1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
use std::ops::Index;
use std::sync::Arc;
use rustc_hash::FxHashMap;
use ra_arena::{Arena, RawId, impl_arena_id, map::ArenaMap};
use ra_db::{LocalSyntaxPtr, Cancelable};
use ra_syntax::ast::{self, AstNode, LoopBodyOwner, ArgListOwner, NameOwner};
use crate::{Path, type_ref::{Mutability, TypeRef}, Name, HirDatabase, DefId, Def, name::AsName};
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ExprId(RawId);
impl_arena_id!(ExprId);
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq)]
pub struct Body {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
/// The patterns for the function's parameters. While the parameter types are
/// part of the function signature, the patterns are not (they don't change
/// the external type of the function).
///
/// If this `Body` is for the body of a constant, this will just be
/// empty.
params: Vec<PatId>,
/// The `ExprId` of the actual body expression.
body_expr: ExprId,
}
/// An item body together with the mapping from syntax nodes to HIR expression
/// IDs. This is needed to go from e.g. a position in a file to the HIR
/// expression containing it; but for type inference etc., we want to operate on
/// a structure that is agnostic to the actual positions of expressions in the
/// file, so that we don't recompute types whenever some whitespace is typed.
#[derive(Debug, Eq, PartialEq)]
pub struct BodySyntaxMapping {
body: Arc<Body>,
expr_syntax_mapping: FxHashMap<LocalSyntaxPtr, ExprId>,
expr_syntax_mapping_back: ArenaMap<ExprId, LocalSyntaxPtr>,
pat_syntax_mapping: FxHashMap<LocalSyntaxPtr, PatId>,
pat_syntax_mapping_back: ArenaMap<PatId, LocalSyntaxPtr>,
}
impl Body {
pub fn params(&self) -> &[PatId] {
&self.params
}
pub fn body_expr(&self) -> ExprId {
self.body_expr
}
}
impl Index<ExprId> for Body {
type Output = Expr;
fn index(&self, expr: ExprId) -> &Expr {
&self.exprs[expr]
}
}
impl Index<PatId> for Body {
type Output = Pat;
fn index(&self, pat: PatId) -> &Pat {
&self.pats[pat]
}
}
impl BodySyntaxMapping {
pub fn expr_syntax(&self, expr: ExprId) -> Option<LocalSyntaxPtr> {
self.expr_syntax_mapping_back.get(expr).cloned()
}
pub fn syntax_expr(&self, ptr: LocalSyntaxPtr) -> Option<ExprId> {
self.expr_syntax_mapping.get(&ptr).cloned()
}
pub fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
self.expr_syntax_mapping
.get(&LocalSyntaxPtr::new(node.syntax()))
.cloned()
}
pub fn pat_syntax(&self, pat: PatId) -> Option<LocalSyntaxPtr> {
self.pat_syntax_mapping_back.get(pat).cloned()
}
pub fn syntax_pat(&self, ptr: LocalSyntaxPtr) -> Option<PatId> {
self.pat_syntax_mapping.get(&ptr).cloned()
}
pub fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
self.pat_syntax_mapping
.get(&LocalSyntaxPtr::new(node.syntax()))
.cloned()
}
pub fn body(&self) -> &Arc<Body> {
&self.body
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Expr {
/// This is produced if syntax tree does not have a required expression piece.
