//! This module generates AST datatype used by rust-analyzer. //! //! Specifically, it generates the `SyntaxKind` enum and a number of newtype //! wrappers around `SyntaxNode` which implement `syntax::AstNode`. use std::{ collections::{BTreeSet, HashSet}, fmt::Write, }; use proc_macro2::{Punct, Spacing}; use quote::{format_ident, quote}; use ungrammar::{rust_grammar, Grammar, Rule}; use crate::{ ast_src::{AstEnumSrc, AstNodeSrc, AstSrc, Cardinality, Field, KindsSrc, KINDS_SRC}, codegen::{reformat, update, Mode}, project_root, Result, }; pub fn generate_syntax(mode: Mode) -> Result<()> { let grammar = rust_grammar(); let ast = lower(&grammar); let syntax_kinds_file = project_root().join("crates/parser/src/syntax_kind/generated.rs"); let syntax_kinds = generate_syntax_kinds(KINDS_SRC)?; update(syntax_kinds_file.as_path(), &syntax_kinds, mode)?; let ast_tokens_file = project_root().join("crates/syntax/src/ast/generated/tokens.rs"); let contents = generate_tokens(&ast)?; update(ast_tokens_file.as_path(), &contents, mode)?; let ast_nodes_file = project_root().join("crates/syntax/src/ast/generated/nodes.rs"); let contents = generate_nodes(KINDS_SRC, &ast)?; update(ast_nodes_file.as_path(), &contents, mode)?; Ok(()) } fn generate_tokens(grammar: &AstSrc) -> Result { let tokens = grammar.tokens.iter().map(|token| { let name = format_ident!("{}", token); let kind = format_ident!("{}", to_upper_snake_case(token)); quote! { #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct #name { pub(crate) syntax: SyntaxToken, } impl std::fmt::Display for #name { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { std::fmt::Display::fmt(&self.syntax, f) } } impl AstToken for #name { fn can_cast(kind: SyntaxKind) -> bool { kind == #kind } fn cast(syntax: SyntaxToken) -> Option { if Self::can_cast(syntax.kind()) { Some(Self { syntax }) } else { None } } fn syntax(&self) -> &SyntaxToken { &self.syntax } } } }); let pretty = reformat( "e! { use crate::{SyntaxKind::{self, *}, SyntaxToken, ast::AstToken}; #(#tokens)* } .to_string(), )? .replace("#[derive", "\n#[derive"); Ok(pretty) } fn generate_nodes(kinds: KindsSrc<'_>, grammar: &AstSrc) -> Result { let (node_defs, node_boilerplate_impls): (Vec<_>, Vec<_>) = grammar .nodes .iter() .map(|node| { let name = format_ident!("{}", node.name); let kind = format_ident!("{}", to_upper_snake_case(&node.name)); let traits = node.traits.iter().map(|trait_name| { let trait_name = format_ident!("{}", trait_name); quote!(impl ast::#trait_name for #name {}) }); let methods = node.fields.iter().map(|field| { let method_name = field.method_name(); let ty = field.ty(); if field.is_many() { quote! { pub fn #method_name(&self) -> AstChildren<#ty> { support::children(&self.syntax) } } } else { if let Some(token_kind) = field.token_kind() { quote! { pub fn #method_name(&self) -> Option<#ty> { support::token(&self.syntax, #token_kind) } } } else { quote! { pub fn #method_name(&self) -> Option<#ty> { support::child(&self.syntax) } } } } }); ( quote! { #[pretty_doc_comment_placeholder_workaround] #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct #name { pub(crate) syntax: SyntaxNode, } #(#traits)* impl #name { #(#methods)* } }, quote! { impl AstNode for #name { fn can_cast(kind: SyntaxKind) -> bool { kind == #kind } fn cast(syntax: SyntaxNode) -> Option { if Self::can_cast(syntax.kind()) { Some(Self { syntax }) } else { None } } fn syntax(&self) -> &SyntaxNode { &self.syntax } } }, ) }) .unzip(); let (enum_defs, enum_boilerplate_impls): (Vec<_>, Vec<_>) = grammar .enums .iter() .map(|en| { let variants: Vec<_> = en.variants.iter().map(|var| format_ident!