//! FIXME: write short doc here use std::{ fmt, hash::BuildHasherDefault, ops::{self, RangeInclusive}, }; use indexmap::IndexMap; use itertools::Itertools; use rustc_hash::FxHashMap; use test_utils::mark; use text_edit::TextEditBuilder; use crate::{ AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxNodePtr, SyntaxToken, TextRange, TextSize, }; /// Returns ancestors of the node at the offset, sorted by length. This should /// do the right thing at an edge, e.g. when searching for expressions at `{ /// $0foo }` we will get the name reference instead of the whole block, which /// we would get if we just did `find_token_at_offset(...).flat_map(|t| /// t.parent().ancestors())`. pub fn ancestors_at_offset( node: &SyntaxNode, offset: TextSize, ) -> impl Iterator<Item = SyntaxNode> { node.token_at_offset(offset) .map(|token| token.parent().ancestors()) .kmerge_by(|node1, node2| node1.text_range().len() < node2.text_range().len()) } /// Finds a node of specific Ast type at offset. Note that this is slightly /// imprecise: if the cursor is strictly between two nodes of the desired type, /// as in /// /// ```no_run /// struct Foo {}|struct Bar; /// ``` /// /// then the shorter node will be silently preferred. pub fn find_node_at_offset<N: AstNode>(syntax: &SyntaxNode, offset: TextSize) -> Option<N> { ancestors_at_offset(syntax, offset).find_map(N::cast) } pub fn find_node_at_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> { find_covering_element(syntax, range).ancestors().find_map(N::cast) } /// Skip to next non `trivia` token pub fn skip_trivia_token(mut token: SyntaxToken, direction: Direction) -> Option<SyntaxToken> { while token.kind().is_trivia() { token = match direction { Direction::Next => token.next_token()?, Direction::Prev => token.prev_token()?, } } Some(token) } /// Finds the first sibling in the given direction which is not `trivia` pub fn non_trivia_sibling(element: SyntaxElement, direction: Direction) -> Option<SyntaxElement> { return match element { NodeOrToken::Node(node) => node.siblings_with_tokens(direction).skip(1).find(not_trivia), NodeOrToken::Token(token) => token.siblings_with_tokens(direction).skip(1).find(not_trivia), }; fn not_trivia(element: &SyntaxElement) -> bool { match element { NodeOrToken::Node(_) => true, NodeOrToken::Token(token) => !token.kind().is_trivia(), } } } pub fn find_covering_element(root: &SyntaxNode, range: TextRange) -> SyntaxElement { root.covering_element(range) } pub fn least_common_ancestor(u: &SyntaxNode, v: &SyntaxNode) -> Option<SyntaxNode> { if u == v { return Some(u.clone()); } let u_depth = u.ancestors().count(); let v_depth = v.ancestors().count(); let keep = u_depth.min(v_depth); let u_candidates = u.ancestors().skip(u_depth - keep); let v_candidates = v.ancestors().skip(v_depth - keep); let (res, _) = u_candidates.zip(v_candidates).find(|(x, y)| x == y)?; Some(res) } pub fn neighbor<T: AstNode>(me: &T, direction: Direction) -> Option<T> { me.syntax().siblings(direction).skip(1).find_map(T::cast) } pub fn has_errors(node: &SyntaxNode) -> bool { node.children().any(|it| it.kind() == SyntaxKind::ERROR) } #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub enum InsertPosition<T> { First, Last, Before(T), After(T), } type FxIndexMap<K, V> = IndexMap<K, V, BuildHasherDefault<rustc_hash::FxHasher>>; #[derive(Debug, Hash, PartialEq, Eq)] enum TreeDiffInsertPos { After(SyntaxElement), AsFirstChild(SyntaxElement), } #[derive(Debug)] pub struct