "fn foo() {} fn main() { foo(1+2); }"; use ra_db::fixture::WithFixture; let (db, file_id) = ra_ide_db::RootDatabase::with_single_file(input); let mut match_finder = MatchFinder::new(&db); match_finder.add_rule(rule); let matches = match_finder.find_matches_in_file(file_id); assert_eq!(matches.matches.len(), 1); assert_eq!(matches.matches[0].matched_node.text(), "foo(1+2)"); assert_eq!(matches.matches[0].placeholder_values.len(), 1); assert_eq!( matches.matches[0].placeholder_values[&Var("x".to_string())] .node .as_ref() .unwrap() .text(), "1+2" ); let edit = crate::replacing::matches_to_edit(&matches, input); let mut after = input.to_string(); edit.apply(&mut after); assert_eq!(after, "fn foo() {} fn main() { bar(1+2); }"); } }