("{}", var)).collect(); let name = format_ident!("{}", en.name); let kinds: Vec<_> = variants .iter() .map(|name| format_ident!("{}", to_upper_snake_case(&name.to_string()))) .collect(); let traits = en.traits.iter().map(|trait_name| { let trait_name = format_ident!("{}", trait_name); quote!(impl ast::#trait_name for #name {}) }); let ast_node = if en.name == "Stmt" { quote! {} } else { quote! { impl AstNode for #name { fn can_cast(kind: SyntaxKind) -> bool { match kind { #(#kinds)|* => true, _ => false, } } fn cast(syntax: SyntaxNode) -> Option { let res = match syntax.kind() { #( #kinds => #name::#variants(#variants { syntax }), )* _ => return None, }; Some(res) } fn syntax(&self) -> &SyntaxNode { match self { #( #name::#variants(it) => &it.syntax, )* } } } } }; ( quote! { #[pretty_doc_comment_placeholder_workaround] #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum #name { #(#variants(#variants),)* } #(#traits)* }, quote! { #( impl From<#variants> for #name { fn from(node: #variants) -> #name { #name::#variants(node) } } )* #ast_node }, ) }) .unzip(); let enum_names = grammar.enums.iter().map(|it| &it.name); let node_names = grammar.nodes.iter().map(|it| &it.name); let display_impls = enum_names.chain(node_names.clone()).map(|it| format_ident!("{}", it)).map(|name| { quote! { impl std::fmt::Display for #name { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { std::fmt::Display::fmt(self.syntax(), f) } } } }); let defined_nodes: HashSet<_> = node_names.collect(); for node in kinds .nodes .iter() .map(|kind| to_pascal_case(kind)) .filter(|name| !defined_nodes.iter().any(|&it| it == name)) { drop(node) // TODO: restore this // eprintln!("Warning: node {} not defined in ast source", node); } let ast = quote! { use crate::{ SyntaxNode, SyntaxToken, SyntaxKind::{self, *}, ast::{self, AstNode, AstChildren, support}, T, }; #(#node_defs)* #(#enum_defs)* #(#node_boilerplate_impls)* #(#enum_boilerplate_impls)* #(#display_impls)* }; let ast = ast.to_string().replace("T ! [", "T!["); let mut res = String::with_capacity(ast.len() * 2); let mut docs = grammar.nodes.iter().map(|it| &it.doc).chain(grammar.enums.iter().map(|it| &it.doc)); for chunk in ast.split("# [pretty_doc_comment_placeholder_workaround] ") { res.push_str(chunk); if let Some(doc) = docs.next() { write_doc_comment(&doc, &mut res); } } let pretty = reformat(&res)?; Ok(pretty) } fn write_doc_comment(contents: &[String], dest: &mut String) { for line in contents { writeln!(dest, "///{}", line).unwrap(); } } fn generate_syntax_kinds(grammar: KindsSrc<'_>) -> Result { let (single_byte_tokens_values, single_byte_tokens): (Vec<_>, Vec<_>) = grammar .punct .iter() .filter(|(token, _name)| token.len() == 1) .map(|(token, name)| (token.chars().next().unwrap(), format_ident!("{}", name))) .unzip(); let punctuation_values = grammar.punct.iter().map(|(token, _name)| { if "{}[]()".contains(token) { let c = token.chars().next().unwrap(); quote! { #c } } else { let cs = token.chars().map(|c| Punct::new(c, Spacing::Joint)); quote! { #(#cs)* } } }); let punctuation = grammar.punct.iter().map(|(_token, name)| format_ident!