aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_ssr/src
diff options
context:
space:
mode:
Diffstat (limited to 'crates/ra_ssr/src')
-rw-r--r--crates/ra_ssr/src/errors.rs29
-rw-r--r--crates/ra_ssr/src/lib.rs286
-rw-r--r--crates/ra_ssr/src/matching.rs732
-rw-r--r--crates/ra_ssr/src/nester.rs98
-rw-r--r--crates/ra_ssr/src/parsing.rs389
-rw-r--r--crates/ra_ssr/src/replacing.rs194
-rw-r--r--crates/ra_ssr/src/resolving.rs251
-rw-r--r--crates/ra_ssr/src/search.rs282
-rw-r--r--crates/ra_ssr/src/tests.rs1081
9 files changed, 0 insertions, 3342 deletions
diff --git a/crates/ra_ssr/src/errors.rs b/crates/ra_ssr/src/errors.rs
deleted file mode 100644
index c02bacae6..000000000
--- a/crates/ra_ssr/src/errors.rs
+++ /dev/null
@@ -1,29 +0,0 @@
1//! Code relating to errors produced by SSR.
2
3/// Constructs an SsrError taking arguments like the format macro.
4macro_rules! _error {
5 ($fmt:expr) => {$crate::SsrError::new(format!($fmt))};
6 ($fmt:expr, $($arg:tt)+) => {$crate::SsrError::new(format!($fmt, $($arg)+))}
7}
8pub(crate) use _error as error;
9
10/// Returns from the current function with an error, supplied by arguments as for format!
11macro_rules! _bail {
12 ($($tokens:tt)*) => {return Err(crate::errors::error!($($tokens)*))}
13}
14pub(crate) use _bail as bail;
15
16#[derive(Debug, PartialEq)]
17pub struct SsrError(pub(crate) String);
18
19impl std::fmt::Display for SsrError {
20 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
21 write!(f, "Parse error: {}", self.0)
22 }
23}
24
25impl SsrError {
26 pub(crate) fn new(message: impl Into<String>) -> SsrError {
27 SsrError(message.into())
28 }
29}
diff --git a/crates/ra_ssr/src/lib.rs b/crates/ra_ssr/src/lib.rs
deleted file mode 100644
index c780b460a..000000000
--- a/crates/ra_ssr/src/lib.rs
+++ /dev/null
@@ -1,286 +0,0 @@
1//! Structural Search Replace
2//!
3//! Allows searching the AST for code that matches one or more patterns and then replacing that code
4//! based on a template.
5
6mod matching;
7mod nester;
8mod parsing;
9mod replacing;
10mod resolving;
11mod search;
12#[macro_use]
13mod errors;
14#[cfg(test)]
15mod tests;
16
17use crate::errors::bail;
18pub use crate::errors::SsrError;
19pub use crate::matching::Match;
20use crate::matching::MatchFailureReason;
21use hir::Semantics;
22use ra_db::{FileId, FilePosition, FileRange};
23use ra_ide_db::source_change::SourceFileEdit;
24use ra_syntax::{ast, AstNode, SyntaxNode, TextRange};
25use resolving::ResolvedRule;
26use rustc_hash::FxHashMap;
27
28// A structured search replace rule. Create by calling `parse` on a str.
29#[derive(Debug)]
30pub struct SsrRule {
31 /// A structured pattern that we're searching for.
32 pattern: parsing::RawPattern,
33 /// What we'll replace it with.
34 template: parsing::RawPattern,
35 parsed_rules: Vec<parsing::ParsedRule>,
36}
37
38#[derive(Debug)]
39pub struct SsrPattern {
40 raw: parsing::RawPattern,
41 parsed_rules: Vec<parsing::ParsedRule>,
42}
43
44#[derive(Debug, Default)]
45pub struct SsrMatches {
46 pub matches: Vec<Match>,
47}
48
49/// Searches a crate for pattern matches and possibly replaces them with something else.
50pub struct MatchFinder<'db> {
51 /// Our source of information about the user's code.
52 sema: Semantics<'db, ra_ide_db::RootDatabase>,
53 rules: Vec<ResolvedRule>,
54 resolution_scope: resolving::ResolutionScope<'db>,
55 restrict_ranges: Vec<FileRange>,
56}
57
58impl<'db> MatchFinder<'db> {
59 /// Constructs a new instance where names will be looked up as if they appeared at
60 /// `lookup_context`.
61 pub fn in_context(
62 db: &'db ra_ide_db::RootDatabase,
63 lookup_context: FilePosition,
64 mut restrict_ranges: Vec<FileRange>,
65 ) -> MatchFinder<'db> {
66 restrict_ranges.retain(|range| !range.range.is_empty());
67 let sema = Semantics::new(db);
68 let resolution_scope = resolving::ResolutionScope::new(&sema, lookup_context);
69 MatchFinder { sema, rules: Vec::new(), resolution_scope, restrict_ranges }
70 }
71
72 /// Constructs an instance using the start of the first file in `db` as the lookup context.
73 pub fn at_first_file(db: &'db ra_ide_db::RootDatabase) -> Result<MatchFinder<'db>, SsrError> {
74 use ra_db::SourceDatabaseExt;
75 use ra_ide_db::symbol_index::SymbolsDatabase;
76 if let Some(first_file_id) = db
77 .local_roots()
78 .iter()
79 .next()
80 .and_then(|root| db.source_root(root.clone()).iter().next())
81 {
82 Ok(MatchFinder::in_context(
83 db,
84 FilePosition { file_id: first_file_id, offset: 0.into() },
85 vec![],
86 ))
87 } else {
88 bail!("No files to search");
89 }
90 }
91
92 /// Adds a rule to be applied. The order in which rules are added matters. Earlier rules take
93 /// precedence. If a node is matched by an earlier rule, then later rules won't be permitted to
94 /// match to it.
95 pub fn add_rule(&mut self, rule: SsrRule) -> Result<(), SsrError> {
96 for parsed_rule in rule.parsed_rules {
97 self.rules.push(ResolvedRule::new(
98 parsed_rule,
99 &self.resolution_scope,
100 self.rules.len(),
101 )?);
102 }
103 Ok(())
104 }
105
106 /// Finds matches for all added rules and returns edits for all found matches.
107 pub fn edits(&self) -> Vec<SourceFileEdit> {
108 use ra_db::SourceDatabaseExt;
109 let mut matches_by_file = FxHashMap::default();
110 for m in self.matches().matches {
111 matches_by_file
112 .entry(m.range.file_id)
113 .or_insert_with(|| SsrMatches::default())
114 .matches
115 .push(m);
116 }
117 let mut edits = vec![];
118 for (file_id, matches) in matches_by_file {
119 let edit =
120 replacing::matches_to_edit(&matches, &self.sema.db.file_text(file_id), &self.rules);
121 edits.push(SourceFileEdit { file_id, edit });
122 }
123 edits
124 }
125
126 /// Adds a search pattern. For use if you intend to only call `find_matches_in_file`. If you
127 /// intend to do replacement, use `add_rule` instead.
128 pub fn add_search_pattern(&mut self, pattern: SsrPattern) -> Result<(), SsrError> {
129 for parsed_rule in pattern.parsed_rules {
130 self.rules.push(ResolvedRule::new(
131 parsed_rule,
132 &self.resolution_scope,
133 self.rules.len(),
134 )?);
135 }
136 Ok(())
137 }
138
139 /// Returns matches for all added rules.