TreeDiff { replacements: FxHashMap<SyntaxElement, SyntaxElement>, deletions: Vec<SyntaxElement>, // the vec as well as the indexmap are both here to preserve order insertions: FxIndexMap<TreeDiffInsertPos, Vec<SyntaxElement>>, } impl TreeDiff { pub fn into_text_edit(&self, builder: &mut TextEditBuilder) { let _p = profile::span("into_text_edit"); for (anchor, to) in self.insertions.iter() { let offset = match anchor { TreeDiffInsertPos::After(it) => it.text_range().end(), TreeDiffInsertPos::AsFirstChild(it) => it.text_range().start(), }; to.iter().for_each(|to| builder.insert(offset, to.to_string())); } for (from, to) in self.replacements.iter() { builder.replace(from.text_range(), to.to_string()) } for text_range in self.deletions.iter().map(SyntaxElement::text_range) { builder.delete(text_range); } } pub fn is_empty(&self) -> bool { self.replacements.is_empty() && self.deletions.is_empty() && self.insertions.is_empty() } } /// Finds a (potentially minimal) diff, which, applied to `from`, will result in `to`. /// /// Specifically, returns a structure that consists of a replacements, insertions and deletions /// such that applying this map on `from` will result in `to`. /// /// This function tries to find a fine-grained diff. pub fn diff(from: &SyntaxNode, to: &SyntaxNode) -> TreeDiff { let _p = profile::span("diff"); let mut diff = TreeDiff { replacements: FxHashMap::default(), insertions: FxIndexMap::default(), deletions: Vec::new(), }; let (from, to) = (from.clone().into(), to.clone().into()); if !syntax_element_eq(&from, &to) { go(&mut diff, from, to); } return diff; fn syntax_element_eq(lhs: &SyntaxElement, rhs: &SyntaxElement) -> bool { lhs.kind() == rhs.kind() && lhs.text_range().len() == rhs.text_range().len() && match (&lhs, &rhs) { (NodeOrToken::Node(lhs), NodeOrToken::Node(rhs)) => { lhs.green() == rhs.green() || lhs.text() == rhs.text() } (NodeOrToken::Token(lhs), NodeOrToken::Token(rhs)) => lhs.text() == rhs.text(), _ => false, } } // FIXME: this is horrible inefficient. I bet there's a cool algorithm to diff trees properly. fn go(diff: &mut TreeDiff, lhs: SyntaxElement, rhs: SyntaxElement) { let (lhs, rhs) = match lhs.as_node().zip(rhs.as_node()) { Some((lhs, rhs)) => (lhs, rhs), _ => { mark::hit!(diff_node_token_replace); diff.replacements.insert(lhs, rhs); return; } }; let mut look_ahead_scratch = Vec::default(); let mut rhs_children = rhs.children_with_tokens(); let mut lhs_children = lhs.children_with_tokens(); let mut last_lhs = None; loop { let lhs_child = lhs_children.next(); match (lhs_child.clone(), rhs_children.next()) { (None, None) => break, (None, Some(element)) => { let insert_pos = match last_lhs.clone() { Some(prev) => { mark::hit!(diff_insert); TreeDiffInsertPos::After(prev) } // first iteration, insert into out parent as the first child None => { mark::hit!(diff_insert_as_first_child); TreeDiffInsertPos::AsFirstChild(lhs.clone().into()) } }; diff.insertions.entry(insert_pos).or_insert_with(Vec::new).push(element); } (Some(element), None) => { mark::hit!(diff_delete); diff.deletions.push(element); } (Some(ref lhs_ele), Some(ref rhs_ele)) if syntax_element_eq(lhs_ele, rhs_ele) => {} (Some(lhs_ele), Some(rhs_ele)) => { // nodes differ, look for lhs_ele in rhs, if its found we can mark everything up // until that element as insertions. This is important to keep the diff minimal // in regards to insertions that have been actually done, this is important for // use insertions as we do not want to replace the entire module node. look_ahead_scratch.push(rhs_ele.clone()); let mut rhs_children_clone = rhs_children.clone(); let mut insert = false; while let Some(rhs_child) = rhs_children_clone.next() { if syntax_element_eq(&lhs_ele, &rhs_child) { mark::hit!