//! Validation of char literals use std::u32; use arrayvec::ArrayString; use crate::{ ast::{self, AstNode}, string_lexing::{self, StringComponentKind}, TextRange, yellow::{ SyntaxError, SyntaxErrorKind::*, }, }; pub(super) fn validate_char_node(node: ast::Char, errors: &mut Vec<SyntaxError>) { let literal_text = node.text(); let literal_range = node.syntax().range(); let mut components = string_lexing::parse_char_literal(literal_text); let mut len = 0; for component in &mut components { len += 1; let text = &literal_text[component.range]; let range = component.range + literal_range.start(); validate_char_component(text, component.kind, range, errors); } if !components.has_closing_quote { errors.push(SyntaxError::new(UnclosedChar, literal_range)); } if let Some(range) = components.suffix { errors.push(SyntaxError::new( InvalidSuffix, range + literal_range.start(), )); } if len == 0 { errors.push(SyntaxError::new(EmptyChar, literal_range)); } if len > 1 { errors.push(SyntaxError::new(OverlongChar, literal_range)); } } pub(super) fn validate_char_component( text: &str, kind: StringComponentKind, range: TextRange, errors: &mut Vec<SyntaxError>, ) { // Validate escapes use self::StringComponentKind::*; match kind { AsciiEscape => validate_ascii_escape(text, range, errors), AsciiCodeEscape => validate_ascii_code_escape(text, range, errors), UnicodeEscape => validate_unicode_escape(text, range, errors), CodePoint => { // These code points must always be escaped if text == "\t" || text == "\r" || text == "\n" { errors.push(SyntaxError::new(UnescapedCodepoint, range)); } } StringComponentKind::IgnoreNewline => { /* always valid */ } } } fn validate_ascii_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) { if text.len() == 1 { // Escape sequence consists only of leading `\` (only occurs at EOF, otherwise e.g. '\' is treated as an unclosed char containing a single quote `'`) errors.push(SyntaxError::new(EmptyAsciiEscape, range)); } else { let escape_code = text.chars().skip(1).next().unwrap(); if !is_ascii_escape(escape_code) { errors.push(SyntaxError::new(InvalidAsciiEscape, range)); } } } pub(super) fn is_ascii_escape(code: char) -> bool { match code { '\\' | '\'' | '"' | 'n' | 'r' | 't' | '0' => true, _ => false, } } fn validate_ascii_code_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) { // An AsciiCodeEscape has 4 chars, example: `\xDD` if text.len() < 4 { errors.push(SyntaxError::new(TooShortAsciiCodeEscape, range)); } else { assert!( text.chars().count() == 4, "AsciiCodeEscape cannot be longer than 4 chars" ); match u8::from_str_radix(&text[2..], 16) { Ok(code) if code < 128 => { /* Escape code is valid */ } Ok(_) => errors.push(SyntaxError::new(AsciiCodeEscapeOutOfRange, range)), Err(_) => errors.push(SyntaxError::new(MalformedAsciiCodeEscape, range)), } } } fn validate_unicode_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) { assert!(&text[..2] == "\\u", "UnicodeEscape always starts with \\u"); if text.len() == 2 { // No starting `{` errors.push(SyntaxError::new(MalformedUnicodeEscape, range)); return; } if text.len() == 3 { // Only starting `{` errors.push(SyntaxError::new(UnclosedUnicodeEscape, range)); return; } let mut code = ArrayString::<[_; 6]>::new(); let mut closed = false; for c in text[3..].chars() { assert!(!closed, "no characters after escape is closed"); if c.is_digit(16) { if code.len() == 6 { errors.push(SyntaxError::new(OverlongUnicodeEscape, range)); return; } code.push(c); } else if c == '_' { // Reject leading _ if code.len() == 0 { errors.push(SyntaxError::new(MalformedUnicodeEscape, range)); return; } } else if c == '}' { closed = true; } else { errors.push(SyntaxError::new(MalformedUnicodeEscape, range)); return; } } if !closed { errors.push(SyntaxError::new(UnclosedUnicodeEscape, range)) } if code.len() == 0 { errors.push(SyntaxError::new(EmptyUnicodeEcape, range)); return; } match u32::from_str_radix(&code, 16) { Ok(code_u32) if code_u32 > 0x10FFFF => { errors.push(SyntaxError::new(UnicodeEscapeOutOfRange, range)); } Ok(_) => { // Valid escape code } Err(_) => { errors.push(SyntaxError::new(MalformedUnicodeEscape, range)); } } } #[cfg(test)] mod test { use crate::SourceFileNode; fn build_file(literal: &str) -> SourceFileNode { let src = format!("const C: char = '{}';", literal); SourceFileNode::parse(&src) } fn assert_valid_char(literal: &str) { let file = build_file(literal); assert!( file.errors().len() == 0, "Errors for literal '{}': {:?}", literal, file.errors() ); } fn assert_invalid_char(literal: &str) { let file = build_file(literal); assert!(file.errors().len() > 0); } #[test] fn test_ansi_codepoints() { for byte in 0..=255u8 { match byte { b'\n' | b'\r' | b'\t' => assert_invalid_char(&(byte as char).to_string()), b'\'' | b'\\' => { /* Ignore character close and backslash */ } _ => assert_valid_char(&(byte as char).to_string()), } } } #[test] fn test_unicode_codepoints() { let valid = ["Ƒ", "バ", "メ", "﷽"]; for c in &valid { assert_valid_char(c); } } #[test] fn test_unicode_multiple_codepoints() { let invalid = ["नी", "👨👨"]; for c in &invalid { assert_invalid_char(c); } } #[test] fn test_valid_ascii_escape() { let valid = [r"\'", "\"", "\\\\", "\\\"", r"\n", r"\r", r"\t", r"\0"]; for c in &valid { assert_valid_char(c); } } #[test] fn test_invalid_ascii_escape() { let invalid = [r"\a", r"\?", r"\"]; for c in &invalid { assert_invalid_char(c); } } #[test] fn test_valid_ascii_code_escape() { let valid = [r"\x00", r"\x7F", r"\x55"]; for c in &valid { assert_valid_char(c); } } #[test] fn test_invalid_ascii_code_escape() { let invalid = [r"\x", r"\x7", r"\xF0"]; for c in &invalid { assert_invalid_char(c); } } #[test] fn test_valid_unicode_escape() { let valid = [ r"\u{FF}", r"\u{0}", r"\u{F}", r"\u{10FFFF}", r"\u{1_0__FF___FF_____}", ]; for c in &valid { assert_valid_char(c); } } #[test] fn test_invalid_unicode_escape() { let invalid = [ r"\u", r"\u{}", r"\u{", r"\u{FF", r"\u{FFFFFF}", r"\u{_F}", r"\u{00FFFFF}", r"\u{110000}", ]; for c in &invalid { assert_invalid_char(c); } } }