("{}", name)).collect::>(); let full_keywords_values = &grammar.keywords; let full_keywords = full_keywords_values.iter().map(|kw| format_ident!("{}_KW", to_upper_snake_case(&kw))); let all_keywords_values = grammar.keywords.iter().chain(grammar.contextual_keywords.iter()).collect::>(); let all_keywords_idents = all_keywords_values.iter().map(|kw| format_ident!("{}", kw)); let all_keywords = all_keywords_values .iter() .map(|name| format_ident!("{}_KW", to_upper_snake_case(&name))) .collect::>(); let literals = grammar.literals.iter().map(|name| format_ident!("{}", name)).collect::>(); let tokens = grammar.tokens.iter().map(|name| format_ident!("{}", name)).collect::>(); let nodes = grammar.nodes.iter().map(|name| format_ident!("{}", name)).collect::>(); let ast = quote! { #![allow(bad_style, missing_docs, unreachable_pub)] /// The kind of syntax node, e.g. `IDENT`, `USE_KW`, or `STRUCT`. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] #[repr(u16)] pub enum SyntaxKind { // Technical SyntaxKinds: they appear temporally during parsing, // but never end up in the final tree #[doc(hidden)] TOMBSTONE, #[doc(hidden)] EOF, #(#punctuation,)* #(#all_keywords,)* #(#literals,)* #(#tokens,)* #(#nodes,)* // Technical kind so that we can cast from u16 safely #[doc(hidden)] __LAST, } use self::SyntaxKind::*; impl SyntaxKind { pub fn is_keyword(self) -> bool { match self { #(#all_keywords)|* => true, _ => false, } } pub fn is_punct(self) -> bool { match self { #(#punctuation)|* => true, _ => false, } } pub fn is_literal(self) -> bool { match self { #(#literals)|* => true, _ => false, } } pub fn from_keyword(ident: &str) -> Option { let kw = match ident { #(#full_keywords_values => #full_keywords,)* _ => return None, }; Some(kw) } pub fn from_char(c: char) -> Option { let tok = match c { #(#single_byte_tokens_values => #single_byte_tokens,)* _ => return None, }; Some(tok) } } #[macro_export] macro_rules! T { #([#punctuation_values] => { $crate::SyntaxKind::#punctuation };)* #([#all_keywords_idents] => { $crate::SyntaxKind::#all_keywords };)* [lifetime] => { $crate::SyntaxKind::LIFETIME }; [ident] => { $crate::SyntaxKind::IDENT }; [shebang] => { $crate::SyntaxKind::SHEBANG }; } }; reformat(&ast.to_string()) } fn to_upper_snake_case(s: &str) -> String { let mut buf = String::with_capacity(s.len()); let mut prev = false; for c in s.chars() { if c.is_ascii_uppercase() && prev { buf.push('_') } prev = true; buf.push(c.to_ascii_uppercase()); } buf } fn to_lower_snake_case(s: &str) -> String { let mut buf = String::with_capacity(s.len()); let mut prev = false; for c in s.chars() { if c.is_ascii_uppercase() && prev { buf.push('_') } prev = true; buf.push(c.to_ascii_lowercase()); } buf } fn to_pascal_case(s: &str) -> String { let mut buf = String::with_capacity(s.len()); let mut prev_is_underscore = true; for c in s.chars() { if c == '_' { prev_is_underscore = true; } else if prev_is_underscore { buf.push(c.to_ascii_uppercase()); prev_is_underscore = false; } else { buf.push(c.to_ascii_lowercase()); } } buf } fn pluralize(s: &str) -> String { format!("{}s", s) } impl Field { fn is_many(&self) -> bool { matches!