(diff_insertions); insert = true; break; } else { look_ahead_scratch.push(rhs_child); } } let drain = look_ahead_scratch.drain(..); if insert { let insert_pos = if let Some(prev) = last_lhs.clone().filter(|_| insert) { TreeDiffInsertPos::After(prev) } else { mark::hit!(insert_first_child); TreeDiffInsertPos::AsFirstChild(lhs.clone().into()) }; diff.insertions.entry(insert_pos).or_insert_with(Vec::new).extend(drain); rhs_children = rhs_children_clone; } else { go(diff, lhs_ele, rhs_ele) } } } last_lhs = lhs_child.or(last_lhs); } } } /// Adds specified children (tokens or nodes) to the current node at the /// specific position. /// /// This is a type-unsafe low-level editing API, if you need to use it, /// prefer to create a type-safe abstraction on top of it instead. pub fn insert_children( parent: &SyntaxNode, position: InsertPosition<SyntaxElement>, to_insert: impl IntoIterator<Item = SyntaxElement>, ) -> SyntaxNode { let mut to_insert = to_insert.into_iter(); _insert_children(parent, position, &mut to_insert) } fn _insert_children( parent: &SyntaxNode, position: InsertPosition<SyntaxElement>, to_insert: &mut dyn Iterator<Item = SyntaxElement>, ) -> SyntaxNode { let mut delta = TextSize::default(); let to_insert = to_insert.map(|element| { delta += element.text_range().len(); to_green_element(element) }); let mut old_children = parent.green().children().map(|it| match it { NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()), NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()), }); let new_children = match &position { InsertPosition::First => to_insert.chain(old_children).collect::<Vec<_>>(), InsertPosition::Last => old_children.chain(to_insert).collect::<Vec<_>>(), InsertPosition::Before(anchor) | InsertPosition::After(anchor) => { let take_anchor = if let InsertPosition::After(_) = position { 1 } else { 0 }; let split_at = position_of_child(parent, anchor.clone()) + take_anchor; let before = old_children.by_ref().take(split_at).collect::<Vec<_>>(); before.into_iter().chain(to_insert).chain(old_children).collect::<Vec<_>>() } }; with_children(parent, new_children) } /// Replaces all nodes in `to_delete` with nodes from `to_insert` /// /// This is a type-unsafe low-level editing API, if you need to use it, /// prefer to create a type-safe abstraction on top of it instead. pub fn replace_children( parent: &SyntaxNode, to_delete: RangeInclusive<SyntaxElement>, to_insert: impl IntoIterator<Item = SyntaxElement>, ) -> SyntaxNode { let mut to_insert = to_insert.into_iter(); _replace_children(parent, to_delete, &mut to_insert) } fn _replace_children( parent: &SyntaxNode, to_delete: RangeInclusive<SyntaxElement>, to_insert: &mut dyn Iterator<Item = SyntaxElement>, ) -> SyntaxNode { let start = position_of_child(parent, to_delete.start().clone()); let end = position_of_child(parent, to_delete.end().clone()); let mut old_children = parent.green().children().map(|it| match it { NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()), NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()), }); let before = old_children.by_ref().take(start).collect::<Vec<_>>(); let new_children = before .into_iter() .chain(to_insert.map(to_green_element)) .chain(old_children.skip(end + 1 - start)) .collect::<Vec<_>>(); with_children(parent, new_children) } #[derive(Debug, PartialEq, Eq, Hash)] enum InsertPos { FirstChildOf(SyntaxNode), After(SyntaxElement), } #[derive(Default)] pub struct SyntaxRewriter<'a> { f: Option<Box<dyn Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a>>, //FIXME: add debug_assertions that all elements are in fact from the same file. replacements: FxHashMap<SyntaxElement, Replacement>, insertions: IndexMap<InsertPos, Vec<SyntaxElement>>, } impl fmt::Debug for SyntaxRewriter<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("SyntaxRewriter") .field("replacements", &self.replacements) .field("insertions", &self.insertions) .finish() } } impl<'a> SyntaxRewriter<'a> { pub fn from_fn(f: impl Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a) -> SyntaxRewriter<'a> { SyntaxRewriter { f: Some(Box::new(f)), replacements: FxHashMap::default(), insertions: IndexMap::default(), } } pub fn delete<T: Clone + Into<SyntaxElement>>(&mut self, what: &T) { let what = what.clone().into(); let replacement = Replacement::Delete; self.replacements.insert(what, replacement); } pub fn insert_before<T: Clone + Into<SyntaxElement>, U: Clone + Into<SyntaxElement>>( &mut self, before: &T, what: &U, ) { let before = before.clone().into(); let pos = match before.prev_sibling_or_token() { Some(sibling) => InsertPos::After(sibling), None => match before.parent() { Some(parent) => InsertPos::FirstChildOf(parent), None => return, }, }; self.insertions.entry(pos).or_insert_with(Vec::new).push(what.clone().into()); } pub fn insert_after<T: Clone + Into<SyntaxElement>, U: Clone + Into<SyntaxElement>>( &mut self, after: &T, what: &U, ) { self.insertions .entry(InsertPos::After(after.clone().into())) .or_insert_with(Vec::new) .push(what.clone().into()); } pub fn insert_as_first_child<T: Clone + Into<SyntaxNode>, U: Clone + Into<SyntaxElement>>( &mut self, parent: &T, what: &U, ) { self.insertions .entry(InsertPos::FirstChildOf(parent.clone().into())) .or_insert_with(Vec::new) .push(what.clone().into()); } pub fn insert_many_before< T: Clone + Into<SyntaxElement>, U: IntoIterator<Item = SyntaxElement>, >( &mut self, before: &T, what: U, ) { let before = before.clone().into(); let pos = match before.prev_sibling_or_token() { Some(sibling) => InsertPos::After(sibling), None => match before.parent() { Some(parent) => InsertPos::FirstChildOf(parent), None => return, }, }; self.insertions.entry(pos).or_insert_with(Vec::new).extend(what); } pub fn insert_many_after< T: Clone + Into<SyntaxElement>, U: IntoIterator<Item = SyntaxElement>, >( &mut self, after: &T, what: U, ) { self.insertions .entry(InsertPos::After(after.clone().into())) .or_insert_with(Vec::new) .extend(what); } pub fn insert_many_as_first_children< T: Clone + Into<SyntaxNode>, U: IntoIterator<Item = SyntaxElement>, >( &mut self, parent: &T, what: U, ) { self.insertions .entry(InsertPos::FirstChildOf(parent.clone().into())) .or_insert_with(Vec::new) .extend(what) } pub fn replace<T: Clone + Into<SyntaxElement>>(&mut self, what: &T, with: &T) { let what = what.clone().into(); let replacement = Replacement::Single(with.clone().into()); self.replacements.insert(what, replacement); } pub fn replace_with_many<T: Clone + Into<SyntaxElement>>( &mut self, what: &T, with: Vec<SyntaxElement>, ) { let what = what.clone().into(); let replacement = Replacement::Many(with); self.replacements.insert(what, replacement); } pub