140 pub fn matches(&self) -> SsrMatches {
141 let mut matches = Vec::new();
142 let mut usage_cache = search::UsageCache::default();
143 for rule in &self.rules {
144 self.find_matches_for_rule(rule, &mut usage_cache, &mut matches);
145 }
146 nester::nest_and_remove_collisions(matches, &self.sema)
147 }
148
149 /// Finds all nodes in `file_id` whose text is exactly equal to `snippet` and attempts to match
150 /// them, while recording reasons why they don't match. This API is useful for command
151 /// line-based debugging where providing a range is difficult.
152 pub fn debug_where_text_equal(&self, file_id: FileId, snippet: &str) -> Vec<MatchDebugInfo> {
153 use ra_db::SourceDatabaseExt;
154 let file = self.sema.parse(file_id);
155 let mut res = Vec::new();
156 let file_text = self.sema.db.file_text(file_id);
157 let mut remaining_text = file_text.as_str();
158 let mut base = 0;
159 let len = snippet.len() as u32;
160 while let Some(offset) = remaining_text.find(snippet) {
161 let start = base + offset as u32;
162 let end = start + len;
163 self.output_debug_for_nodes_at_range(
164 file.syntax(),
165 FileRange { file_id, range: TextRange::new(start.into(), end.into()) },
166 &None,
167 &mut res,
168 );
169 remaining_text = &remaining_text[offset + snippet.len()..];
170 base = end;
171 }
172 res
173 }
174
175 fn output_debug_for_nodes_at_range(
176 &self,
177 node: &SyntaxNode,
178 range: FileRange,
179 restrict_range: &Option<FileRange>,
180 out: &mut Vec<MatchDebugInfo>,
181 ) {
182 for node in node.children() {
183 let node_range = self.sema.original_range(&node);
184 if node_range.file_id != range.file_id || !node_range.range.contains_range(range.range)
185 {
186 continue;
187 }
188 if node_range.range == range.range {
189 for rule in &self.rules {
190 // For now we ignore rules that have a different kind than our node, otherwise
191 // we get lots of noise. If at some point we add support for restricting rules
192 // to a particular kind of thing (e.g. only match type references), then we can
193 // relax this. We special-case expressions, since function calls can match
194 // method calls.
195 if rule.pattern.node.kind() != node.kind()
196 && !(ast::Expr::can_cast(rule.pattern.node.kind())
197 && ast::Expr::can_cast(node.kind()))
198 {
199 continue;
200 }
201 out.push(MatchDebugInfo {
202 matched: matching::get_match(true, rule, &node, restrict_range, &self.sema)
203 .map_err(|e| MatchFailureReason {
204 reason: e.reason.unwrap_or_else(|| {
205 "Match failed, but no reason was given".to_owned()
206 }),
207 }),
208 pattern: rule.pattern.node.clone(),
209 node: node.clone(),
210 });
211 }
212 } else if let Some(macro_call) = ast::MacroCall::cast(node.clone()) {
213 if let Some(expanded) = self.sema.expand(&macro_call) {
214 if let Some(tt) = macro_call.token_tree() {
215 self.output_debug_for_nodes_at_range(
216 &expanded,
217 range,
218 &Some(self.sema.original_range(tt.syntax())),
219 out,
220 );
221 }
222 }
223 }
224 self.output_debug_for_nodes_at_range(&node, range, restrict_range, out);
225 }
226 }
227}
228
229pub struct MatchDebugInfo {
230 node: SyntaxNode,
231 /// Our search pattern parsed as an expression or item, etc
232 pattern: SyntaxNode,
233 matched: Result<Match, MatchFailureReason>,
234}
235
236impl std::fmt::Debug for MatchDebugInfo {
237 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
238 match &self.matched {
239 Ok(_) => writeln!(f, "Node matched")?,
240 Err(reason) => writeln!(f, "Node failed to match because: {}", reason.reason)?,
241 }
242 writeln!(
243 f,
244 "============ AST ===========\n\
245 {:#?}",
246 self.node
247 )?;
248 writeln!(f, "========= PATTERN ==========")?;
249 writeln!(f, "{:#?}", self.pattern)?;
250 writeln!(f, "============================")?;
251 Ok(())
252 }
253}
254
255impl SsrMatches {
256 /// Returns `self` with any nested matches removed and made into top-level matches.
257 pub fn flattened(self) -> SsrMatches {
258 let mut out = SsrMatches::default();
259 self.flatten_into(&mut out);
260 out
261 }
262
263 fn flatten_into(self, out: &mut SsrMatches) {
264 for mut m in self.matches {
265 for p in m.placeholder_values.values_mut() {
266 std::mem::replace(&mut p.inner_matches, SsrMatches::default()).flatten_into(out);
267 }
268 out.matches.push(m);
269 }
270 }
271}
272
273impl Match {
274 pub fn matched_text(&self) -> String {
275 self.matched_node.text().to_string()
276 }
277}
278
279impl std::error::Error for SsrError {}
280
281#[cfg(test)]
282impl MatchDebugInfo {
283 pub(crate) fn match_failure_reason(&self) -> Option<&str> {
284 self.matched.as_ref().err().map(|r| r.reason.as_str())
285 }
286}
diff --git a/crates/ra_ssr/src/matching.rs b/crates/ra_ssr/src/matching.rs
deleted file mode 100644
index 0f72fea69..000000000
--- a/crates/ra_ssr/src/matching.rs
+++ /dev/null
@@ -1,732 +0,0 @@
1//! This module is responsible for matching a search pattern against a node in the AST. In the
2//! process of matching, placeholder values are recorded.
3
4use crate::{
5 parsing::{Constraint, NodeKind, Placeholder},
6 resolving::{ResolvedPattern, ResolvedRule},
7 SsrMatches,
8};
9use hir::Semantics;
10use ra_db::FileRange;
11use ra_syntax::ast::{AstNode, AstToken};
12use ra_syntax::{ast, SyntaxElement, SyntaxElementChildren, SyntaxKind, SyntaxNode, SyntaxToken};
13use rustc_hash::FxHashMap;
14use std::{cell::Cell, iter::Peekable};
15use test_utils::mark;
16
17// Creates a match error. If we're currently attempting to match some code that we thought we were
18// going to match, as indicated by the --debug-snippet flag, then populate the reason field.
19macro_rules! match_error {
20 ($e:expr) => {{
21 MatchFailed {
22 reason: if recording_match_fail_reasons() {
23 Some(format!("{}", $e))
24 } else {
25 None
26 }
27 }
28 }};
29 ($fmt:expr, $($arg:tt)+) => {{
30 MatchFailed {
31 reason: if recording_match_fail_reasons() {
32 Some(format!($fmt, $($arg)+))
33 } else {
34 None
35 }
36 }
37 }};
38}
39
40// Fails the current match attempt, recording the supplied reason if we're recording match fail reasons.
41macro_rules! fail_match {
42 ($($args:tt)*) => {return Err(match_error!($($args)*))};
43}
44
45/// Information about a match that was found.
46#[derive(Debug)]
47pub struct Match {
48 pub(crate) range: FileRange,
49 pub(crate) matched_node: SyntaxNode,
50 pub(crate) placeholder_values: FxHashMap<Var, PlaceholderMatch>,
51 pub(crate) ignored_comments: Vec<ast::Comment>,
52 pub(crate) rule_index: usize,
53 /// The depth of matched_node.
54 pub(crate) depth: usize,
55 // Each path in the template rendered for the module in which the match was found.
56 pub(crate) rendered_template_paths: FxHashMap<SyntaxNode, hir::ModPath>,
57}
58
59/// Represents a `$var` in an SSR query.
60#[derive(Debug, Clone, PartialEq, Eq, Hash)]
61pub(crate) struct Var(pub String);
62
63/// Information about a placeholder bound in a match.