Missing,
Path(Path),
If {
condition: ExprId,
then_branch: ExprId,
else_branch: Option<ExprId>,
},
Block {
statements: Vec<Statement>,
tail: Option<ExprId>,
},
Loop {
body: ExprId,
},
While {
condition: ExprId,
body: ExprId,
},
For {
iterable: ExprId,
pat: PatId,
body: ExprId,
},
Call {
callee: ExprId,
args: Vec<ExprId>,
},
MethodCall {
receiver: ExprId,
method_name: Name,
args: Vec<ExprId>,
},
Match {
expr: ExprId,
arms: Vec<MatchArm>,
},
Continue,
Break {
expr: Option<ExprId>,
},
Return {
expr: Option<ExprId>,
},
StructLit {
path: Option<Path>,
fields: Vec<StructLitField>,
spread: Option<ExprId>,
},
Field {
expr: ExprId,
name: Name,
},
Try {
expr: ExprId,
},
Cast {
expr: ExprId,
type_ref: TypeRef,
},
Ref {
expr: ExprId,
mutability: Mutability,
},
UnaryOp {
expr: ExprId,
op: Option<UnaryOp>,
},
BinaryOp {
lhs: ExprId,
rhs: ExprId,
op: Option<BinaryOp>,
},
Lambda {
args: Vec<PatId>,
arg_types: Vec<Option<TypeRef>>,
body: ExprId,
},
}
pub use ra_syntax::ast::PrefixOp as UnaryOp;
pub use ra_syntax::ast::BinOp as BinaryOp;
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MatchArm {
pub pats: Vec<PatId>,
// guard: Option<ExprId>, // TODO
pub expr: ExprId,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct StructLitField {
pub name: Name,
pub expr: ExprId,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Statement {
Let {
pat: PatId,
type_ref: Option<TypeRef>,
initializer: Option<ExprId>,
},
Expr(ExprId),
}
impl Expr {
pub fn walk_child_exprs(&self, mut f: impl FnMut(ExprId)) {
match self {
Expr::Missing => {}
Expr::Path(_) => {}
Expr::If {
condition,
then_branch,
else_branch,
} => {
f(*condition);
f(*then_branch);
if let Some(else_branch) = else_branch {
f(*else_branch);
}
}
Expr::Block { statements, tail } => {
for stmt in statements {
match stmt {
Statement::Let { initializer, .. } => {
if let Some(expr) = initializer {
f(*expr);
}
}
Statement::Expr(e) => f(*e),
}
}
if let Some(expr) = tail {
f(*expr);
}
}
Expr::Loop { body } => f(*body),
Expr::While { condition, body } => {
f(*condition);
f(*body);
}
Expr::For { iterable, body, .. } => {
f(*iterable);
f(*body);
}
Expr::Call { callee, args } => {
f(*callee);
for arg in args {
f(*arg);
}
}
Expr::MethodCall { receiver, args, .. } => {
f(*receiver);
for arg in args {
f(*arg);
}
}
Expr::Match { expr, arms } => {
f(*expr);
for arm in arms {
f(arm.expr);
}
}
Expr::Continue => {}
Expr::Break { expr } | Expr::Return { expr } => {
if let Some(expr) = expr {
f(*expr);
}
}
Expr::StructLit { fields, spread, .. } => {
for field in fields {
f(field.expr);
}
if let Some(expr) = spread {
f(*expr);
}
}
Expr::Lambda { body, .. } => {
f(*body);
}
Expr::BinaryOp { lhs, rhs, .. } => {
f(*lhs);
f(*rhs);
}
Expr::Field { expr, .. }
| Expr::Try { expr }
| Expr::Cast { expr, .. }
| Expr::Ref { expr, .. }
| Expr::UnaryOp { expr, .. } => {
f(*expr);
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PatId(RawId);
impl_arena_id!(PatId);
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Pat {
Missing,
Bind {
name: Name,
},
TupleStruct {
path: Option<Path>,
args: Vec<PatId>,
},
}
impl Pat {
pub fn walk_child_pats(&self, f: impl FnMut(PatId)) {
match self {
Pat::Missing | Pat::Bind { .. } => {}
Pat::TupleStruct { args, .. } => {
args.iter().map(|pat| *pat).for_each(f);
}
}
}
}
// Queries
pub(crate) fn body_hir(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Arc<Body>> {
Ok(Arc::clone(&body_syntax_mapping(db, def_id)?.body))
}
struct ExprCollector {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
expr_syntax_mapping: FxHashMap<LocalSyntaxPtr, ExprId>,
expr_syntax_mapping_back: ArenaMap<ExprId, LocalSyntaxPtr>,
pat_syntax_mapping: FxHashMap<LocalSyntaxPtr, PatId>,
pat_syntax_mapping_back: ArenaMap<PatId, LocalSyntaxPtr>,
}
impl ExprCollector {
fn new() -> Self {
ExprCollector {
exprs: Arena::default(),
pats: Arena::default(),
expr_syntax_mapping: FxHashMap::default(),
expr_syntax_mapping_back: ArenaMap::default(),
pat_syntax_mapping: FxHashMap::default(),
pat_syntax_mapping_back: ArenaMap::default(),
}
}
