//! Syntax Tree library used throughout the rust analyzer. //! //! Properties: //! - easy and fast incremental re-parsing //! - graceful handling of errors //! - full-fidelity representation (*any* text can be precisely represented as //! a syntax tree) //! //! For more information, see the [RFC]. Current implementation is inspired by //! the [Swift] one. //! //! The most interesting modules here are `syntax_node` (which defines concrete //! syntax tree) and `ast` (which defines abstract syntax tree on top of the //! CST). The actual parser live in a separate `ra_parser` crate, though the //! lexer lives in this crate. //! //! See `api_walkthrough` test in this file for a quick API tour! //! //! [RFC]: <https://github.com/rust-lang/rfcs/pull/2256> //! [Swift]: <https://github.com/apple/swift/blob/13d593df6f359d0cb2fc81cfaac273297c539455/lib/Syntax/README.md> mod syntax_node; mod syntax_error; mod parsing; mod validation; mod ptr; #[cfg(test)] mod tests; pub mod algo; pub mod ast; #[doc(hidden)] pub mod fuzz; use std::{fmt::Write, marker::PhantomData, sync::Arc}; use ra_text_edit::AtomTextEdit; use crate::syntax_node::GreenNode; pub use crate::{ algo::InsertPosition, ast::{AstNode, AstToken}, parsing::{lex_single_syntax_kind, lex_single_valid_syntax_kind, tokenize, Token}, ptr::{AstPtr, SyntaxNodePtr}, syntax_error::SyntaxError, syntax_node::{ Direction, NodeOrToken, SyntaxElement, SyntaxNode, SyntaxToken, SyntaxTreeBuilder, }, }; pub use ra_parser::{SyntaxKind, T}; pub use rowan::{SmolStr, SyntaxText, TextRange, TextUnit, TokenAtOffset, WalkEvent}; /// `Parse` is the result of the parsing: a syntax tree and a collection of /// errors. /// /// Note that we always produce a syntax tree, even for completely invalid /// files. #[derive(Debug, PartialEq, Eq)] pub struct Parse<T> { green: GreenNode, errors: Arc<Vec<SyntaxError>>, _ty: PhantomData<fn() -> T>, } impl<T> Clone for Parse<T> { fn clone(&self) -> Parse<T> { Parse { green: self.green.clone(), errors: self.errors.clone(), _ty: PhantomData } } } impl<T> Parse<T> { fn new(green: GreenNode, errors: Vec<SyntaxError>) -> Parse<T> { Parse { green, errors: Arc::new(errors), _ty: PhantomData } } pub fn syntax_node(&self) -> SyntaxNode { SyntaxNode::new_root(self.green.clone()) } } impl<T: AstNode> Parse<T> { pub fn to_syntax(self) -> Parse<SyntaxNode> { Parse { green: self.green, errors: self.errors, _ty: PhantomData } } pub fn tree(&self) -> T { T::cast(self.syntax_node()).unwrap() } pub fn errors(&self) -> &[SyntaxError] { &*self.errors } pub fn ok(self) -> Result<T, Arc<Vec<SyntaxError>>> { if self.errors.is_empty() { Ok(self.tree()) } else { Err(self.errors) } } } impl Parse<SyntaxNode> { pub fn cast<N: AstNode>(self) -> Option<Parse<N>> { if N::cast(self.syntax_node()).is_some() { Some(Parse { green: self.green, errors: self.errors, _ty: PhantomData }) } else { None } } } impl Parse<SourceFile> { pub fn debug_dump(&self) -> String { let mut buf = format!("{:#?}", self.tree().syntax()); for err in self.errors.iter() { writeln!(buf, "error {:?}: {}", err.range(), err).unwrap(); } buf } pub fn reparse(&self, edit: &AtomTextEdit) -> Parse<SourceFile> { self.incremental_reparse(edit).unwrap_or_else(|| self.full_reparse(edit)) } fn incremental_reparse(&self, edit: &AtomTextEdit) -> Option<Parse<SourceFile>> { // FIXME: validation errors are not handled here parsing::incremental_reparse(self.tree().syntax(), edit, self.errors.to_vec()).map( |(green_node, errors, _reparsed_range)| Parse { green: green_node, errors: Arc::new(errors), _ty: PhantomData, }, ) } fn full_reparse(&self, edit: &AtomTextEdit) -> Parse<SourceFile> { let text = edit.apply(self.tree().syntax().text().to_string()); SourceFile::parse(&text) } } /// `SourceFile` represents a parse tree for a single Rust file. pub use crate::ast::SourceFile; impl SourceFile { pub fn parse(text: &str) -> Parse<SourceFile> { let (green, mut errors) = parsing::parse_text(text); let root = SyntaxNode::new_root(green.clone()); if cfg!(debug_assertions) { validation::validate_block_structure(&root); } errors.extend(validation::validate(&root)); assert_eq!(root.kind(), SyntaxKind::SOURCE_FILE); Parse { green, errors: Arc::new(errors), _ty: PhantomData } } } /// Matches a `SyntaxNode` against an `ast` type. /// /// # Example: /// /// ```ignore /// match_ast! { /// match node { /// ast::CallExpr(it) => { ... }, /// ast::MethodCallExpr(it) => { ... }, /// ast::MacroCall(it) => { ... }, /// _ => None, /// } /// } /// ``` #[macro_export] macro_rules! match_ast { (match $node:ident { $($tt:tt)* }) => { match_ast!