64#[derive(Debug)]
65pub(crate) struct PlaceholderMatch {
66 /// The node that the placeholder matched to. If set, then we'll search for further matches
67 /// within this node. It isn't set when we match tokens within a macro call's token tree.
68 pub(crate) node: Option<SyntaxNode>,
69 pub(crate) range: FileRange,
70 /// More matches, found within `node`.
71 pub(crate) inner_matches: SsrMatches,
72}
73
74#[derive(Debug)]
75pub(crate) struct MatchFailureReason {
76 pub(crate) reason: String,
77}
78
79/// An "error" indicating that matching failed. Use the fail_match! macro to create and return this.
80#[derive(Clone)]
81pub(crate) struct MatchFailed {
82 /// The reason why we failed to match. Only present when debug_active true in call to
83 /// `get_match`.
84 pub(crate) reason: Option<String>,
85}
86
87/// Checks if `code` matches the search pattern found in `search_scope`, returning information about
88/// the match, if it does. Since we only do matching in this module and searching is done by the
89/// parent module, we don't populate nested matches.
90pub(crate) fn get_match(
91 debug_active: bool,
92 rule: &ResolvedRule,
93 code: &SyntaxNode,
94 restrict_range: &Option<FileRange>,
95 sema: &Semantics<ra_ide_db::RootDatabase>,
96) -> Result<Match, MatchFailed> {
97 record_match_fails_reasons_scope(debug_active, || {
98 Matcher::try_match(rule, code, restrict_range, sema)
99 })
100}
101
102/// Checks if our search pattern matches a particular node of the AST.
103struct Matcher<'db, 'sema> {
104 sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>,
105 /// If any placeholders come from anywhere outside of this range, then the match will be
106 /// rejected.
107 restrict_range: Option<FileRange>,
108 rule: &'sema ResolvedRule,
109}
110
111/// Which phase of matching we're currently performing. We do two phases because most attempted
112/// matches will fail and it means we can defer more expensive checks to the second phase.
113enum Phase<'a> {
114 /// On the first phase, we perform cheap checks. No state is mutated and nothing is recorded.
115 First,
116 /// On the second phase, we construct the `Match`. Things like what placeholders bind to is
117 /// recorded.
118 Second(&'a mut Match),
119}
120
121impl<'db, 'sema> Matcher<'db, 'sema> {
122 fn try_match(
123 rule: &ResolvedRule,
124 code: &SyntaxNode,
125 restrict_range: &Option<FileRange>,
126 sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>,
127 ) -> Result<Match, MatchFailed> {
128 let match_state = Matcher { sema, restrict_range: restrict_range.clone(), rule };
129 // First pass at matching, where we check that node types and idents match.
130 match_state.attempt_match_node(&mut Phase::First, &rule.pattern.node, code)?;
131 match_state.validate_range(&sema.original_range(code))?;
132 let mut the_match = Match {
133 range: sema.original_range(code),
134 matched_node: code.clone(),
135 placeholder_values: FxHashMap::default(),
136 ignored_comments: Vec::new(),
137 rule_index: rule.index,
138 depth: 0,
139 rendered_template_paths: FxHashMap::default(),
140 };
141 // Second matching pass, where we record placeholder matches, ignored comments and maybe do
142 // any other more expensive checks that we didn't want to do on the first pass.
143 match_state.attempt_match_node(
144 &mut Phase::Second(&mut the_match),
145 &rule.pattern.node,
146 code,
147 )?;
148 the_match.depth = sema.ancestors_with_macros(the_match.matched_node.clone()).count();
149 if let Some(template) = &rule.template {
150 the_match.render_template_paths(template, sema)?;
151 }
152 Ok(the_match)
153 }
154
155 /// Checks that `range` is within the permitted range if any. This is applicable when we're
156 /// processing a macro expansion and we want to fail the match if we're working with a node that
157 /// didn't originate from the token tree of the macro call.
158 fn validate_range(&self, range: &FileRange) -> Result<(), MatchFailed> {
159 if let Some(restrict_range) = &self.restrict_range {
160 if restrict_range.file_id != range.file_id
161 || !restrict_range.range.contains_range(range.range)
162 {
163 fail_match!("Node originated from a macro");
164 }
165 }
166 Ok(())
167 }
168
169 fn attempt_match_node(
170 &self,
171 phase: &mut Phase,
172 pattern: &SyntaxNode,
173 code: &SyntaxNode,
174 ) -> Result<(), MatchFailed> {
175 // Handle placeholders.
176 if let Some(placeholder) = self.get_placeholder(&SyntaxElement::Node(pattern.clone())) {
177 for constraint in &placeholder.constraints {
178 self.check_constraint(constraint, code)?;
179 }
180 if let Phase::Second(matches_out) = phase {
181 let original_range = self.sema.original_range(code);
182 // We validated the range for the node when we started the match, so the placeholder
183 // probably can't fail range validation, but just to be safe...
184 self.validate_range(&original_range)?;
185 matches_out.placeholder_values.insert(
186 Var(placeholder.ident.to_string()),
187 PlaceholderMatch::new(code, original_range),
188 );
189 }
190 return Ok(());
191 }
192 // We allow a UFCS call to match a method call, provided they resolve to the same function.
193 if let Some(pattern_function) = self.rule.pattern.ufcs_function_calls.get(pattern) {
194 if let (Some(pattern), Some(code)) =
195 (ast::CallExpr::cast(pattern.clone()), ast::MethodCallExpr::cast(code.clone()))
196 {
197 return self.attempt_match_ufcs(phase, &pattern, &code, *pattern_function);
198 }
199 }
200 if pattern.kind() != code.kind() {
201 fail_match!(
202 "Pattern had `{}` ({:?}), code had `{}` ({:?})",
203 pattern.text(),
204 pattern.kind(),
205 code.text(),
206 code.kind()
207 );
208 }
209 // Some kinds of nodes have special handling. For everything else, we fall back to default
210 // matching.
211 match code.kind() {
212 SyntaxKind::RECORD_EXPR_FIELD_LIST => {
213 self.attempt_match_record_field_list(phase, pattern, code)
214 }
215 SyntaxKind::TOKEN_TREE => self.attempt_match_token_tree(phase, pattern, code),
216 SyntaxKind::PATH => self.attempt_match_path(phase, pattern, code),
217 _ => self.attempt_match_node_children(phase, pattern, code),
218 }
219 }
220
221 fn attempt_match_node_children(
222 &self,
223 phase: &mut Phase,
224 pattern: &SyntaxNode,
225 code: &SyntaxNode,
226 ) -> Result<(), MatchFailed> {
227 self.attempt_match_sequences(
228 phase,
229 PatternIterator::new(pattern),
230 code.children_with_tokens(),
231 )
232 }
233
234 fn attempt_match_sequences(
235 &self,
236 phase: &mut Phase,
237 pattern_it: PatternIterator,
238 mut code_it: SyntaxElementChildren,
239 ) -> Result<(), MatchFailed> {
240 let mut pattern_it = pattern_it.peekable();
241 loop {
242 match phase.next_non_trivial(&mut code_it) {
243 None => {
244 if let Some(p) = pattern_it.next() {
245 fail_match!("Part of the pattern was unmatched: {:?}", p);
246 }
247 return Ok(());
248 }
249 Some(SyntaxElement::Token(c)) => {
250 self.attempt_match_token(phase, &mut pattern_it, &c)?;
251 }
252 Some(SyntaxElement::Node(c)) => match pattern_it.next() {
253 Some(SyntaxElement::Node(p)) => {
254 self.attempt_match_node(phase, &p, &c)?;
255 }
256 Some(p) => fail_match!("Pattern wanted '{}', code has {}", p, c.text()),
257 None => fail_match!("Pattern reached end, code has {}", c.text()),
258 },
259 }
260 }
261 }
262
263 fn attempt_match_token(
264 &self,
265 phase: &mut Phase,
266 pattern: &mut Peekable<PatternIterator>,
267 code: &ra_syntax::SyntaxToken,
268 ) -> Result<(), MatchFailed> {
269 phase.record_ignored_comments(code);
270 // Ignore whitespace and comments.
