use crate::{MatchFinder, SsrRule}; use ra_db::{FileId, SourceDatabaseExt}; use test_utils::mark; fn parse_error_text(query: &str) -> String { format!("{}", query.parse::().unwrap_err()) } #[test] fn parser_empty_query() { assert_eq!(parse_error_text(""), "Parse error: Cannot find delimiter `==>>`"); } #[test] fn parser_no_delimiter() { assert_eq!(parse_error_text("foo()"), "Parse error: Cannot find delimiter `==>>`"); } #[test] fn parser_two_delimiters() { assert_eq!( parse_error_text("foo() ==>> a ==>> b "), "Parse error: More than one delimiter found" ); } #[test] fn parser_repeated_name() { assert_eq!( parse_error_text("foo($a, $a) ==>>"), "Parse error: Name `a` repeats more than once" ); } #[test] fn parser_invalid_pattern() { assert_eq!( parse_error_text(" ==>> ()"), "Parse error: Pattern is not a valid Rust expression, type, item, path or pattern" ); } #[test] fn parser_invalid_template() { assert_eq!( parse_error_text("() ==>> )"), "Parse error: Replacement is not a valid Rust expression, type, item, path or pattern" ); } #[test] fn parser_undefined_placeholder_in_replacement() { assert_eq!( parse_error_text("42 ==>> $a"), "Parse error: Replacement contains undefined placeholders: $a" ); } fn single_file(code: &str) -> (ra_ide_db::RootDatabase, FileId) { use ra_db::fixture::WithFixture; ra_ide_db::RootDatabase::with_single_file(code) } fn assert_ssr_transform(rule: &str, input: &str, result: &str) { assert_ssr_transforms(&[rule], input, result); } fn normalize_code(code: &str) -> String { let (db, file_id) = single_file(code); db.file_text(file_id).to_string() } fn assert_ssr_transforms(rules: &[&str], input: &str, result: &str) { let (db, file_id) = single_file(input); let mut match_finder = MatchFinder::new(&db); for rule in rules { let rule: SsrRule = rule.parse().unwrap(); match_finder.add_rule(rule); } if let Some(edits) = match_finder.edits_for_file(file_id) { // Note, db.file_text is not necessarily the same as `input`, since fixture parsing alters // stuff. let mut after = db.file_text(file_id).to_string(); edits.apply(&mut after); // Likewise, we need to make sure that whatever transformations fixture parsing applies, // also get applied to our expected result. let result = normalize_code(result); assert_eq!(after, result); } else { panic!("No edits were made"); } } fn print_match_debug_info(match_finder: &MatchFinder, file_id: FileId, snippet: &str) { let debug_info = match_finder.debug_where_text_equal(file_id, snippet); println!( "Match debug info: {} nodes had text exactly equal to '{}'", debug_info.len(), snippet ); for (index, d) in debug_info.iter().enumerate() { println!("Node #{}\n{:#?}\n", index, d); } } fn assert_matches(pattern: &str, code: &str, expected: &[&str]) { let (db, file_id) = single_file(code); let mut match_finder = MatchFinder::new(&db); match_finder.add_search_pattern(pattern.parse().unwrap()); let matched_strings: Vec = match_finder .find_matches_in_file(file_id) .flattened() .matches .iter() .map(|m| m.matched_text()) .collect(); if matched_strings != expected && !expected.is_empty() { print_match_debug_info(&match_finder, file_id, &expected[0]); } assert_eq!(matched_strings, expected); } fn assert_no_match(pattern: &str, code: &str) { let (db, file_id) = single_file(code); let mut match_finder = MatchFinder::new(&db); match_finder.add_search_pattern(pattern.parse().unwrap()); let matches = match_finder.find_matches_in_file(file_id).flattened().matches; if !matches.is_empty() { print_match_debug_info(&match_finder, file_id, &matches[0].matched_text()); panic!