(self, Field::Node { cardinality: Cardinality::Many, .. }) } fn token_kind(&self) -> Option { match self { Field::Token(token) => { let token: proc_macro2::TokenStream = token.parse().unwrap(); Some(quote! { T![#token] }) } _ => None, } } fn method_name(&self) -> proc_macro2::Ident { match self { Field::Token(name) => { let name = match name.as_str() { ";" => "semicolon", "->" => "thin_arrow", "'{'" => "l_curly", "'}'" => "r_curly", "'('" => "l_paren", "')'" => "r_paren", "'['" => "l_brack", "']'" => "r_brack", "<" => "l_angle", ">" => "r_angle", "=" => "eq", "!" => "excl", "*" => "star", "&" => "amp", "_" => "underscore", "." => "dot", ".." => "dotdot", "..." => "dotdotdot", "..=" => "dotdoteq", "=>" => "fat_arrow", "@" => "at", ":" => "colon", "::" => "coloncolon", "#" => "pound", "?" => "question_mark", "," => "comma", "|" => "pipe", _ => name, }; format_ident!("{}_token", name) } Field::Node { name, .. } => { if name == "type" { format_ident!("ty") } else { format_ident!("{}", name) } } } } fn ty(&self) -> proc_macro2::Ident { match self { Field::Token(_) => format_ident!("SyntaxToken"), Field::Node { ty, .. } => format_ident!("{}", ty), } } } fn lower(grammar: &Grammar) -> AstSrc { let mut res = AstSrc::default(); res.tokens = "Whitespace Comment String RawString IntNumber FloatNumber" .split_ascii_whitespace() .map(|it| it.to_string()) .collect::>(); let nodes = grammar.iter().collect::>(); for &node in &nodes { let name = grammar[node].name.clone(); let rule = &grammar[node].rule; match lower_enum(grammar, rule) { Some(variants) => { let enum_src = AstEnumSrc { doc: Vec::new(), name, traits: Vec::new(), variants }; res.enums.push(enum_src); } None => { let mut fields = Vec::new(); lower_rule(&mut fields, grammar, None, rule); res.nodes.push(AstNodeSrc { doc: Vec::new(), name, traits: Vec::new(), fields }); } } } deduplicate_fields(&mut res); extract_enums(&mut res); extract_struct_traits(&mut res); extract_enum_traits(&mut res); res } fn lower_enum(grammar: &Grammar, rule: &Rule) -> Option> { let alternatives = match rule { Rule::Alt(it) => it, _ => return None, }; let mut variants = Vec::new(); for alternative in alternatives { match alternative { Rule::Node(it) => variants.push(grammar[*it].name.clone()), Rule::Token(it) if grammar[*it].name == ";" => (), _ => return None, } } Some(variants) } fn lower_rule(acc: &mut Vec, grammar: &Grammar, label: Option<&String>, rule: &Rule) { if lower_comma_list(acc, grammar, label, rule) { return; } match rule { Rule::Node(node) => { let ty = grammar[*node].name.clone(); let name = label.cloned().unwrap_or_else(|| to_lower_snake_case(&ty)); let field = Field::Node { name, ty, cardinality: Cardinality::Optional }; acc.push(field); } Rule::Token(token) => { assert!(label.is_none()); let mut name = grammar[*token].name.clone(); if name != "int_number" && name != "string" { if "[]{}()".contains(&name) { name = format!("'{}'", name); } let field = Field::Token(name); acc.push(field); } } Rule::Rep(inner) => { if let Rule::Node(node) = &**inner { let ty = grammar[*node].name.clone(); let name = label.cloned().unwrap_or_else(|| pluralize(&to_lower_snake_case(&ty))); let field = Field::Node { name, ty, cardinality: Cardinality::Many }; acc.push(field); return; } todo!("{:?}", rule) } Rule::Labeled { label: l, rule } => { assert!(label.is_none()); let manually_implemented = matches!