271 if code.kind().is_trivia() {
272 return Ok(());
273 }
274 if let Some(SyntaxElement::Token(p)) = pattern.peek() {
275 // If the code has a comma and the pattern is about to close something, then accept the
276 // comma without advancing the pattern. i.e. ignore trailing commas.
277 if code.kind() == SyntaxKind::COMMA && is_closing_token(p.kind()) {
278 return Ok(());
279 }
280 // Conversely, if the pattern has a comma and the code doesn't, skip that part of the
281 // pattern and continue to match the code.
282 if p.kind() == SyntaxKind::COMMA && is_closing_token(code.kind()) {
283 pattern.next();
284 }
285 }
286 // Consume an element from the pattern and make sure it matches.
287 match pattern.next() {
288 Some(SyntaxElement::Token(p)) => {
289 if p.kind() != code.kind() || p.text() != code.text() {
290 fail_match!(
291 "Pattern wanted token '{}' ({:?}), but code had token '{}' ({:?})",
292 p.text(),
293 p.kind(),
294 code.text(),
295 code.kind()
296 )
297 }
298 }
299 Some(SyntaxElement::Node(p)) => {
300 // Not sure if this is actually reachable.
301 fail_match!(
302 "Pattern wanted {:?}, but code had token '{}' ({:?})",
303 p,
304 code.text(),
305 code.kind()
306 );
307 }
308 None => {
309 fail_match!("Pattern exhausted, while code remains: `{}`", code.text());
310 }
311 }
312 Ok(())
313 }
314
315 fn check_constraint(
316 &self,
317 constraint: &Constraint,
318 code: &SyntaxNode,
319 ) -> Result<(), MatchFailed> {
320 match constraint {
321 Constraint::Kind(kind) => {
322 kind.matches(code)?;
323 }
324 Constraint::Not(sub) => {
325 if self.check_constraint(&*sub, code).is_ok() {
326 fail_match!("Constraint {:?} failed for '{}'", constraint, code.text());
327 }
328 }
329 }
330 Ok(())
331 }
332
333 /// Paths are matched based on whether they refer to the same thing, even if they're written
334 /// differently.
335 fn attempt_match_path(
336 &self,
337 phase: &mut Phase,
338 pattern: &SyntaxNode,
339 code: &SyntaxNode,
340 ) -> Result<(), MatchFailed> {
341 if let Some(pattern_resolved) = self.rule.pattern.resolved_paths.get(pattern) {
342 let pattern_path = ast::Path::cast(pattern.clone()).unwrap();
343 let code_path = ast::Path::cast(code.clone()).unwrap();
344 if let (Some(pattern_segment), Some(code_segment)) =
345 (pattern_path.segment(), code_path.segment())
346 {
347 // Match everything within the segment except for the name-ref, which is handled
348 // separately via comparing what the path resolves to below.
349 self.attempt_match_opt(
350 phase,
351 pattern_segment.generic_arg_list(),
352 code_segment.generic_arg_list(),
353 )?;
354 self.attempt_match_opt(
355 phase,
356 pattern_segment.param_list(),
357 code_segment.param_list(),
358 )?;
359 }
360 if matches!(phase, Phase::Second(_)) {
361 let resolution = self
362 .sema
363 .resolve_path(&code_path)
364 .ok_or_else(|| match_error!("Failed to resolve path `{}`", code.text()))?;
365 if pattern_resolved.resolution != resolution {
366 fail_match!("Pattern had path `{}` code had `{}`", pattern.text(), code.text());
367 }
368 }
369 } else {
370 return self.attempt_match_node_children(phase, pattern, code);
371 }
372 Ok(())
373 }
374
375 fn attempt_match_opt<T: AstNode>(
376 &self,
377 phase: &mut Phase,
378 pattern: Option<T>,
379 code: Option<T>,
380 ) -> Result<(), MatchFailed> {
381 match (pattern, code) {
382 (Some(p), Some(c)) => self.attempt_match_node(phase, &p.syntax(), &c.syntax()),
383 (None, None) => Ok(()),
384 (Some(p), None) => fail_match!("Pattern `{}` had nothing to match", p.syntax().text()),
385 (None, Some(c)) => {
386 fail_match!("Nothing in pattern to match code `{}`", c.syntax().text())
387 }
388 }
389 }
390
391 /// We want to allow the records to match in any order, so we have special matching logic for
392 /// them.
393 fn attempt_match_record_field_list(
394 &self,
395 phase: &mut Phase,
396 pattern: &SyntaxNode,
397 code: &SyntaxNode,
398 ) -> Result<(), MatchFailed> {
399 // Build a map keyed by field name.
400 let mut fields_by_name = FxHashMap::default();
401 for child in code.children() {
402 if let Some(record) = ast::RecordExprField::cast(child.clone()) {
403 if let Some(name) = record.field_name() {
404 fields_by_name.insert(name.text().clone(), child.clone());
405 }
406 }
407 }
408 for p in pattern.children_with_tokens() {
409 if let SyntaxElement::Node(p) = p {
410 if let Some(name_element) = p.first_child_or_token() {
411 if self.get_placeholder(&name_element).is_some() {
412 // If the pattern is using placeholders for field names then order
413 // independence doesn't make sense. Fall back to regular ordered
414 // matching.
415 return self.attempt_match_node_children(phase, pattern, code);
416 }
417 if let Some(ident) = only_ident(name_element) {
418 let code_record = fields_by_name.remove(ident.text()).ok_or_else(|| {
419 match_error!(
420 "Placeholder has record field '{}', but code doesn't",
421 ident
422 )
423 })?;
424 self.attempt_match_node(phase, &p, &code_record)?;
425 }
426 }
427 }
428 }
429 if let Some(unmatched_fields) = fields_by_name.keys().next() {
430 fail_match!(
431 "{} field(s) of a record literal failed to match, starting with {}",
432 fields_by_name.len(),
433 unmatched_fields
434 );
435 }
436 Ok(())
437 }
438
439 /// Outside of token trees, a placeholder can only match a single AST node, whereas in a token
440 /// tree it can match a sequence of tokens. Note, that this code will only be used when the
441 /// pattern matches the macro invocation. For matches within the macro call, we'll already have
442 /// expanded the macro.
443 fn attempt_match_token_tree(
444 &self,
445 phase: &mut Phase,
446 pattern: &SyntaxNode,
447 code: &ra_syntax::SyntaxNode,
448 ) -> Result<(), MatchFailed> {
449 let mut pattern = PatternIterator::new(pattern).peekable();
450 let mut children = code.children_with_tokens();
451 while let Some(child) = children.next() {
452 if let Some(placeholder) = pattern.peek().and_then(|p| self.get_placeholder(p)) {
453 pattern.next();
454 let next_pattern_token = pattern
455 .peek()
456 .and_then(|p| match p {
457 SyntaxElement::Token(t) => Some(t.clone()),
458 SyntaxElement::Node(n) => n.first_token(),
459 })
460 .map(|p| p.text().to_string());
461 let first_matched_token = child.clone();
462 let mut last_matched_token = child;
463 // Read code tokens util we reach one equal to the next token from our pattern
464 // or we reach the end of the token tree.
