//! tree walking interpreter for trawk use crate::ast; use std::{collections::HashMap, fmt}; #[derive(Debug, PartialEq, Eq, Clone)] pub struct Variable { pub ty: ast::Type, pub name: ast::Identifier, pub value: Value, } impl Variable { fn value(&self) -> &Value { &self.value } fn ty(&self) -> ast::Type { self.ty } fn assign(&mut self, value: Value) -> Result { if self.ty() == value.ty() { self.value = value; Ok(self.value.clone()) } else { Err(Error::TypeMismatch { expected: self.ty(), got: value.ty(), }) } } } #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone)] pub enum Value { Unit, Integer(i128), String(String), Boolean(bool), Node, FieldAccess(Vec), } impl Value { fn ty(&self) -> ast::Type { match self { Self::Unit => ast::Type::Unit, Self::Integer(_) => ast::Type::Integer, Self::String(_) => ast::Type::String, Self::Boolean(_) => ast::Type::Boolean, Self::Node => ast::Type::Node, Self::FieldAccess(_) => ast::Type::Node, } } fn default(ty: ast::Type) -> Self { match ty { ast::Type::Unit => Self::Unit, ast::Type::Integer => Self::default_int(), ast::Type::String => Self::default_string(), ast::Type::Boolean => Self::default_bool(), ast::Type::Node => unreachable!(), } } fn default_int() -> Self { Self::Integer(0) } fn default_bool() -> Self { Self::Boolean(false) } fn default_string() -> Self { Self::String(String::default()) } fn as_boolean(&self) -> Option { match self { Self::Boolean(b) => Some(*b), _ => None, } } fn add(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Integer(*s + *o)), (Self::String(s), Self::String(o)) => Ok(Self::String(format!("{s}{o}"))), _ => Err(Error::UndefinedBinOp( ast::BinOp::Arith(ast::ArithOp::Add), self.ty(), other.ty(), )), } } fn sub(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Integer(*s - *o)), (Self::String(s), Self::String(o)) => { Ok(Self::String(s.strip_suffix(o).unwrap_or(s).to_owned())) } _ => Err(Error::UndefinedBinOp( ast::BinOp::Arith(ast::ArithOp::Sub), self.ty(), other.ty(), )), } } fn mul(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Integer(*s * *o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Arith(ast::ArithOp::Mul), self.ty(), other.ty(), )), } } fn div(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Integer(*s / *o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Arith(ast::ArithOp::Div), self.ty(), other.ty(), )), } } fn mod_(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Integer(*s % *o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Arith(ast::ArithOp::Mod), self.ty(), other.ty(), )), } } fn equals(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Boolean(s == o)), (Self::String(s), Self::String(o)) => Ok(Self::Boolean(s == o)), (Self::Boolean(s), Self::Boolean(o)) => Ok(Self::Boolean(s == o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Cmp(ast::CmpOp::Eq), self.ty(), other.ty(), )), } } fn greater_than(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Boolean(s > o)), (Self::String(s), Self::String(o)) => Ok(Self::Boolean(s.cmp(o).is_gt())), _ => Err(Error::UndefinedBinOp( ast::BinOp::Cmp(ast::CmpOp::Gt), self.ty(), other.ty(), )), } } fn less_than(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Boolean(s < o)), (Self::String(s), Self::String(o)) => Ok(Self::Boolean(s.cmp(o).is_lt())), _ => Err(Error::UndefinedBinOp( ast::BinOp::Cmp(ast::CmpOp::Lt), self.ty(), other.ty(), )), } } fn greater_than_equals(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Boolean(s >= o)), (Self::String(s), Self::String(o)) => Ok(Self::Boolean(s.cmp(o).is_ge())), (Self::Boolean(s), Self::Boolean(o)) => Ok(Self::Boolean(s == o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Cmp(ast::CmpOp::Gte), self.ty(), other.ty(), )), } } fn less_than_equals(&self, other: &Self) -> Result { match (self, other) { (Self::Integer(s), Self::Integer(o)) => Ok(Self::Boolean(s <= o)), (Self::String(s), Self::String(o)) => Ok(Self::Boolean(s.cmp(o).is_le())), (Self::Boolean(s), Self::Boolean(o)) => Ok(Self::Boolean(s == o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Cmp(ast::CmpOp::Lte), self.ty(), other.ty(), )), } } fn not(&self) -> Result { match self { Self::Boolean(s) => Ok(Self::Boolean(!s)), _ => Err(Error::UndefinedUnaryOp(ast::UnaryOp::Not, self.ty())), } } fn and(&self, other: &Self) -> Result { match (self, other) { (Self::Boolean(s), Self::Boolean(o)) => Ok(Self::Boolean(*s && *o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Logic(ast::LogicOp::And), self.ty(), other.ty(), )), } } fn or(&self, other: &Self) -> Result { match (self, other) { (Self::Boolean(s), Self::Boolean(o)) => Ok(Self::Boolean(*s || *o)), _ => Err(Error::UndefinedBinOp( ast::BinOp::Logic(ast::LogicOp::Or), self.ty(), other.ty(), )), } } } impl fmt::Display for Value { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Self::Unit => write!(f, "()"), Self::Integer(i) => write!(f, "{i}"), Self::String(s) => write!(f, "{s}"), Self::Boolean(b) => write!(f, "{b}"), Self::Node => write!(f, ""), Self::FieldAccess(items) => write!(f, ".{}", items.join(".")), } } } type NodeKind = u16; #[derive(Debug, Default)] struct Visitor { enter: ast::Block, leave: ast::Block, } #[derive(Debug)] struct Visitors { visitors: HashMap, begin: ast::Block, end: ast::Block, } impl Default for Visitors { fn default() -> Self { Self::new() } } impl Visitors { pub fn new() -> Self { Self { visitors: HashMap::new(), begin: ast::Block { body: vec![] }, end: ast::Block { body: vec![] }, } } pub fn insert( &mut self, stanza: ast::Stanza, language: &tree_sitter::Language, ) -> std::result::Result<(), Error> { match &stanza.pattern { ast::Pattern::Begin => self.begin = stanza.statements, ast::Pattern::End => self.end = stanza.statements, ast::Pattern::Node(ast::NodePattern { modifier, kind }) => { let id = language.id_for_node_kind(&kind, true); if id == 0 { return Err(Error::InvalidNodeKind(kind.to_owned())); } let v = self.visitors.entry(id).or_default(); match modifier { ast::Modifier::Enter => v.enter = stanza.statements.clone(), ast::Modifier::Leave => v.leave = stanza.statements.clone(), }; } } Ok(()) } pub fn get_by_node(&self, node: tree_sitter::Node) -> Option<&Visitor> { let node_id = node.kind_id(); self.visitors.get(&node_id) } } #[derive(Debug, PartialEq, Eq)] pub enum Error { FailedLookup(ast::Identifier), TypeMismatch { expected: ast::Type, got: ast::Type }, UndefinedBinOp(ast::BinOp, ast::Type, ast::Type), UndefinedUnaryOp(ast::UnaryOp, ast::Type), AlreadyBound(ast::Identifier), MalformedExpr(String), InvalidNodeKind(String), // current node is only set in visitors, not in BEGIN or END blocks CurrentNodeNotPresent, } pub type Result = std::result::Result; pub struct Context<'a> { variables: HashMap, language: tree_sitter::Language, visitors: Visitors, input_src: Option, cursor: Option>, } impl<'a> fmt::Debug for Context<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Context") .field("variables", &self.variables) .field("language", &self.language) .field("visitors", &self.visitors) .field("input_src", &self.input_src) .field( "cursor", if