fn alloc_expr(&mut self, expr: Expr, syntax_ptr: LocalSyntaxPtr) -> ExprId {
let id = self.exprs.alloc(expr);
self.expr_syntax_mapping.insert(syntax_ptr, id);
self.expr_syntax_mapping_back.insert(id, syntax_ptr);
id
}
fn alloc_pat(&mut self, pat: Pat, syntax_ptr: LocalSyntaxPtr) -> PatId {
let id = self.pats.alloc(pat);
self.pat_syntax_mapping.insert(syntax_ptr, id);
self.pat_syntax_mapping_back.insert(id, syntax_ptr);
id
}
fn empty_block(&mut self) -> ExprId {
let block = Expr::Block {
statements: Vec::new(),
tail: None,
};
self.exprs.alloc(block)
}
fn collect_expr(&mut self, expr: &ast::Expr) -> ExprId {
let syntax_ptr = LocalSyntaxPtr::new(expr.syntax());
match expr.kind() {
ast::ExprKind::IfExpr(e) => {
if let Some(pat) = e.condition().and_then(|c| c.pat()) {
// if let -- desugar to match
let pat = self.collect_pat(pat);
let match_expr =
self.collect_expr_opt(e.condition().expect("checked above").expr());
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e
.else_branch()
.map(|e| self.collect_block(e))
.unwrap_or_else(|| self.empty_block());
let placeholder_pat = self.pats.alloc(Pat::Missing);
let arms = vec![
MatchArm {
pats: vec![pat],
expr: then_branch,
},
MatchArm {
pats: vec![placeholder_pat],
expr: else_branch,
},
];
self.alloc_expr(
Expr::Match {
expr: match_expr,
arms,
},
syntax_ptr,
)
} else {
let condition = self.collect_expr_opt(e.condition().and_then(|c| c.expr()));
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|e| self.collect_block(e));
self.alloc_expr(
Expr::If {
condition,
then_branch,
else_branch,
},
syntax_ptr,
)
}
}
ast::ExprKind::BlockExpr(e) => self.collect_block_opt(e.block()),
ast::ExprKind::LoopExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
ast::ExprKind::WhileExpr(e) => {
let condition = if let Some(condition) = e.condition() {
if condition.pat().is_none() {
self.collect_expr_opt(condition.expr())
} else {
// TODO handle while let
return self.alloc_expr(Expr::Missing, syntax_ptr);
}
} else {
self.exprs.alloc(Expr::Missing)
};
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
ast::ExprKind::ForExpr(e) => {
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(
Expr::For {
iterable,
pat,
body,
},
syntax_ptr,
)
}
ast::ExprKind::CallExpr(e) => {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
ast::ExprKind::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_expr(
Expr::MethodCall {
receiver,
method_name,
args,
},
syntax_ptr,
)
}
ast::ExprKind::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
expr: self.collect_expr_opt(arm.expr()),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::ExprKind::PathExpr(e) => {
let path = e
.path()
.and_then(Path::from_ast)
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::ExprKind::ContinueExpr(_e) => {
// TODO: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
ast::ExprKind::BreakExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
ast::ExprKind::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
self.expr_syntax_mapping.insert(syntax_ptr, inner);
inner
}
ast::ExprKind::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::ExprKind::StructLit(e) => {
let path = e.path().and_then(Path::from_ast);
let fields = if let Some(nfl) = e.named_field_list() {
nfl.fields()
.map(|field| StructLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
let id = self.exprs.alloc(Expr::Path(Path::from_name_ref(nr)));
self.expr_syntax_mapping
.insert(LocalSyntaxPtr::new(nr.syntax()), id);
self.expr_syntax_mapping_back
.insert(id, LocalSyntaxPtr::new(nr.syntax()));
id
} else {
self.exprs.alloc(Expr::Missing)
},
})
.collect()
} else {
Vec::new()
};
let spread = e.spread().map(|s| self.collect_expr(s));
self.alloc_expr(
Expr::StructLit {
path,
fields,
spread,
},
syntax_ptr,
)
}
ast::ExprKind::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = e
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::ExprKind::TryExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
ast::ExprKind::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::ExprKind::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