("Got {} matches when we expected none: {:#?}", matches.len(), matches); } } fn assert_match_failure_reason(pattern: &str, code: &str, snippet: &str, expected_reason: &str) { let (db, file_id) = single_file(code); let mut match_finder = MatchFinder::new(&db); match_finder.add_search_pattern(pattern.parse().unwrap()); let mut reasons = Vec::new(); for d in match_finder.debug_where_text_equal(file_id, snippet) { if let Some(reason) = d.match_failure_reason() { reasons.push(reason.to_owned()); } } assert_eq!(reasons, vec![expected_reason]); } #[test] fn ssr_function_to_method() { assert_ssr_transform( "my_function($a, $b) ==>> ($a).my_method($b)", "fn my_function() {} fn main() { loop { my_function( other_func(x, y), z + w) } }", "fn my_function() {} fn main() { loop { (other_func(x, y)).my_method(z + w) } }", ) } #[test] fn ssr_nested_function() { assert_ssr_transform( "foo($a, $b, $c) ==>> bar($c, baz($a, $b))", "fn foo() {} fn main { foo (x + value.method(b), x+y-z, true && false) }", "fn foo() {} fn main { bar(true && false, baz(x + value.method(b), x+y-z)) }", ) } #[test] fn ssr_expected_spacing() { assert_ssr_transform( "foo($x) + bar() ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo(5) + bar() }", "fn foo() {} fn bar() {} fn main() { bar(5) }", ); } #[test] fn ssr_with_extra_space() { assert_ssr_transform( "foo($x ) + bar() ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo( 5 ) +bar( ) }", "fn foo() {} fn bar() {} fn main() { bar(5) }", ); } #[test] fn ssr_keeps_nested_comment() { assert_ssr_transform( "foo($x) ==>> bar($x)", "fn foo() {} fn main() { foo(other(5 /* using 5 */)) }", "fn foo() {} fn main() { bar(other(5 /* using 5 */)) }", ) } #[test] fn ssr_keeps_comment() { assert_ssr_transform( "foo($x) ==>> bar($x)", "fn foo() {} fn main() { foo(5 /* using 5 */) }", "fn foo() {} fn main() { bar(5)/* using 5 */ }", ) } #[test] fn ssr_struct_lit() { assert_ssr_transform( "foo{a: $a, b: $b} ==>> foo::new($a, $b)", "fn foo() {} fn main() { foo{b:2, a:1} }", "fn foo() {} fn main() { foo::new(1, 2) }", ) } #[test] fn ignores_whitespace() { assert_matches("1+2", "fn f() -> i32 {1 + 2}", &["1 + 2"]); assert_matches("1 + 2", "fn f() -> i32 {1+2}", &["1+2"]); } #[test] fn no_match() { assert_no_match("1 + 3", "fn f() -> i32 {1 + 2}"); } #[test] fn match_fn_definition() { assert_matches("fn $a($b: $t) {$c}", "fn f(a: i32) {bar()}", &["fn f(a: i32) {bar()}"]); } #[test] fn match_struct_definition() { let code = r#" struct Option {} struct Bar {} struct Foo {name: Option}"#; assert_matches("struct $n {$f: Option}", code, &["struct Foo {name: Option}"]); } #[test] fn match_expr() { let code = r#" fn foo() {} fn f() -> i32 {foo(40 + 2, 42)}"#; assert_matches("foo($a, $b)", code, &["foo(40 + 2, 42)"]); assert_no_match("foo($a, $b, $c)", code); assert_no_match("foo($a)", code); } #[test] fn match_nested_method_calls() { assert_matches( "$a.z().z().z()", "fn f() {h().i().j().z().z().z().d().e()}", &["h().i().j().z().z().z()"], ); } // Make sure that our node matching semantics don't differ within macro calls. #[test] fn match_nested_method_calls_with_macro_call() { assert_matches( "$a.z().z().z()", r#" macro_rules! m1 { ($a:expr) => {$a}; } fn f() {m1!