465 while let Some(next) = children.next() {
466 match &next {
467 SyntaxElement::Token(t) => {
468 if Some(t.to_string()) == next_pattern_token {
469 pattern.next();
470 break;
471 }
472 }
473 SyntaxElement::Node(n) => {
474 if let Some(first_token) = n.first_token() {
475 if Some(first_token.to_string()) == next_pattern_token {
476 if let Some(SyntaxElement::Node(p)) = pattern.next() {
477 // We have a subtree that starts with the next token in our pattern.
478 self.attempt_match_token_tree(phase, &p, &n)?;
479 break;
480 }
481 }
482 }
483 }
484 };
485 last_matched_token = next;
486 }
487 if let Phase::Second(match_out) = phase {
488 match_out.placeholder_values.insert(
489 Var(placeholder.ident.to_string()),
490 PlaceholderMatch::from_range(FileRange {
491 file_id: self.sema.original_range(code).file_id,
492 range: first_matched_token
493 .text_range()
494 .cover(last_matched_token.text_range()),
495 }),
496 );
497 }
498 continue;
499 }
500 // Match literal (non-placeholder) tokens.
501 match child {
502 SyntaxElement::Token(token) => {
503 self.attempt_match_token(phase, &mut pattern, &token)?;
504 }
505 SyntaxElement::Node(node) => match pattern.next() {
506 Some(SyntaxElement::Node(p)) => {
507 self.attempt_match_token_tree(phase, &p, &node)?;
508 }
509 Some(SyntaxElement::Token(p)) => fail_match!(
510 "Pattern has token '{}', code has subtree '{}'",
511 p.text(),
512 node.text()
513 ),
514 None => fail_match!("Pattern has nothing, code has '{}'", node.text()),
515 },
516 }
517 }
518 if let Some(p) = pattern.next() {
519 fail_match!("Reached end of token tree in code, but pattern still has {:?}", p);
520 }
521 Ok(())
522 }
523
524 fn attempt_match_ufcs(
525 &self,
526 phase: &mut Phase,
527 pattern: &ast::CallExpr,
528 code: &ast::MethodCallExpr,
529 pattern_function: hir::Function,
530 ) -> Result<(), MatchFailed> {
531 use ast::ArgListOwner;
532 let code_resolved_function = self
533 .sema
534 .resolve_method_call(code)
535 .ok_or_else(|| match_error!("Failed to resolve method call"))?;
536 if pattern_function != code_resolved_function {
537 fail_match!("Method call resolved to a different function");
538 }
539 // Check arguments.
540 let mut pattern_args = pattern
541 .arg_list()
542 .ok_or_else(|| match_error!("Pattern function call has no args"))?
543 .args();
544 self.attempt_match_opt(phase, pattern_args.next(), code.expr())?;
545 let mut code_args =
546 code.arg_list().ok_or_else(|| match_error!("Code method call has no args"))?.args();
547 loop {
548 match (pattern_args.next(), code_args.next()) {
549 (None, None) => return Ok(()),
550 (p, c) => self.attempt_match_opt(phase, p, c)?,
551 }
552 }
553 }
554
555 fn get_placeholder(&self, element: &SyntaxElement) -> Option<&Placeholder> {
556 only_ident(element.clone()).and_then(|ident| self.rule.get_placeholder(&ident))
557 }
558}
559
560impl Match {
561 fn render_template_paths(
562 &mut self,
563 template: &ResolvedPattern,
564 sema: &Semantics<ra_ide_db::RootDatabase>,
565 ) -> Result<(), MatchFailed> {
566 let module = sema
567 .scope(&self.matched_node)
568 .module()
569 .ok_or_else(|| match_error!("Matched node isn't in a module"))?;
570 for (path, resolved_path) in &template.resolved_paths {
571 if let hir::PathResolution::Def(module_def) = resolved_path.resolution {
572 let mod_path = module.find_use_path(sema.db, module_def).ok_or_else(|| {
573 match_error!("Failed to render template path `{}` at match location")
574 })?;
575 self.rendered_template_paths.insert(path.clone(), mod_path);
576 }
577 }
578 Ok(())
579 }
580}
581
582impl Phase<'_> {
583 fn next_non_trivial(&mut self, code_it: &mut SyntaxElementChildren) -> Option<SyntaxElement> {
584 loop {
585 let c = code_it.next();
586 if let Some(SyntaxElement::Token(t)) = &c {
587 self.record_ignored_comments(t);
588 if t.kind().is_trivia() {
589 continue;
590 }
591 }
592 return c;
593 }
594 }
595
596 fn record_ignored_comments(&mut self, token: &SyntaxToken) {
597 if token.kind() == SyntaxKind::COMMENT {
598 if let Phase::Second(match_out) = self {
599 if let Some(comment) = ast::Comment::cast(token.clone()) {
600 match_out.ignored_comments.push(comment);
601 }
602 }
603 }
604 }
605}
606
607fn is_closing_token(kind: SyntaxKind) -> bool {
608 kind == SyntaxKind::R_PAREN || kind == SyntaxKind::R_CURLY || kind == SyntaxKind::R_BRACK
609}
610
611pub(crate) fn record_match_fails_reasons_scope<F, T>(debug_active: bool, f: F) -> T
612where
613 F: Fn() -> T,
614{
615 RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(debug_active));
616 let res = f();
617 RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(false));
618 res
619}
620
621// For performance reasons, we don't want to record the reason why every match fails, only the bit
622// of code that the user indicated they thought would match. We use a thread local to indicate when
623// we are trying to match that bit of code. This saves us having to pass a boolean into all the bits
624// of code that can make the decision to not match.
625thread_local! {
626 pub static RECORDING_MATCH_FAIL_REASONS: Cell<bool> = Cell::new(false);
627}
628
629fn recording_match_fail_reasons() -> bool {
630 RECORDING_MATCH_FAIL_REASONS.with(|c| c.get())
631}
632
633impl PlaceholderMatch {
634 fn new(node: &SyntaxNode, range: FileRange) -> Self {
635 Self { node: Some(node.clone()), range, inner_matches: SsrMatches::default() }
636 }
637
638 fn from_range(range: FileRange) -> Self {
639 Self { node: None, range, inner_matches: SsrMatches::default() }
640 }
641}
642
643impl NodeKind {
644 fn matches(&self, node: &SyntaxNode) -> Result<(), MatchFailed> {
645 let ok = match self {
646 Self::Literal => {
647 mark::hit!(literal_constraint);
648 ast::Literal::can_cast(node.kind())
649 }
650 };
651 if !ok {
652 fail_match!("Code '{}' isn't of kind {:?}", node.text(), self);
653 }
654 Ok(())
655 }
656}
657
658// If `node` contains nothing but an ident then return it, otherwise return None.