fn replace_ast<T: AstNode>(&mut self, what: &T, with: &T) { self.replace(what.syntax(), with.syntax()) } pub fn rewrite(&self, node: &SyntaxNode) -> SyntaxNode { let _p = profile::span("rewrite"); if self.f.is_none() && self.replacements.is_empty() && self.insertions.is_empty() { return node.clone(); } let green = self.rewrite_children(node); with_green(node, green) } pub fn rewrite_ast<N: AstNode>(self, node: &N) -> N { N::cast(self.rewrite(node.syntax())).unwrap() } /// Returns a node that encompasses all replacements to be done by this rewriter. /// /// Passing the returned node to `rewrite` will apply all replacements queued up in `self`. /// /// Returns `None` when there are no replacements. pub fn rewrite_root(&self) -> Option<SyntaxNode> { let _p = profile::span("rewrite_root"); fn element_to_node_or_parent(element: &SyntaxElement) -> SyntaxNode { match element { SyntaxElement::Node(it) => it.clone(), SyntaxElement::Token(it) => it.parent(), } } assert!(self.f.is_none()); self.replacements .keys() .map(element_to_node_or_parent) .chain(self.insertions.keys().map(|pos| match pos { InsertPos::FirstChildOf(it) => it.clone(), InsertPos::After(it) => element_to_node_or_parent(it), })) // If we only have one replacement/insertion, we must return its parent node, since `rewrite` does // not replace the node passed to it. .map(|it| it.parent().unwrap_or(it)) .fold1(|a, b| least_common_ancestor(&a, &b).unwrap()) } fn replacement(&self, element: &SyntaxElement) -> Option<Replacement> { if let Some(f) = &self.f { assert!(self.replacements.is_empty()); return f(element).map(Replacement::Single); } self.replacements.get(element).cloned() } fn insertions(&self, pos: &InsertPos) -> Option<impl Iterator<Item = SyntaxElement> + '_> { self.insertions.get(pos).map(|insertions| insertions.iter().cloned()) } fn rewrite_children(&self, node: &SyntaxNode) -> rowan::GreenNode { let _p = profile::span("rewrite_children"); // FIXME: this could be made much faster. let mut new_children = Vec::new(); if let Some(elements) = self.insertions(&InsertPos::FirstChildOf(node.clone())) { new_children.extend(elements.map(element_to_green)); } for child in node.children_with_tokens() { self.rewrite_self(&mut new_children, &child); } rowan::GreenNode::new(rowan::SyntaxKind(node.kind() as u16), new_children) } fn rewrite_self( &self, acc: &mut Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>, element: &SyntaxElement, ) { let _p = profile::span("rewrite_self"); if let Some(replacement) = self.replacement(&element) { match replacement { Replacement::Single(element) => acc.push(element_to_green(element)), Replacement::Many(replacements) => { acc.extend(replacements.into_iter().map(element_to_green)) } Replacement::Delete => (), }; } else { match element { NodeOrToken::Token(it) => acc.push(NodeOrToken::Token(it.green().clone())), NodeOrToken::Node(it) => { acc.push(NodeOrToken::Node(self.rewrite_children(it))); } } } if let Some(elements) = self.insertions(&InsertPos::After(element.clone())) { acc.extend(elements.map(element_to_green)); } } } fn element_to_green(element: SyntaxElement) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> { match element { NodeOrToken::Node(it) => NodeOrToken::Node(it.green().clone()), NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()), } } impl ops::AddAssign for SyntaxRewriter<'_> { fn add_assign(&mut self, rhs: SyntaxRewriter) { assert!