(match ($node) { $($tt)* }) }; (match ($node:expr) { $( ast::$ast:ident($it:ident) => $res:block, )* _ => $catch_all:expr $(,)? }) => {{ $( if let Some($it) = ast::$ast::cast($node.clone()) $res else )* { $catch_all } }}; } /// This test does not assert anything and instead just shows off the crate's /// API. #[test] fn api_walkthrough() { use ast::{ModuleItemOwner, NameOwner}; let source_code = " fn foo() { 1 + 1 } "; // `SourceFile` is the main entry point. // // The `parse` method returns a `Parse` -- a pair of syntax tree and a list // of errors. That is, syntax tree is constructed even in presence of errors. let parse = SourceFile::parse(source_code); assert!(parse.errors().is_empty()); // The `tree` method returns an owned syntax node of type `SourceFile`. // Owned nodes are cheap: inside, they are `Rc` handles to the underling data. let file: SourceFile = parse.tree(); // `SourceFile` is the root of the syntax tree. We can iterate file's items. // Let's fetch the `foo` function. let mut func = None; for item in file.items() { match item { ast::ModuleItem::FnDef(f) => func = Some(f), _ => unreachable!(), } } let func: ast::FnDef = func.unwrap(); // Each AST node has a bunch of getters for children. All getters return // `Option`s though, to account for incomplete code. Some getters are common // for several kinds of node. In this case, a trait like `ast::NameOwner` // usually exists. By convention, all ast types should be used with `ast::` // qualifier. let name: Option<ast::Name> = func.name(); let name = name.unwrap(); assert_eq!(name.text(), "foo"); // Let's get the `1 + 1` expression! let body: ast::BlockExpr = func.body().unwrap(); let block = body.block().unwrap(); let expr: ast::Expr = block.expr().unwrap(); // Enums are used to group related ast nodes together, and can be used for // matching. However, because there are no public fields, it's possible to // match only the top level enum: that is the price we pay for increased API // flexibility let bin_expr: &ast::BinExpr = match &expr { ast::Expr::BinExpr(e) => e, _ => unreachable!(), }; // Besides the "typed" AST API, there's an untyped CST one as well. // To switch from AST to CST, call `.syntax()` method: let expr_syntax: &SyntaxNode = expr.syntax(); // Note how `expr` and `bin_expr` are in fact the same node underneath: assert!(expr_syntax == bin_expr.syntax()); // To go from CST to AST, `AstNode::cast` function is used: let _expr: ast::Expr = match ast::Expr::cast(expr_syntax.clone()) { Some(e) => e, None => unreachable!(), }; // The two properties each syntax node has is a `SyntaxKind`: assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR); // And text range: assert_eq!(expr_syntax.text_range(), TextRange::from_to(32.into(), 37.into())); // You can get node's text as a `SyntaxText` object, which will traverse the // tree collecting token's text: let text: SyntaxText = expr_syntax.text(); assert_eq!(text.to_string(), "1 + 1"); // There's a bunch of traversal methods on `SyntaxNode`: assert_eq!(expr_syntax.parent().as_ref(), Some(block.syntax())); assert_eq!(block.syntax().first_child_or_token().map(|it| it.kind()), Some(T!['{'])); assert_eq!( expr_syntax.next_sibling_or_token().map(|it| it.kind()), Some(SyntaxKind::WHITESPACE) ); // As well as some iterator helpers: let f = expr_syntax.ancestors().find_map(ast::FnDef::cast); assert_eq!(f, Some(func)); assert!(expr_syntax.siblings_with_tokens(Direction::Next).any(|it| it.kind() == T!['}'])); assert_eq!( expr_syntax.descendants_with_tokens().count(), 8, // 5 tokens `1`, ` `, `+`, ` `, `!` // 2 child literal expressions: `1`, `1` // 1 the node itself: `1 + 1` ); // There's also a `preorder` method with a more fine-grained iteration control: let mut buf = String::new(); let mut indent = 0; for event in expr_syntax.preorder_with_tokens() { match event { WalkEvent::Enter(node) => { let text = match &node { NodeOrToken::Node(it) => it.text().to_string(), NodeOrToken::Token(it) => it.text().to_string(), }; buf += &format!("{:indent$}{:?} {:?}\n", " ", text, node.kind(), indent = indent); indent += 2; } WalkEvent::Leave(_) => indent -= 2, } } assert_eq!(indent, 0); assert_eq!( buf.trim(), r#" "1 + 1" BIN_EXPR "1" LITERAL "1" INT_NUMBER " " WHITESPACE "+" PLUS " " WHITESPACE "1" LITERAL "1" INT_NUMBER "# .trim() ); // To recursively process the tree, there are three approaches: // 1. explicitly call getter methods on AST nodes. // 2. use descendants and `AstNode::cast`. // 3. use descendants and `match_ast!`. // // Here's how the first one looks like: let exprs_cast: Vec<String> = file .syntax() .descendants() .filter_map(ast::Expr::cast) .map(|expr| expr.syntax().text().to_string()) .collect(); // An alternative is to use a macro. let mut exprs_visit = Vec::new(); for node in file.syntax().descendants() { match_ast! { match node { ast::Expr(it) => { let res = it.syntax().text().to_string(); exprs_visit.push(res); }, _ => (), } } } assert_eq!(exprs_cast, exprs_visit); }