659fn only_ident(element: SyntaxElement) -> Option<SyntaxToken> {
660 match element {
661 SyntaxElement::Token(t) => {
662 if t.kind() == SyntaxKind::IDENT {
663 return Some(t);
664 }
665 }
666 SyntaxElement::Node(n) => {
667 let mut children = n.children_with_tokens();
668 if let (Some(only_child), None) = (children.next(), children.next()) {
669 return only_ident(only_child);
670 }
671 }
672 }
673 None
674}
675
676struct PatternIterator {
677 iter: SyntaxElementChildren,
678}
679
680impl Iterator for PatternIterator {
681 type Item = SyntaxElement;
682
683 fn next(&mut self) -> Option<SyntaxElement> {
684 while let Some(element) = self.iter.next() {
685 if !element.kind().is_trivia() {
686 return Some(element);
687 }
688 }
689 None
690 }
691}
692
693impl PatternIterator {
694 fn new(parent: &SyntaxNode) -> Self {
695 Self { iter: parent.children_with_tokens() }
696 }
697}
698
699#[cfg(test)]
700mod tests {
701 use super::*;
702 use crate::{MatchFinder, SsrRule};
703
704 #[test]
705 fn parse_match_replace() {
706 let rule: SsrRule = "foo($x) ==>> bar($x)".parse().unwrap();
707 let input = "fn foo() {} fn bar() {} fn main() { foo(1+2); }";
708
709 let (db, position, selections) = crate::tests::single_file(input);
710 let mut match_finder = MatchFinder::in_context(&db, position, selections);
711 match_finder.add_rule(rule).unwrap();
712 let matches = match_finder.matches();
713 assert_eq!(matches.matches.len(), 1);
714 assert_eq!(matches.matches[0].matched_node.text(), "foo(1+2)");
715 assert_eq!(matches.matches[0].placeholder_values.len(), 1);
716 assert_eq!(
717 matches.matches[0].placeholder_values[&Var("x".to_string())]
718 .node
719 .as_ref()
720 .unwrap()
721 .text(),
722 "1+2"
723 );
724
725 let edits = match_finder.edits();
726 assert_eq!(edits.len(), 1);
727 let edit = &edits[0];
728 let mut after = input.to_string();
729 edit.edit.apply(&mut after);
730 assert_eq!(after, "fn foo() {} fn bar() {} fn main() { bar(1+2); }");
731 }
732}
diff --git a/crates/ra_ssr/src/nester.rs b/crates/ra_ssr/src/nester.rs
deleted file mode 100644
index b3e20579b..000000000
--- a/crates/ra_ssr/src/nester.rs
+++ /dev/null
@@ -1,98 +0,0 @@
1//! Converts a flat collection of matches into a nested form suitable for replacement. When there
2//! are multiple matches for a node, or that overlap, priority is given to the earlier rule. Nested
3//! matches are only permitted if the inner match is contained entirely within a placeholder of an
4//! outer match.
5//!
6//! For example, if our search pattern is `foo(foo($a))` and the code had `foo(foo(foo(foo(42))))`,
7//! then we'll get 3 matches, however only the outermost and innermost matches can be accepted. The
8//! middle match would take the second `foo` from the outer match.
9
10use crate::{Match, SsrMatches};
11use ra_syntax::SyntaxNode;
12use rustc_hash::FxHashMap;
13
14pub(crate) fn nest_and_remove_collisions(
15 mut matches: Vec<Match>,
16 sema: &hir::Semantics<ra_ide_db::RootDatabase>,
17) -> SsrMatches {
18 // We sort the matches by depth then by rule index. Sorting by depth means that by the time we
19 // see a match, any parent matches or conflicting matches will have already been seen. Sorting
20 // by rule_index means that if there are two matches for the same node, the rule added first
21 // will take precedence.
22 matches.sort_by(|a, b| a.depth.cmp(&b.depth).then_with(|| a.rule_index.cmp(&b.rule_index)));
23 let mut collector = MatchCollector::default();
24 for m in matches {
25 collector.add_match(m, sema);
26 }
27 collector.into()
28}
29
30#[derive(Default)]
31struct MatchCollector {
32 matches_by_node: FxHashMap<SyntaxNode, Match>,
33}
34
35impl MatchCollector {
36 /// Attempts to add `m` to matches. If it conflicts with an existing match, it is discarded. If
37 /// it is entirely within the a placeholder of an existing match, then it is added as a child
38 /// match of the existing match.
39 fn add_match(&mut self, m: Match, sema: &hir::Semantics<ra_ide_db::RootDatabase>) {
40 let matched_node = m.matched_node.clone();
41 if let Some(existing) = self.matches_by_node.get_mut(&matched_node) {
42 try_add_sub_match(m, existing, sema);
43 return;
44 }
45 for ancestor in sema.ancestors_with_macros(m.matched_node.clone()) {
46 if let Some(existing) = self.matches_by_node.get_mut(&ancestor) {
47 try_add_sub_match(m, existing, sema);
48 return;
49 }
50 }
51 self.matches_by_node.insert(matched_node, m);
52 }
53}
54
55/// Attempts to add `m` as a sub-match of `existing`.
56fn try_add_sub_match(
57 m: Match,
58 existing: &mut Match,
59 sema: &hir::Semantics<ra_ide_db::RootDatabase>,
60) {
61 for p in existing.placeholder_values.values_mut() {
62 // Note, no need to check if p.range.file is equal to m.range.file, since we
63 // already know we're within `existing`.
64 if p.range.range.contains_range(m.range.range) {
65 // Convert the inner matches in `p` into a temporary MatchCollector. When
66 // we're done, we then convert it back into an SsrMatches. If we expected
67 // lots of inner matches, it might be worthwhile keeping a MatchCollector
68 // around for each placeholder match. However we expect most placeholder
69 // will have 0 and a few will have 1. More than that should hopefully be
70 // exceptional.
71 let mut collector = MatchCollector::default();
72 for m in std::mem::replace(&mut p.inner_matches.matches, Vec::new()) {
73 collector.matches_by_node.insert(m.matched_node.clone(), m);
74 }
75 collector.add_match(m, sema);
76 p.inner_matches = collector.into();
77 break;
78 }
79 }
80}
81
82impl From<MatchCollector> for SsrMatches {
83 fn from(mut match_collector: MatchCollector) -> Self {
84 let mut matches = SsrMatches::default();
85 for (_, m) in match_collector.matches_by_node.drain() {
86 matches.matches.push(m);
87 }
88 matches.matches.sort_by(|a, b| {
89 // Order matches by file_id then by start range. This should be sufficient since ranges
90 // shouldn't be overlapping.
91 a.range
92 .file_id
93 .cmp(&b.range.file_id)
94 .then_with(|| a.range.range.start().cmp(&b.range.range.start()))
95 });
96 matches
97 }
98}
diff --git a/crates/ra_ssr/src/parsing.rs b/crates/ra_ssr/src/parsing.rs
deleted file mode 100644
index f455eb5b7..000000000
--- a/crates/ra_ssr/src/parsing.rs
+++ /dev/null
@@ -1,389 +0,0 @@
1//! This file contains code for parsing SSR rules, which look something like `foo($a) ==>> bar($b)`.
2//! We first split everything before and after the separator `==>>`. Next, both the search pattern
3//! and the replacement template get tokenized by the Rust tokenizer. Tokens are then searched for
4//! placeholders, which start with `$`. For replacement templates, this is the final form. For
5//! search patterns, we go further and parse the pattern as each kind of thing that we can match.
6//! e.g. expressions, type references etc.
7
8use crate::errors::bail;
9use crate::{SsrError, SsrPattern, SsrRule};
10use ra_syntax::{ast, AstNode, SmolStr, SyntaxKind, SyntaxNode, T};
11use rustc_hash::{FxHashMap, FxHashSet};
12use std::str::FromStr;
13use test_utils::mark;
14
15#[derive(Debug)]
16pub(crate) struct ParsedRule {
17 pub(crate) placeholders_by_stand_in: FxHashMap<SmolStr, Placeholder>,
18 pub(crate) pattern: SyntaxNode,
19 pub(crate) template: Option<SyntaxNode>,
20}
21
22#[derive(Debug)]
23pub(crate) struct RawPattern {
24 tokens: Vec<PatternElement>,
25}
26
27// Part of a search or replace pattern.
28#[derive(Clone, Debug, PartialEq, Eq)]
29pub(crate) enum PatternElement {
30 Token(Token),
31 Placeholder(Placeholder),
32}
33
34#[derive(Clone, Debug, PartialEq, Eq)]
35pub(crate) struct Placeholder {
36 /// The name of this placeholder. e.g. for "$a", this would be "a"
37 pub(crate) ident: SmolStr,
38 /// A unique name used in place of this placeholder when we parse the pattern as Rust code.