(rhs.f.is_none()); self.replacements.extend(rhs.replacements); for (pos, insertions) in rhs.insertions.into_iter() { match self.insertions.entry(pos) { indexmap::map::Entry::Occupied(mut occupied) => { occupied.get_mut().extend(insertions) } indexmap::map::Entry::Vacant(vacant) => drop(vacant.insert(insertions)), } } } } #[derive(Clone, Debug)] enum Replacement { Delete, Single(SyntaxElement), Many(Vec<SyntaxElement>), } fn with_children( parent: &SyntaxNode, new_children: Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>, ) -> SyntaxNode { let _p = profile::span("with_children"); let new_green = rowan::GreenNode::new(rowan::SyntaxKind(parent.kind() as u16), new_children); with_green(parent, new_green) } fn with_green(syntax_node: &SyntaxNode, green: rowan::GreenNode) -> SyntaxNode { let len = green.children().map(|it| it.text_len()).sum::<TextSize>(); let new_root_node = syntax_node.replace_with(green); let new_root_node = SyntaxNode::new_root(new_root_node); // FIXME: use a more elegant way to re-fetch the node (#1185), make // `range` private afterwards let mut ptr = SyntaxNodePtr::new(syntax_node); ptr.range = TextRange::at(ptr.range.start(), len); ptr.to_node(&new_root_node) } fn position_of_child(parent: &SyntaxNode, child: SyntaxElement) -> usize { parent .children_with_tokens() .position(|it| it == child) .expect("element is not a child of current element") } fn to_green_element(element: SyntaxElement) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> { match element { NodeOrToken::Node(it) => it.green().clone().into(), NodeOrToken::Token(it) => it.green().clone().into(), } } #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use itertools::Itertools; use parser::SyntaxKind; use test_utils::mark; use text_edit::TextEdit; use crate::{AstNode, SyntaxElement}; #[test] fn replace_node_token() { mark::check!(diff_node_token_replace); check_diff( r#"use node;"#, r#"ident"#, expect![[r#" insertions: replacements: Line 0: Token(USE_KW@0..3 "use") -> ident deletions: Line 1: " " Line 1: node Line 1: ; "#]], ); } #[test] fn replace_parent() { mark::check!(diff_insert_as_first_child); check_diff( r#""#, r#"use foo::bar;"#, expect![[r#" insertions: Line 0: AsFirstChild(Node(SOURCE_FILE@0..0)) -> use foo::bar; replacements: deletions: "#]], ); } #[test] fn insert_last() { mark::check!(diff_insert); check_diff( r#" use foo; use bar;"#, r#" use foo; use bar; use baz;"#, expect![[r#" insertions: Line 2: After(Node(USE@10..18)) -> "\n" -> use baz; replacements: deletions: "#]], ); } #[test] fn insert_middle() { check_diff( r#" use foo; use baz;"#, r#" use foo; use bar; use baz;"#, expect![[r#" insertions: Line 2: After(Token(WHITESPACE@9..10 "\n")) -> use bar; -> "\n" replacements: deletions: "#]], ) } #[test] fn insert_first() { check_diff( r#" use bar; use baz;"#, r#" use foo; use bar; use baz;"#, expect![[r#" insertions: Line 0: After(Token(WHITESPACE@0..1 "\n")) -> use foo; -> "\n" replacements: deletions: "#]], ) } #[test] fn first_child_insertion() { mark::check!(insert_first_child); check_diff( r#"fn main() { stdi }"#, r#"use foo::bar; fn main() { stdi }"#, expect![[r#" insertions: Line 0: AsFirstChild(Node(SOURCE_FILE@0..30)) -> use foo::bar; -> "\n\n " replacements: deletions: "#]], ); } #[test] fn delete_last() { mark::check!(diff_delete); check_diff( r#"use foo; use bar;"#, r#"use foo;"#, expect![[r#" insertions: replacements: deletions: Line 1: "\n " Line 2: use bar; "#]], ); } #[test] fn delete_middle() { mark::check!