//! Various extension methods to ast Expr Nodes, which are hard to code-generate. use crate::{ ast::{self, child_opt, children, AstChildren, AstNode}, SmolStr, SyntaxKind::*, SyntaxToken, T, }; impl ast::Expr { pub fn is_block_like(&self) -> bool { match self { ast::Expr::IfExpr(_) | ast::Expr::LoopExpr(_) | ast::Expr::ForExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::BlockExpr(_) | ast::Expr::MatchExpr(_) | ast::Expr::TryBlockExpr(_) => true, _ => false, } } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum ElseBranch { Block(ast::BlockExpr), IfExpr(ast::IfExpr), } impl ast::IfExpr { pub fn then_branch(&self) -> Option { self.blocks().next() } pub fn else_branch(&self) -> Option { let res = match self.blocks().nth(1) { Some(block) => ElseBranch::Block(block), None => { let elif: ast::IfExpr = child_opt(self)?; ElseBranch::IfExpr(elif) } }; Some(res) } fn blocks(&self) -> AstChildren { children(self) } } impl ast::RefExpr { pub fn is_mut(&self) -> bool { self.syntax().children_with_tokens().any(|n| n.kind() == T![mut]) } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum PrefixOp { /// The `*` operator for dereferencing Deref, /// The `!` operator for logical inversion Not, /// The `-` operator for negation Neg, } impl ast::PrefixExpr { pub fn op_kind(&self) -> Option { match self.op_token()?.kind() { T![*] => Some(PrefixOp::Deref), T![!] => Some(PrefixOp::Not), T![-] => Some(PrefixOp::Neg), _ => None, } } pub fn op_token(&self) -> Option { self.syntax().first_child_or_token()?.into_token() } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum BinOp { /// The `||` operator for boolean OR BooleanOr, /// The `&&` operator for boolean AND BooleanAnd, /// The `==` operator for equality testing EqualityTest, /// The `!=` operator for equality testing NegatedEqualityTest, /// The `<=` operator for lesser-equal testing LesserEqualTest, /// The `>=` operator for greater-equal testing GreaterEqualTest, /// The `<` operator for comparison LesserTest, /// The `>` operator for comparison GreaterTest, /// The `+` operator for addition Addition, /// The `*` operator for multiplication Multiplication, /// The `-` operator for subtraction Subtraction, /// The `/` operator for division Division, /// The `%` operator for remainder after division Remainder, /// The `<<` operator for left shift LeftShift, /// The `>>` operator for right shift RightShift, /// The `^` operator for bitwise XOR BitwiseXor, /// The `|` operator for bitwise OR BitwiseOr, /// The `&` operator for bitwise AND BitwiseAnd, /// The `=` operator for assignment Assignment, /// The `+=` operator for assignment after addition AddAssign, /// The `/=` operator for assignment after division DivAssign, /// The `*=` operator for assignment after multiplication MulAssign, /// The `%=` operator for assignment after remainders RemAssign, /// The `>>=` operator for assignment after shifting right ShrAssign, /// The `<<=` operator for assignment after shifting left ShlAssign, /// The `-=` operator for assignment after subtraction SubAssign, /// The `|=` operator for assignment after bitwise OR BitOrAssign, /// The `&=` operator for assignment after bitwise AND BitAndAssign, /// The `^=` operator for assignment after bitwise XOR BitXorAssign, } impl BinOp { pub fn is_assignment(self) -> bool { match self { BinOp::Assignment | BinOp::AddAssign | BinOp::DivAssign | BinOp::MulAssign | BinOp::RemAssign | BinOp::ShrAssign | BinOp::ShlAssign | BinOp::SubAssign | BinOp::BitOrAssign | BinOp::BitAndAssign | BinOp::BitXorAssign => true, _ => false, } } } impl ast::BinExpr { pub fn op_details(&self) -> Option<(SyntaxToken, BinOp)> { self.syntax().children_with_tokens().filter_map(|it| it.into_token()).find_map(|c| { let bin_op = match c.kind() { T![||] => BinOp::BooleanOr, T![&&] => BinOp::BooleanAnd, T![==] => BinOp::EqualityTest, T![!=] => BinOp::NegatedEqualityTest, T![<=] => BinOp::LesserEqualTest, T![>=] => BinOp::GreaterEqualTest, T![<] => BinOp::LesserTest, T![>] => BinOp::GreaterTest, T![+] => BinOp::Addition, T![*] => BinOp::Multiplication, T![-] => BinOp::Subtraction, T![/] => BinOp::Division, T![%] => BinOp::Remainder, T![<<] => BinOp::LeftShift, T![>>] => BinOp::RightShift, T![^] => BinOp::BitwiseXor, T![|] => BinOp::BitwiseOr, T![&] => BinOp::BitwiseAnd, T![=] => BinOp::Assignment, T![+=] => BinOp::AddAssign, T![/=] => BinOp::DivAssign, T![*=] => BinOp::MulAssign, T![%=] => BinOp::RemAssign, T![>>=] => BinOp::ShrAssign, T![<<=] => BinOp::ShlAssign, T![-=] => BinOp::SubAssign, T![|=] => BinOp::BitOrAssign, T![&=] => BinOp::BitAndAssign, T![^=] => BinOp::BitXorAssign, _ => return None, }; Some((c, bin_op)) }) } pub fn op_kind(&self) -> Option { self.op_details().map(|t| t.1) } pub fn op_token(&self) -> Option { self.op_details().map(|t| t.0) } pub fn lhs(&self) -> Option { children(self).next() } pub fn rhs(&self) -> Option { children(self).nth(1) } pub fn sub_exprs(&self) -> (Option, Option) { let mut children = children(self); let first = children.next(); let second = children.next(); (first, second) } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum RangeOp { /// `..