( l.as_str(), "lhs" | "rhs" | "then_branch" | "else_branch" | "start" | "end" | "op" | "index" | "base" | "value" | "trait" | "self_ty" ); if manually_implemented { return; } lower_rule(acc, grammar, Some(l), rule); } Rule::Seq(rules) | Rule::Alt(rules) => { for rule in rules { lower_rule(acc, grammar, label, rule) } } Rule::Opt(rule) => lower_rule(acc, grammar, label, rule), } } // (T (',' T)* ','?) fn lower_comma_list( acc: &mut Vec, grammar: &Grammar, label: Option<&String>, rule: &Rule, ) -> bool { let rule = match rule { Rule::Seq(it) => it, _ => return false, }; let (node, repeat, trailing_comma) = match rule.as_slice() { [Rule::Node(node), Rule::Rep(repeat), Rule::Opt(trailing_comma)] => { (node, repeat, trailing_comma) } _ => return false, }; let repeat = match &**repeat { Rule::Seq(it) => it, _ => return false, }; match repeat.as_slice() { [comma, Rule::Node(n)] if comma == &**trailing_comma && n == node => (), _ => return false, } let ty = grammar[*node].name.clone(); let name = label.cloned().unwrap_or_else(|| pluralize(&to_lower_snake_case(&ty))); let field = Field::Node { name, ty, cardinality: Cardinality::Many }; acc.push(field); true } fn deduplicate_fields(ast: &mut AstSrc) { for node in &mut ast.nodes { let mut i = 0; 'outer: while i < node.fields.len() { for j in 0..i { let f1 = &node.fields[i]; let f2 = &node.fields[j]; if f1 == f2 { node.fields.remove(i); continue 'outer; } } i += 1; } } } fn extract_enums(ast: &mut AstSrc) { for node in &mut ast.nodes { for enm in &ast.enums { let mut to_remove = Vec::new(); for (i, field) in node.fields.iter().enumerate() { let ty = field.ty().to_string(); if enm.variants.iter().any(|it| it == &ty) { to_remove.push(i); } } if to_remove.len() == enm.variants.len() { node.remove_field(to_remove); let ty = enm.name.clone(); let name = to_lower_snake_case(&ty); node.fields.push(Field::Node { name, ty, cardinality: Cardinality::Optional }); } } } } fn extract_struct_traits(ast: &mut AstSrc) { let traits: &[(&str, &[&str])] = &[ ("AttrsOwner", &["attrs"]), ("NameOwner", &["name"]), ("VisibilityOwner", &["visibility"]), ("GenericParamsOwner", &["generic_param_list", "where_clause"]), ("TypeBoundsOwner", &["type_bound_list", "colon_token"]), ("ModuleItemOwner", &["items"]), ("LoopBodyOwner", &["label", "loop_body"]), ("ArgListOwner", &["arg_list"]), ]; for node in &mut ast.nodes { for (name, methods) in traits { extract_struct_trait(node, name, methods); } } } fn extract_struct_trait(node: &mut AstNodeSrc, trait_name: &str, methods: &[&str]) { let mut to_remove = Vec::new(); for (i, field) in node.fields.iter().enumerate() { let method_name = field.method_name().to_string(); if methods.iter().any(|&it| it == &method_name) { to_remove.push(i); } } if to_remove.len() == methods.len() { node.traits.push(trait_name.to_string()); node.remove_field(to_remove); } } fn extract_enum_traits(ast: &mut AstSrc) { for enm in &mut ast.enums { if enm.name == "Stmt" { continue; } let nodes = &ast.nodes; let mut variant_traits = enm .variants .iter() .map(|var| nodes.iter().find(|it| &it.name == var).unwrap()) .map(|node| node.traits.iter().cloned().collect::>()); let mut enum_traits = match variant_traits.next() { Some(it) => it, None => continue, }; for traits in variant_traits { enum_traits = enum_traits.intersection(&traits).cloned().collect(); } enm.traits = enum_traits.into_iter().collect(); } } impl AstNodeSrc { fn remove_field(&mut self, to_remove: Vec) { to_remove.into_iter().rev().for_each(|idx| { self.fields.remove(idx); }); } }