39 stand_in_name: String,
40 pub(crate) constraints: Vec<Constraint>,
41}
42
43#[derive(Clone, Debug, PartialEq, Eq)]
44pub(crate) enum Constraint {
45 Kind(NodeKind),
46 Not(Box<Constraint>),
47}
48
49#[derive(Clone, Debug, PartialEq, Eq)]
50pub(crate) enum NodeKind {
51 Literal,
52}
53
54#[derive(Debug, Clone, PartialEq, Eq)]
55pub(crate) struct Token {
56 kind: SyntaxKind,
57 pub(crate) text: SmolStr,
58}
59
60impl ParsedRule {
61 fn new(
62 pattern: &RawPattern,
63 template: Option<&RawPattern>,
64 ) -> Result<Vec<ParsedRule>, SsrError> {
65 let raw_pattern = pattern.as_rust_code();
66 let raw_template = template.map(|t| t.as_rust_code());
67 let raw_template = raw_template.as_ref().map(|s| s.as_str());
68 let mut builder = RuleBuilder {
69 placeholders_by_stand_in: pattern.placeholders_by_stand_in(),
70 rules: Vec::new(),
71 };
72 builder.try_add(ast::Expr::parse(&raw_pattern), raw_template.map(ast::Expr::parse));
73 builder.try_add(ast::Type::parse(&raw_pattern), raw_template.map(ast::Type::parse));
74 builder.try_add(ast::Item::parse(&raw_pattern), raw_template.map(ast::Item::parse));
75 builder.try_add(ast::Path::parse(&raw_pattern), raw_template.map(ast::Path::parse));
76 builder.try_add(ast::Pat::parse(&raw_pattern), raw_template.map(ast::Pat::parse));
77 builder.build()
78 }
79}
80
81struct RuleBuilder {
82 placeholders_by_stand_in: FxHashMap<SmolStr, Placeholder>,
83 rules: Vec<ParsedRule>,
84}
85
86impl RuleBuilder {
87 fn try_add<T: AstNode>(&mut self, pattern: Result<T, ()>, template: Option<Result<T, ()>>) {
88 match (pattern, template) {
89 (Ok(pattern), Some(Ok(template))) => self.rules.push(ParsedRule {
90 placeholders_by_stand_in: self.placeholders_by_stand_in.clone(),
91 pattern: pattern.syntax().clone(),
92 template: Some(template.syntax().clone()),
93 }),
94 (Ok(pattern), None) => self.rules.push(ParsedRule {
95 placeholders_by_stand_in: self.placeholders_by_stand_in.clone(),
96 pattern: pattern.syntax().clone(),
97 template: None,
98 }),
99 _ => {}
100 }
101 }
102
103 fn build(mut self) -> Result<Vec<ParsedRule>, SsrError> {
104 if self.rules.is_empty() {
105 bail!("Not a valid Rust expression, type, item, path or pattern");
106 }
107 // If any rules contain paths, then we reject any rules that don't contain paths. Allowing a
108 // mix leads to strange semantics, since the path-based rules only match things where the
109 // path refers to semantically the same thing, whereas the non-path-based rules could match
110 // anything. Specifically, if we have a rule like `foo ==>> bar` we only want to match the
111 // `foo` that is in the current scope, not any `foo`. However "foo" can be parsed as a
112 // pattern (IDENT_PAT -> NAME -> IDENT). Allowing such a rule through would result in
113 // renaming everything called `foo` to `bar`. It'd also be slow, since without a path, we'd
114 // have to use the slow-scan search mechanism.
115 if self.rules.iter().any(|rule| contains_path(&rule.pattern)) {
116 let old_len = self.rules.len();
117 self.rules.retain(|rule| contains_path(&rule.pattern));
118 if self.rules.len() < old_len {
119 mark::hit!(pattern_is_a_single_segment_path);
120 }
121 }
122 Ok(self.rules)
123 }
124}
125
126/// Returns whether there are any paths in `node`.
127fn contains_path(node: &SyntaxNode) -> bool {
128 node.kind() == SyntaxKind::PATH
129 || node.descendants().any(|node| node.kind() == SyntaxKind::PATH)
130}
131
132impl FromStr for SsrRule {
133 type Err = SsrError;
134
135 fn from_str(query: &str) -> Result<SsrRule, SsrError> {
136 let mut it = query.split("==>>");
137 let pattern = it.next().expect("at least empty string").trim();
138 let template = it
139 .next()
140 .ok_or_else(|| SsrError("Cannot find delimiter `==>>`".into()))?
141 .trim()
142 .to_string();
143 if it.next().is_some() {
144 return Err(SsrError("More than one delimiter found".into()));
145 }
146 let raw_pattern = pattern.parse()?;
147 let raw_template = template.parse()?;
148 let parsed_rules = ParsedRule::new(&raw_pattern, Some(&raw_template))?;
149 let rule = SsrRule { pattern: raw_pattern, template: raw_template, parsed_rules };
150 validate_rule(&rule)?;
151 Ok(rule)
152 }
153}
154
155impl FromStr for RawPattern {
156 type Err = SsrError;
157
158 fn from_str(pattern_str: &str) -> Result<RawPattern, SsrError> {
159 Ok(RawPattern { tokens: parse_pattern(pattern_str)? })
160 }
161}
162
163impl RawPattern {
164 /// Returns this search pattern as Rust source code that we can feed to the Rust parser.
165 fn as_rust_code(&self) -> String {
166 let mut res = String::new();
167 for t in &self.tokens {
168 res.push_str(match t {
169 PatternElement::Token(token) => token.text.as_str(),
170 PatternElement::Placeholder(placeholder) => placeholder.stand_in_name.as_str(),
171 });
172 }
173 res
174 }
175
176 pub(crate) fn placeholders_by_stand_in(&self) -> FxHashMap<SmolStr, Placeholder> {
177 let mut res = FxHashMap::default();
178 for t in &self.tokens {
179 if let PatternElement::Placeholder(placeholder) = t {
180 res.insert(SmolStr::new(placeholder.stand_in_name.clone()), placeholder.clone());
181 }
182 }
183 res
184 }
185}
186
187impl FromStr for SsrPattern {
188 type Err = SsrError;
189
190 fn from_str(pattern_str: &str) -> Result<SsrPattern, SsrError> {
191 let raw_pattern = pattern_str.parse()?;
192 let parsed_rules = ParsedRule::new(&raw_pattern, None)?;
193 Ok(SsrPattern { raw: raw_pattern, parsed_rules })
194 }
195}
196
197/// Returns `pattern_str`, parsed as a search or replace pattern. If `remove_whitespace` is true,
198/// then any whitespace tokens will be removed, which we do for the search pattern, but not for the
199/// replace pattern.
200fn parse_pattern(pattern_str: &str) -> Result<Vec<PatternElement>, SsrError> {
201 let mut res = Vec::new();
202 let mut placeholder_names = FxHashSet::default();
203 let mut tokens = tokenize(pattern_str)?.into_iter();
204 while let Some(token) = tokens.next() {
205 if token.kind == T![$] {
206 let placeholder = parse_placeholder(&mut tokens)?;
207 if !placeholder_names.insert(placeholder.ident.clone()) {
208 bail!("Name `{}` repeats more than once", placeholder.ident);
209 }
210 res.push(PatternElement::Placeholder(placeholder));
211 } else {
212 res.push(PatternElement::Token(token));
213 }
214 }
215 Ok(res)
216}
217
218/// Checks for errors in a rule. e.g. the replace pattern referencing placeholders that the search
219/// pattern didn't define.