` Exclusive, /// `..=` Inclusive, } impl ast::RangeExpr { fn op_details(&self) -> Option<(usize, SyntaxToken, RangeOp)> { self.syntax().children_with_tokens().enumerate().find_map(|(ix, child)| { let token = child.into_token()?; let bin_op = match token.kind() { T![..] => RangeOp::Exclusive, T![..=] => RangeOp::Inclusive, _ => return None, }; Some((ix, token, bin_op)) }) } pub fn op_kind(&self) -> Option { self.op_details().map(|t| t.2) } pub fn op_token(&self) -> Option { self.op_details().map(|t| t.1) } pub fn start(&self) -> Option { let op_ix = self.op_details()?.0; self.syntax() .children_with_tokens() .take(op_ix) .find_map(|it| ast::Expr::cast(it.into_node()?)) } pub fn end(&self) -> Option { let op_ix = self.op_details()?.0; self.syntax() .children_with_tokens() .skip(op_ix + 1) .find_map(|it| ast::Expr::cast(it.into_node()?)) } } impl ast::IndexExpr { pub fn base(&self) -> Option { children(self).next() } pub fn index(&self) -> Option { children(self).nth(1) } } pub enum ArrayExprKind { Repeat { initializer: Option, repeat: Option }, ElementList(AstChildren), } impl ast::ArrayExpr { pub fn kind(&self) -> ArrayExprKind { if self.is_repeat() { ArrayExprKind::Repeat { initializer: children(self).next(), repeat: children(self).nth(1), } } else { ArrayExprKind::ElementList(children(self)) } } fn is_repeat(&self) -> bool { self.syntax().children_with_tokens().any(|it| it.kind() == T![;]) } } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum LiteralKind { String, ByteString, Char, Byte, IntNumber { suffix: Option }, FloatNumber { suffix: Option }, Bool(bool), } impl ast::Literal { pub fn token(&self) -> SyntaxToken { self.syntax() .children_with_tokens() .find(|e| e.kind() != ATTR && !e.kind().is_trivia()) .and_then(|e| e.into_token()) .unwrap() } fn find_suffix(text: &str, possible_suffixes: &[&str]) -> Option { possible_suffixes .iter() .find(|&suffix| text.ends_with(suffix)) .map(|&suffix| SmolStr::new(suffix)) } pub fn kind(&self) -> LiteralKind { const INT_SUFFIXES: [&str; 12] = [ "u64", "u32", "u16", "u8", "usize", "isize", "i64", "i32", "i16", "i8", "u128", "i128", ]; const FLOAT_SUFFIXES: [&str; 2] = ["f32", "f64"]; let token = self.token(); match token.kind() { INT_NUMBER => { // FYI: there was a bug here previously, thus an if statement bellow is necessary. // The lexer treats e.g. `1f64` as an integer literal. See // https://github.com/rust-analyzer/rust-analyzer/issues/1592 // and the comments on the linked PR. let text = token.text(); if let suffix @ Some(_) = Self::find_suffix(&text, &FLOAT_SUFFIXES) { LiteralKind::FloatNumber { suffix } } else { LiteralKind::IntNumber { suffix: Self::find_suffix(&text, &INT_SUFFIXES) } } } FLOAT_NUMBER => { let text = token.text(); LiteralKind::FloatNumber { suffix: Self::find_suffix(&text, &FLOAT_SUFFIXES) } } STRING | RAW_STRING => LiteralKind::String, T![true] => LiteralKind::Bool(true), T![false] => LiteralKind::Bool(false), BYTE_STRING | RAW_BYTE_STRING => LiteralKind::ByteString, CHAR => LiteralKind::Char, BYTE => LiteralKind::Byte, _ => unreachable!(), } } } impl ast::BlockExpr { /// false if the block is an intrinsic part of the syntax and can't be /// replaced with arbitrary expression. /// /// ```not_rust /// fn foo() { not_stand_alone } /// const FOO: () = { stand_alone }; /// ``` pub fn is_standalone(&self) -> bool { let kind = match self.syntax().parent() { None => return true, Some(it) => it.kind(), }; match kind { FN_DEF | MATCH_ARM | IF_EXPR | WHILE_EXPR | LOOP_EXPR | TRY_BLOCK_EXPR => false, _ => true, } } } #[test] fn test_literal_with_attr() { let parse = ast::SourceFile::parse(r#"const _: &str = { #[attr] "Hello" };"#); let lit = parse.tree().syntax().descendants().find_map(ast::Literal::cast).unwrap(); assert_eq!(lit.token().text(), r#""Hello""#); } impl ast::RecordField { pub fn parent_record_lit(&self) -> ast::RecordLit { self.syntax().ancestors().find_map(ast::RecordLit::cast).unwrap() } }