(h().i().j().z().z().z().d().e())}"#, &["h().i().j().z().z().z()"], ); } #[test] fn match_complex_expr() { let code = r#" fn foo() {} fn bar() {} fn f() -> i32 {foo(bar(40, 2), 42)}"#; assert_matches("foo($a, $b)", code, &["foo(bar(40, 2), 42)"]); assert_no_match("foo($a, $b, $c)", code); assert_no_match("foo($a)", code); assert_matches("bar($a, $b)", code, &["bar(40, 2)"]); } // Trailing commas in the code should be ignored. #[test] fn match_with_trailing_commas() { // Code has comma, pattern doesn't. assert_matches("foo($a, $b)", "fn foo() {} fn f() {foo(1, 2,);}", &["foo(1, 2,)"]); assert_matches("Foo{$a, $b}", "struct Foo {} fn f() {Foo{1, 2,};}", &["Foo{1, 2,}"]); // Pattern has comma, code doesn't. assert_matches("foo($a, $b,)", "fn foo() {} fn f() {foo(1, 2);}", &["foo(1, 2)"]); assert_matches("Foo{$a, $b,}", "struct Foo {} fn f() {Foo{1, 2};}", &["Foo{1, 2}"]); } #[test] fn match_type() { assert_matches("i32", "fn f() -> i32 {1 + 2}", &["i32"]); assert_matches( "Option<$a>", "struct Option {} fn f() -> Option {42}", &["Option"], ); assert_no_match( "Option<$a>", "struct Option {} struct Result {} fn f() -> Result {42}", ); } #[test] fn match_struct_instantiation() { let code = r#" struct Foo {bar: i32, baz: i32} fn f() {Foo {bar: 1, baz: 2}}"#; assert_matches("Foo {bar: 1, baz: 2}", code, &["Foo {bar: 1, baz: 2}"]); // Now with placeholders for all parts of the struct. assert_matches("Foo {$a: $b, $c: $d}", code, &["Foo {bar: 1, baz: 2}"]); assert_matches("Foo {}", "struct Foo {} fn f() {Foo {}}", &["Foo {}"]); } #[test] fn match_path() { let code = r#" mod foo { fn bar() {} } fn f() {foo::bar(42)}"#; assert_matches("foo::bar", code, &["foo::bar"]); assert_matches("$a::bar", code, &["foo::bar"]); assert_matches("foo::$b", code, &["foo::bar"]); } #[test] fn match_pattern() { assert_matches("Some($a)", "struct Some(); fn f() {if let Some(x) = foo() {}}", &["Some(x)"]); } #[test] fn literal_constraint() { mark::check!(literal_constraint); let code = r#" enum Option { Some(T), None } use Option::Some; fn f1() { let x1 = Some(42); let x2 = Some("foo"); let x3 = Some(x1); let x4 = Some(40 + 2); let x5 = Some(true); } "#; assert_matches("Some(${a:kind(literal)})", code, &["Some(42)", "Some(\"foo\")", "Some(true)"]); assert_matches("Some(${a:not(kind(literal))})", code, &["Some(x1)", "Some(40 + 2)"]); } #[test] fn match_reordered_struct_instantiation() { assert_matches( "Foo {aa: 1, b: 2, ccc: 3}", "struct Foo {} fn f() {Foo {b: 2, ccc: 3, aa: 1}}", &["Foo {b: 2, ccc: 3, aa: 1}"], ); assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {b: 1}}"); assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {a: 2}}"); assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {a: 1}}"); assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {b: 2}}"); assert_no_match("Foo {a: 1, }", "struct Foo {} fn f() {Foo {a: 1, b: 2}}"); assert_no_match("Foo {a: 1, z: 9}", "struct Foo {} fn f() {Foo {a: 1}}"); } #[test] fn match_macro_invocation() { assert_matches( "foo!($a)", "macro_rules! foo {() => {}} fn() {foo(foo!(foo()))}", &["foo!(foo())"], ); assert_matches( "foo!(41, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43)}", &["foo!(41, 42, 43)"], ); assert_no_match("foo!(50, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}"); assert_no_match("foo!(41, $a, 50)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}"); assert_matches( "foo!($a())", "macro_rules! foo {() => {}} fn() {foo!(bar())}", &["foo!(bar())"], ); } // When matching within a macro expansion, we only allow matches of nodes that originated from // the macro call, not from the macro definition. #[test] fn no_match_expression_from_macro() { assert_no_match( "$a.clone()", r#" macro_rules! m1 { () => {42.clone()} } fn f1() {m1!