self.cursor.is_some() { &"Some()" } else { &"None" }, ) .finish() } } impl<'a> Context<'a> { pub fn new(language: tree_sitter::Language) -> Self { Self { visitors: Default::default(), variables: Default::default(), language, input_src: None, cursor: None, } } pub fn with_program(mut self, program: ast::Program) -> std::result::Result { for stanza in program.stanzas.into_iter() { self.visitors.insert(stanza, &self.language)?; } Ok(self) } pub fn with_input(mut self, src: String) -> Self { self.input_src = Some(src); self } pub fn with_cursor(mut self, cursor: tree_sitter::TreeCursor<'a>) -> Self { self.cursor = Some(cursor); self } fn eval_expr(&mut self, expr: &ast::Expr) -> Result { match expr { ast::Expr::Unit => Ok(Value::Unit), ast::Expr::Lit(lit) => self.eval_lit(lit), ast::Expr::Ident(ident) => self.lookup(ident).map(Variable::value).cloned(), ast::Expr::Bin(lhs, op, rhs) => self.eval_bin(&*lhs, *op, &*rhs), ast::Expr::Unary(expr, op) => self.eval_unary(&*expr, *op), ast::Expr::Call(call) => self.eval_call(&*call), ast::Expr::IfExpr(if_expr) => self.eval_if(if_expr), ast::Expr::Block(block) => self.eval_block(block), ast::Expr::Node => Ok(Value::Node), ast::Expr::FieldAccess(items) => Ok(Value::FieldAccess(items.to_owned())), } } fn eval_lit(&mut self, lit: &ast::Literal) -> Result { match lit { ast::Literal::Str(s) => Ok(Value::String(s.to_owned())), ast::Literal::Int(i) => Ok(Value::Integer(*i)), ast::Literal::Bool(b) => Ok(Value::Boolean(*b)), } } fn lookup(&mut self, ident: &ast::Identifier) -> std::result::Result<&Variable, Error> { self.variables .get(ident) .ok_or_else(|| Error::FailedLookup(ident.to_owned())) } fn lookup_mut(&mut self, ident: &ast::Identifier) -> std::result::Result<&mut Variable, Error> { self.variables .get_mut(ident) .ok_or_else(|| Error::FailedLookup(ident.to_owned())) } fn bind( &mut self, ident: &ast::Identifier, ty: ast::Type, ) -> std::result::Result<&mut Variable, Error> { if self.lookup(ident).is_err() { Ok(self .variables .entry(ident.to_owned()) .or_insert_with(|| Variable { name: ident.to_owned(), value: Value::default(ty), ty, })) } else { Err(Error::AlreadyBound(ident.to_owned())) } } fn eval_bin(&mut self, lhs: &ast::Expr, op: ast::BinOp, rhs: &ast::Expr) -> Result { match op { ast::BinOp::Assign(op) => self.eval_assign(lhs, op, rhs), ast::BinOp::Arith(op) => self.eval_arith(lhs, op, rhs), ast::BinOp::Cmp(op) => self.eval_cmp(lhs, op, rhs), ast::BinOp::Logic(op) => self.eval_logic(lhs, op, rhs), } } fn eval_assign( &mut self, lhs: &ast::Expr, ast::AssignOp { op }: ast::AssignOp, rhs: &ast::Expr, ) -> Result { let ast::Expr::Ident(ident) = lhs else { return Err(Error::MalformedExpr(format!( "malformed assigment, lhs: {:?}", lhs ))); }; let value = self.eval_expr(rhs)?; let variable = self.lookup_mut(ident)?; match op { None => variable.assign(value), Some(ast::ArithOp::Add) => variable.assign(variable.value().add(&value)?), Some(ast::ArithOp::Sub) => variable.assign(variable.value().sub(&value)?), Some(ast::ArithOp::Mul) => variable.assign(variable.value().mul(&value)?), Some(ast::ArithOp::Div) => variable.assign(variable.value().div(&value)?), Some(ast::ArithOp::Mod) => variable.assign(variable.value().mod_(&value)?), } } fn eval_arith(&mut self, lhs: &ast::Expr, op: ast::ArithOp, rhs: &ast::Expr) -> Result { let l = self.eval_expr(lhs)?; let r = self.eval_expr(rhs)?; match op { ast::ArithOp::Add => l.add(&r), ast::ArithOp::Sub => l.sub(&r), ast::ArithOp::Mul => l.mul(&r), ast::ArithOp::Div => l.div(&r), ast::ArithOp::Mod => l.mod_(&r), } } fn eval_cmp(&mut self, lhs: &ast::Expr, op: ast::CmpOp, rhs: &ast::Expr) -> Result { let l = self.eval_expr(lhs)?; let r = self.eval_expr(rhs)?; match op { ast::CmpOp::Eq => l.equals(&r), ast::CmpOp::Gt => l.greater_than(&r), ast::CmpOp::Lt => l.less_than(&r), ast::CmpOp::Neq => l.equals(&r).and_then(|v| v.not()), ast::CmpOp::Gte => l.greater_than_equals(&r), ast::CmpOp::Lte => l.less_than_equals(&r), } } fn eval_logic(&mut self, lhs: &ast::Expr, op: ast::LogicOp, rhs: &ast::Expr) -> Result { let l = self.eval_expr(lhs)?; // short-circuit let l_value = l.as_boolean().ok_or_else(|| Error::TypeMismatch { expected: ast::Type::Boolean, got: l.ty(), })?; match op { ast::LogicOp::Or => { if l_value { return Ok(l); } else { let r = self.eval_expr(rhs)?; l.or(&r) } } ast::LogicOp::And => { if !l_value { return Ok(l); } else { let r = self.eval_expr(rhs)?; l.and(&r) } } } } fn eval_unary(&mut self, expr: &ast::Expr, op: ast::UnaryOp) -> Result { let val = self.eval_expr(expr)?; match op { ast::UnaryOp::Not => val.not(), } } fn eval_if(&mut self, if_expr: &ast::If) -> Result { let cond = self.eval_expr(&if_expr.condition)?; if cond.as_boolean().ok_or_else(|| Error::TypeMismatch { expected: ast::Type::Boolean, got: cond.ty(), })? { self.eval_block(&if_expr.then) } else { self.eval_block(&if_expr.else_) } } fn eval_call(&mut self, call: &ast::Call) -> Result { match (call.function.as_str(), call.parameters.as_slice()) { ("print", args) => { for arg in args { let val = self.eval_expr(arg)?; print!("{val}"); } Ok(Value::Unit) } ("text", [arg]) => { let node = match self.eval_expr(arg)? { Value::Node => self .cursor .as_ref() .ok_or(Error::CurrentNodeNotPresent)? .node(), Value::FieldAccess(fields) => { let mut node = self .cursor .as_ref() .ok_or(Error::CurrentNodeNotPresent)? .node(); for field in &fields { node = node .child_by_field_name(field.as_bytes()) .ok_or_else(|| Error::FailedLookup(field.to_owned()))?; } node } v => { return Err(Error::TypeMismatch { expected: ast::Type::Node, got: v.ty(), }) } }; let text = node .utf8_text(self.input_src.as_ref().unwrap().as_bytes()) .unwrap(); Ok(Value::String(text.to_owned())) } (s, _) => Err(Error::FailedLookup(s.to_owned())), } } fn eval_declaration(&mut self, decl: &ast::Declaration) -> Result { let initial_value = match decl.init.as_ref() { Some(init) => Some(self.eval_expr(&*init)?), None => None, }; let variable = self.bind(&decl.name, decl.ty)?; if let Some(init) = initial_value { variable.assign(init)?; } Ok(Value::Unit) } fn eval_statement(&mut self, stmt: &ast::Statement) -> Result { match stmt { ast::Statement::Bare(expr) => self.eval_expr(expr).map(|_| Value::Unit), ast::Statement::Declaration(decl) => self.eval_declaration(decl), } } fn eval_block(&mut self, block: &ast::Block) -> Result { for stmt in block.body.iter() { self.eval_statement(stmt)?; } Ok(Value::Unit) } pub fn eval(&mut self) -> Result { let visitors = std::mem::take(&mut self.visitors); let mut has_next = true; let mut postorder = Vec::new(); // BEGIN block self.eval_block(&visitors.begin)?; while has_next { let current_node = self.cursor.as_mut().unwrap().node(); postorder.push(current_node); let visitor = visitors.get_by_node(current_node); visitor.map(|v| self.eval_block(&v.enter)); has_next = self.cursor.as_mut().unwrap().goto_first_child(); if !has_next { has_next = self.cursor.as_mut().unwrap().goto_next_sibling(); postorder .pop() .and_then(|n| visitors.get_by_node(n)) .map(|v| self.eval_block(&v.leave)); } while !has_next && self.cursor.as_mut().unwrap().goto_parent() { has_next = self.cursor.as_mut().unwrap().goto_next_sibling(); postorder .pop() .and_then(|n| visitors.get_by_node(n)) .map(|v| self.eval_block(&v.leave)); } } // END block self.eval_block(&visitors.end)?; Ok(Value::Unit) } } pub fn evaluate(file: &str, program: &str, language: tree_sitter::Language) -> Result { let mut parser = tree_sitter::Parser::new(); let _ = parser.set_language(language); let tree = parser.parse(file, None).unwrap(); let cursor = tree.walk(); let program = ast::Program::new().from_str(program).unwrap(); let mut ctx = Context::new(tree_sitter_md::language()) .with_input(file.to_owned()) .with_cursor(cursor) .with_program(program)?; ctx.eval() } #[cfg(test)] mod test { use super::*; #[test] fn bin() { let language = tree_sitter_python::language(); let mut ctx = Context::new(language) .with_program(ast::Program::new()) .unwrap(); assert_eq!( ctx.eval_expr(&ast::Expr::Bin( ast::Expr::int(5).boxed(), ast::BinOp::Arith(ast::ArithOp::Add), ast::Expr::int(10).boxed(), )), Ok(Value::Integer(15)) ); assert_eq!( ctx.eval_expr(&ast::Expr::Bin( ast::Expr::int(5).boxed(), ast::BinOp::Cmp(ast::CmpOp::Eq), ast::Expr::int(10).boxed(), )), Ok(Value::Boolean(false)) ); assert_eq!( ctx.eval_expr(&ast::Expr::Bin( ast::Expr::int(5).boxed(), ast::BinOp::Cmp(ast::CmpOp::Lt), ast::Expr::int(10).boxed(), )), Ok(Value::Boolean(true)) ); assert_eq!( ctx.eval_expr(&ast::Expr::Bin( ast::Expr::Bin( ast::Expr::int(5).boxed(), ast::BinOp::Cmp(ast::CmpOp::Lt), ast::Expr::int(10).boxed(), ) .boxed(), ast::BinOp::Logic(ast::LogicOp::And), ast::Expr::false_().boxed() )), Ok(Value::Boolean(false)) ); } #[test] fn test_evaluate_blocks() { let language = tree_sitter_python::language(); let mut ctx = Context::new(language) .with_program(ast::Program::new()) .unwrap(); assert_eq!( ctx.eval_block(&ast::Block { body: vec![ ast::Statement::Declaration(ast::Declaration { ty: ast::Type::Integer, name: "a".to_owned(), init: None, }), ast::Statement::Bare(ast::Expr::Bin( ast::Expr::Ident("a".to_owned()).boxed(), ast::BinOp::Assign(ast::AssignOp { op: Some(ast::ArithOp::Add) }), ast::Expr::int(5).boxed() )), ] }), Ok(Value::Unit) ); assert_eq!( ctx.lookup(&String::from("a")).unwrap().clone(), Variable { ty: ast::Type::Integer, name: "a".to_owned(), value: Value::Integer(5) } ); } #[test] fn test_evaluate_if() { let language = tree_sitter_python::language(); let mut ctx = Context::new(language) .with_program(ast::Program::new()) .unwrap(); assert_eq!( ctx.eval_block(&ast::Block { body: vec![ ast::Statement::Declaration(ast::Declaration { ty: ast::Type::Integer, name: "a".to_owned(), init: Some(ast::Expr::int(1).boxed()), }), ast::Statement::Bare(ast::Expr::IfExpr(ast::If { condition: ast::Expr::true_().boxed(), then: ast::Block { body: vec![ast::Statement::Bare(ast::Expr::Bin( ast::Expr::Ident("a".to_owned()).boxed(), ast::BinOp::Assign(ast::AssignOp { op: Some(ast::ArithOp::Add) }), ast::Expr::int(5).boxed() ))] }, else_: ast::Block { body: vec![ast::Statement::Bare(ast::Expr::Bin( ast::Expr::Ident("a".to_owned()).boxed(), ast::BinOp::Assign(ast::AssignOp { op: Some(ast::ArithOp::Add) }), ast::Expr::int(10).boxed() ))] } })) ] }), Ok(Value::Unit) ); assert_eq!( ctx.lookup(&String::from("a")).unwrap().clone(), Variable { ty: ast::Type::Integer, name: "a".to_owned(), value: Value::Integer(6) } ); } }