(diff_insertions); check_diff( r#" use expect_test::{expect, Expect}; use text_edit::TextEdit; use crate::AstNode; "#, r#" use expect_test::{expect, Expect}; use crate::AstNode; "#, expect![[r#" insertions: Line 1: After(Node(USE@1..35)) -> "\n\n" -> use crate::AstNode; replacements: deletions: Line 2: use text_edit::TextEdit; Line 3: "\n\n" Line 4: use crate::AstNode; Line 5: "\n" "#]], ) } #[test] fn delete_first() { check_diff( r#" use text_edit::TextEdit; use crate::AstNode; "#, r#" use crate::AstNode; "#, expect![[r#" insertions: replacements: Line 2: Node(NAME_REF@5..14) -> crate Line 2: Token(IDENT@16..24 "TextEdit") -> AstNode Line 2: Token(WHITESPACE@25..27 "\n\n") -> "\n" deletions: Line 3: use crate::AstNode; Line 4: "\n" "#]], ) } #[test] fn merge_use() { check_diff( r#" use std::{ fmt, hash::BuildHasherDefault, ops::{self, RangeInclusive}, }; "#, r#" use std::fmt; use std::hash::BuildHasherDefault; use std::ops::{self, RangeInclusive}; "#, expect![[r#" insertions: Line 2: After(Node(PATH_SEGMENT@5..8)) -> :: -> fmt Line 6: After(Token(WHITESPACE@86..87 "\n")) -> use std::hash::BuildHasherDefault; -> "\n" -> use std::ops::{self, RangeInclusive}; -> "\n" replacements: Line 2: Token(IDENT@5..8 "std") -> std deletions: Line 2: :: Line 2: { fmt, hash::BuildHasherDefault, ops::{self, RangeInclusive}, } "#]], ) } #[test] fn early_return_assist() { check_diff( r#" fn main() { if let Ok(x) = Err(92) { foo(x); } } "#, r#" fn main() { let x = match Err(92) { Ok(it) => it, _ => return, }; foo(x); } "#, expect![[r#" insertions: Line 3: After(Node(BLOCK_EXPR@40..63)) -> " " -> match Err(92) { Ok(it) => it, _ => return, } -> ; Line 3: After(Node(IF_EXPR@17..63)) -> "\n " -> foo(x); replacements: Line 3: Token(IF_KW@17..19 "if") -> let Line 3: Token(LET_KW@20..23 "let") -> x Line 3: Node(BLOCK_EXPR@40..63) -> = deletions: Line 3: " " Line 3: Ok(x) Line 3: " " Line 3: = Line 3: " " Line 3: Err(92) "#]], ) } fn check_diff(from: &str, to: &str, expected_diff: Expect) { let from_node = crate::SourceFile::parse(from).tree().syntax().clone(); let to_node = crate::SourceFile::parse(to).tree().syntax().clone(); let diff = super::diff(&from_node, &to_node); let line_number = |syn: &SyntaxElement| from[..syn.text_range().start().into()].lines().count(); let fmt_syntax = |syn: &SyntaxElement| match syn.kind() { SyntaxKind::WHITESPACE => format!("{:?}", syn.to_string()), _ => format!("{}", syn), }; let insertions = diff.insertions.iter().format_with("\n", |(k, v), f| -> Result<(), std::fmt::Error> { f(&format!( "Line {}: {:?}\n-> {}", line_number(match k { super::TreeDiffInsertPos::After(syn) => syn, super::TreeDiffInsertPos::AsFirstChild(syn) => syn, }), k, v.iter().format_with("\n-> ", |v, f| f(&fmt_syntax(v))) )) }); let replacements = diff .replacements .iter() .sorted_by_key(|(syntax, _)| syntax.text_range().start()) .format_with("\n", |(k, v), f| { f(&format!("Line {}: {:?} -> {}", line_number(k), k, fmt_syntax(v))) }); let deletions = diff .deletions .iter() .format_with("\n", |v, f| f(&format!("Line {}: {}", line_number(v), &fmt_syntax(v)))); let actual = format!( "insertions:\n\n{}\n\nreplacements:\n\n{}\n\ndeletions:\n\n{}\n", insertions, replacements, deletions ); expected_diff.assert_eq(&actual); let mut from = from.to_owned(); let mut text_edit = TextEdit::builder(); diff.into_text_edit(&mut text_edit); text_edit.finish().apply(&mut from); assert_eq!(&*from, to, "diff did not turn `from` to `to`"); } }