()} "#, ); } // We definitely don't want to allow matching of an expression that part originates from the // macro call `42` and part from the macro definition `.clone()`. #[test] fn no_match_split_expression() { assert_no_match( "$a.clone()", r#" macro_rules! m1 { ($x:expr) => {$x.clone()} } fn f1() {m1!(42)} "#, ); } #[test] fn replace_function_call() { assert_ssr_transform( "foo() ==>> bar()", "fn foo() {} fn f1() {foo(); foo();}", "fn foo() {} fn f1() {bar(); bar();}", ); } #[test] fn replace_function_call_with_placeholders() { assert_ssr_transform( "foo($a, $b) ==>> bar($b, $a)", "fn foo() {} fn f1() {foo(5, 42)}", "fn foo() {} fn f1() {bar(42, 5)}", ); } #[test] fn replace_nested_function_calls() { assert_ssr_transform( "foo($a) ==>> bar($a)", "fn foo() {} fn f1() {foo(foo(42))}", "fn foo() {} fn f1() {bar(bar(42))}", ); } #[test] fn replace_type() { assert_ssr_transform( "Result<(), $a> ==>> Option<$a>", "struct Result {} fn f1() -> Result<(), Vec> {foo()}", "struct Result {} fn f1() -> Option> {foo()}", ); } #[test] fn replace_struct_init() { assert_ssr_transform( "Foo {a: $a, b: $b} ==>> Foo::new($a, $b)", "struct Foo {} fn f1() {Foo{b: 1, a: 2}}", "struct Foo {} fn f1() {Foo::new(2, 1)}", ); } #[test] fn replace_macro_invocations() { assert_ssr_transform( "try!($a) ==>> $a?", "macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(try!(foo()));}", "macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(foo()?);}", ); assert_ssr_transform( "foo!($a($b)) ==>> foo($b, $a)", "macro_rules! foo {() => {}} fn f1() {foo!(abc(def() + 2));}", "macro_rules! foo {() => {}} fn f1() {foo(def() + 2, abc);}", ); } #[test] fn replace_binary_op() { assert_ssr_transform( "$a + $b ==>> $b + $a", "fn f() {2 * 3 + 4 * 5}", "fn f() {4 * 5 + 2 * 3}", ); assert_ssr_transform( "$a + $b ==>> $b + $a", "fn f() {1 + 2 + 3 + 4}", "fn f() {4 + 3 + 2 + 1}", ); } #[test] fn match_binary_op() { assert_matches("$a + $b", "fn f() {1 + 2 + 3 + 4}", &["1 + 2", "1 + 2 + 3", "1 + 2 + 3 + 4"]); } #[test] fn multiple_rules() { assert_ssr_transforms( &["$a + 1 ==>> add_one($a)", "$a + $b ==>> add($a, $b)"], "fn f() -> i32 {3 + 2 + 1}", "fn f() -> i32 {add_one(add(3, 2))}", ) } #[test] fn match_within_macro_invocation() { let code = r#" macro_rules! foo { ($a:stmt; $b:expr) => { $b }; } struct A {} impl A { fn bar() {} } fn f1() { let aaa = A {}; foo!(macro_ignores_this(); aaa.bar()); } "#; assert_matches("$a.bar()", code, &["aaa.bar()"]); } #[test] fn replace_within_macro_expansion() { assert_ssr_transform( "$a.foo() ==>> bar($a)", r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(5.x().foo().o2())}"#, r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(bar(5.x()).o2())}"#, ) } #[test] fn preserves_whitespace_within_macro_expansion() { assert_ssr_transform( "$a + $b ==>> $b - $a", r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(1 * 2 + 3 + 4}"#, r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(4 - 3 - 1 * 2}"#, ) } #[test] fn match_failure_reasons() { let code = r#" fn bar() {} macro_rules! foo { ($a:expr) => { 1 + $a + 2 }; } fn f1() { bar(1, 2); foo!(5 + 43.to_string() + 5); } "#; assert_match_failure_reason( "bar($a, 3)", code, "bar(1, 2)", r#"Pattern wanted token '3' (INT_NUMBER), but code had token '2' (INT_NUMBER)"#, ); assert_match_failure_reason( "42.to_string()", code, "43.to_string()", r#"Pattern wanted token '42' (INT_NUMBER), but code had token '43' (INT_NUMBER)"#, ); }