ast::ExprKind::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let op = e.op();
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
}
ast::ExprKind::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.type_ref().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let body = self.collect_expr_opt(e.body());
self.alloc_expr(
Expr::Lambda {
args,
arg_types,
body,
},
syntax_ptr,
)
}
ast::ExprKind::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op();
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
// TODO implement HIR for these:
ast::ExprKind::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::IndexExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::TupleExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::ArrayExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::ExprKind::Literal(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
fn collect_expr_opt(&mut self, expr: Option<&ast::Expr>) -> ExprId {
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.exprs.alloc(Expr::Missing)
}
}
fn collect_block(&mut self, block: &ast::Block) -> ExprId {
let statements = block
.statements()
.map(|s| match s.kind() {
ast::StmtKind::LetStmt(stmt) => {
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.type_ref().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let {
pat,
type_ref,
initializer,
}
}
ast::StmtKind::ExprStmt(stmt) => {
Statement::Expr(self.collect_expr_opt(stmt.expr()))
}
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(
Expr::Block { statements, tail },
LocalSyntaxPtr::new(block.syntax()),
)
}
fn collect_block_opt(&mut self, block: Option<&ast::Block>) -> ExprId {
if let Some(block) = block {
self.collect_block(block)
} else {
self.exprs.alloc(Expr::Missing)
}
}
fn collect_pat(&mut self, pat: &ast::Pat) -> PatId {
let syntax_ptr = LocalSyntaxPtr::new(pat.syntax());
match pat.kind() {
ast::PatKind::BindPat(bp) => {
let name = bp
.name()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing);
self.alloc_pat(Pat::Bind { name }, syntax_ptr)
}
ast::PatKind::TupleStructPat(p) => {
let path = p.path().and_then(Path::from_ast);
let args = p.args().map(|p| self.collect_pat(p)).collect();
self.alloc_pat(Pat::TupleStruct { path, args }, syntax_ptr)
}
_ => {
// TODO
self.alloc_pat(Pat::Missing, syntax_ptr)
}
}
}
fn collect_pat_opt(&mut self, pat: Option<&ast::Pat>) -> PatId {
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.pats.alloc(Pat::Missing)
}
}
fn into_body_syntax_mapping(self, params: Vec<PatId>, body_expr: ExprId) -> BodySyntaxMapping {
let body = Body {
exprs: self.exprs,
pats: self.pats,
params,
body_expr,
};
BodySyntaxMapping {
body: Arc::new(body),
expr_syntax_mapping: self.expr_syntax_mapping,
expr_syntax_mapping_back: self.expr_syntax_mapping_back,
pat_syntax_mapping: self.pat_syntax_mapping,
pat_syntax_mapping_back: self.pat_syntax_mapping_back,
}
}
}
pub(crate) fn collect_fn_body_syntax(node: &ast::FnDef) -> BodySyntaxMapping {
let mut collector = ExprCollector::new();
let params = if let Some(param_list) = node.param_list() {
let mut params = Vec::new();
if let Some(self_param) = param_list.self_param() {
let self_param = LocalSyntaxPtr::new(
self_param
.self_kw()
.expect("self param without self keyword")
.syntax(),
);
let param = collector.alloc_pat(
Pat::Bind {
name: Name::self_param(),
},
self_param,
);
params.push(param);
}
for param in param_list.params() {
let pat = if let Some(pat) = param.pat() {
pat
} else {
continue;
};
params.push(collector.collect_pat(pat));
}
params
} else {
Vec::new()
};
let body = collector.collect_block_opt(node.body());
collector.into_body_syntax_mapping(params, body)
}
pub(crate) fn body_syntax_mapping(
db: &impl HirDatabase,
def_id: DefId,
) -> Cancelable<Arc<BodySyntaxMapping>> {
let def = def_id.resolve(db)?;
let body_syntax_mapping = match def {
Def::Function(f) => collect_fn_body_syntax(&f.source(db)?.1),
// TODO: consts, etc.
_ => panic!("Trying to get body for item type without body"),
};
Ok(Arc::new(body_syntax_mapping))
}
|