//! This is the actual "grammar" of the Rust language. //! //! Each function in this module and its children corresponds //! to a production of the format grammar. Submodules roughly //! correspond to different *areas* of the grammar. By convention, //! each submodule starts with `use super::*` import and exports //! "public" productions via `pub(super)`. //! //! See docs for `Parser` to learn about API, available to the grammar, //! and see docs for `Event` to learn how this actually manages to //! produce parse trees. //! //! Code in this module also contains inline tests, which start with //! `// test name-of-the-test` comment and look like this: //! //! ``` //! // test fn_item_with_zero_parameters //! // fn foo() {} //! ``` //! //! After adding a new inline-test, run `cargo collect-tests` to extract //! it as a standalone text-fixture into `tests/data/parser/inline`, and //! run `cargo test` once to create the "gold" value. mod attributes; mod expressions; mod items; mod paths; mod patterns; mod type_params; mod type_args; mod types; use { parser::{parser::{Parser, CompletedMarker}, token_set::TokenSet}, SyntaxKind::{self, *}, }; pub(crate) fn file(p: &mut Parser) { let file = p.start(); p.eat(SHEBANG); items::mod_contents(p, false); file.complete(p, FILE); } fn visibility(p: &mut Parser) { if p.at(PUB_KW) { let vis = p.start(); p.bump(); if p.at(L_PAREN) { match p.nth(1) { // test crate_visibility // pub(crate) struct S; // pub(self) struct S; // pub(self) struct S; // pub(self) struct S; CRATE_KW | SELF_KW | SUPER_KW => { p.bump(); p.bump(); p.expect(R_PAREN); } IN_KW => { p.bump(); p.bump(); paths::use_path(p); p.expect(R_PAREN); } _ => (), } } vis.complete(p, VISIBILITY); } } fn alias(p: &mut Parser) -> bool { if p.at(AS_KW) { let alias = p.start(); p.bump(); name(p); alias.complete(p, ALIAS); } true //FIXME: return false if three are errors } fn abi(p: &mut Parser) { assert!(p.at(EXTERN_KW)); let abi = p.start(); p.bump(); match p.current() { STRING | RAW_STRING => p.bump(), _ => (), } abi.complete(p, ABI); } // test fn_value_parameters // fn a() {} // fn b(x: i32) {} // fn c(x: i32, ) {} // fn d(x: i32, y: ()) {} fn fn_value_parameters(p: &mut Parser) { assert!(p.at(L_PAREN)); let m = p.start(); p.bump(); while !p.at(EOF) && !p.at(R_PAREN) { value_parameter(p); if !p.at(R_PAREN) { p.expect(COMMA); } } p.expect(R_PAREN); m.complete(p, PARAM_LIST); fn value_parameter(p: &mut Parser) { let m = p.start(); patterns::pattern(p); p.expect(COLON); types::type_(p); m.complete(p, VALUE_PARAMETER); } } fn fn_ret_type(p: &mut Parser) { if p.at(THIN_ARROW) { p.bump(); types::type_(p); } } fn name(p: &mut Parser) { if p.at(IDENT) { let m = p.start(); p.bump(); m.complete(p, NAME); } else { p.error("expected a name"); } } fn name_ref(p: &mut Parser) { if p.at(IDENT) { let m = p.start(); p.bump(); m.complete(p, NAME_REF); } else { p.error("expected identifier"); } } fn error_block(p: &mut Parser, message: &str) { assert!(p.at(L_CURLY)); let err = p.start(); p.error(message); p.bump(); let mut level: u32 = 1; while level > 0 && !p.at(EOF) { match p.current() { L_CURLY => level += 1, R_CURLY => level -= 1, _ => (), } p.bump(); } err.complete(p, ERROR); }