220fn validate_rule(rule: &SsrRule) -> Result<(), SsrError> {
221 let mut defined_placeholders = FxHashSet::default();
222 for p in &rule.pattern.tokens {
223 if let PatternElement::Placeholder(placeholder) = p {
224 defined_placeholders.insert(&placeholder.ident);
225 }
226 }
227 let mut undefined = Vec::new();
228 for p in &rule.template.tokens {
229 if let PatternElement::Placeholder(placeholder) = p {
230 if !defined_placeholders.contains(&placeholder.ident) {
231 undefined.push(format!("${}", placeholder.ident));
232 }
233 if !placeholder.constraints.is_empty() {
234 bail!("Replacement placeholders cannot have constraints");
235 }
236 }
237 }
238 if !undefined.is_empty() {
239 bail!("Replacement contains undefined placeholders: {}", undefined.join(", "));
240 }
241 Ok(())
242}
243
244fn tokenize(source: &str) -> Result<Vec<Token>, SsrError> {
245 let mut start = 0;
246 let (raw_tokens, errors) = ra_syntax::tokenize(source);
247 if let Some(first_error) = errors.first() {
248 bail!("Failed to parse pattern: {}", first_error);
249 }
250 let mut tokens: Vec<Token> = Vec::new();
251 for raw_token in raw_tokens {
252 let token_len = usize::from(raw_token.len);
253 tokens.push(Token {
254 kind: raw_token.kind,
255 text: SmolStr::new(&source[start..start + token_len]),
256 });
257 start += token_len;
258 }
259 Ok(tokens)
260}
261
262fn parse_placeholder(tokens: &mut std::vec::IntoIter<Token>) -> Result<Placeholder, SsrError> {
263 let mut name = None;
264 let mut constraints = Vec::new();
265 if let Some(token) = tokens.next() {
266 match token.kind {
267 SyntaxKind::IDENT => {
268 name = Some(token.text);
269 }
270 T!['{'] => {
271 let token =
272 tokens.next().ok_or_else(|| SsrError::new("Unexpected end of placeholder"))?;
273 if token.kind == SyntaxKind::IDENT {
274 name = Some(token.text);
275 }
276 loop {
277 let token = tokens
278 .next()
279 .ok_or_else(|| SsrError::new("Placeholder is missing closing brace '}'"))?;
280 match token.kind {
281 T![:] => {
282 constraints.push(parse_constraint(tokens)?);
283 }
284 T!['}'] => break,
285 _ => bail!("Unexpected token while parsing placeholder: '{}'", token.text),
286 }
287 }
288 }
289 _ => {
290 bail!("Placeholders should either be $name or ${{name:constraints}}");
291 }
292 }
293 }
294 let name = name.ok_or_else(|| SsrError::new("Placeholder ($) with no name"))?;
295 Ok(Placeholder::new(name, constraints))
296}
297
298fn parse_constraint(tokens: &mut std::vec::IntoIter<Token>) -> Result<Constraint, SsrError> {
299 let constraint_type = tokens
300 .next()
301 .ok_or_else(|| SsrError::new("Found end of placeholder while looking for a constraint"))?
302 .text
303 .to_string();
304 match constraint_type.as_str() {
305 "kind" => {
306 expect_token(tokens, "(")?;
307 let t = tokens.next().ok_or_else(|| {
308 SsrError::new("Unexpected end of constraint while looking for kind")
309 })?;
310 if t.kind != SyntaxKind::IDENT {
311 bail!("Expected ident, found {:?} while parsing kind constraint", t.kind);
312 }
313 expect_token(tokens, ")")?;
314 Ok(Constraint::Kind(NodeKind::from(&t.text)?))
315 }
316 "not" => {
317 expect_token(tokens, "(")?;
318 let sub = parse_constraint(tokens)?;
319 expect_token(tokens, ")")?;
320 Ok(Constraint::Not(Box::new(sub)))
321 }
322 x => bail!("Unsupported constraint type '{}'", x),
323 }
324}
325
326fn expect_token(tokens: &mut std::vec::IntoIter<Token>, expected: &str) -> Result<(), SsrError> {
327 if let Some(t) = tokens.next() {
328 if t.text == expected {
329 return Ok(());
330 }
331 bail!("Expected {} found {}", expected, t.text);
332 }
333 bail!("Expected {} found end of stream", expected);
334}
335
336impl NodeKind {
337 fn from(name: &SmolStr) -> Result<NodeKind, SsrError> {
338 Ok(match name.as_str() {
339 "literal" => NodeKind::Literal,
340 _ => bail!("Unknown node kind '{}'", name),
341 })
342 }
343}
344
345impl Placeholder {
346 fn new(name: SmolStr, constraints: Vec<Constraint>) -> Self {
347 Self { stand_in_name: format!("__placeholder_{}", name), constraints, ident: name }
348 }
349}
350
351#[cfg(test)]
352mod tests {
353 use super::*;
354
355 #[test]
356 fn parser_happy_case() {
357 fn token(kind: SyntaxKind, text: &str) -> PatternElement {
358 PatternElement::Token(Token { kind, text: SmolStr::new(text) })
359 }
360 fn placeholder(name: &str) -> PatternElement {
361 PatternElement::Placeholder(Placeholder::new(SmolStr::new(name), Vec::new()))
362 }
363 let result: SsrRule = "foo($a, $b) ==>> bar($b, $a)".parse().unwrap();
364 assert_eq!(
365 result.pattern.tokens,
366 vec![
367 token(SyntaxKind::IDENT, "foo"),
368 token(T!['('], "("),
369 placeholder("a"),
370 token(T![,], ","),
371 token(SyntaxKind::WHITESPACE, " "),
372 placeholder("b"),
373 token(T![')'], ")"),
374 ]
375 );
376 assert_eq!(
377 result.template.tokens,
378 vec![
379 token(SyntaxKind::IDENT, "bar"),
380 token(T!['('], "("),
381 placeholder("b"),
382 token(T![,], ","),
383 token(SyntaxKind::WHITESPACE, " "),
384 placeholder("a"),
385 token(T![')'], ")"),
386 ]
387 );
388 }
389}
diff --git a/crates/ra_ssr/src/replacing.rs b/crates/ra_ssr/src/replacing.rs
deleted file mode 100644
index 0943244ff..000000000
--- a/crates/ra_ssr/src/replacing.rs
+++ /dev/null
@@ -1,194 +0,0 @@
1//! Code for applying replacement templates for matches that have previously been found.
2
3use crate::matching::Var;
4use crate::{resolving::ResolvedRule, Match, SsrMatches};
5use ra_syntax::ast::{self, AstToken};
6use ra_syntax::{SyntaxElement, SyntaxKind, SyntaxNode, SyntaxToken, TextRange, TextSize};
7use ra_text_edit::TextEdit;
8use rustc_hash::{FxHashMap, FxHashSet};
9
10/// Returns a text edit that will replace each match in `matches` with its corresponding replacement
11/// template. Placeholders in the template will have been substituted with whatever they matched to
12/// in the original code.
13pub(crate) fn matches_to_edit(
14 matches: &SsrMatches,
15 file_src: &str,
16 rules: &[ResolvedRule],
17) -> TextEdit {
18 matches_to_edit_at_offset(matches, file_src, 0.into(), rules)
19}
20
21fn matches_to_edit_at_offset(
22 matches: &SsrMatches,
23 file_src: &str,
24 relative_start: TextSize,
25 rules: &[ResolvedRule],
26) -> TextEdit {
27 let mut edit_builder = ra_text_edit::TextEditBuilder::default();
28 for m in &matches.matches {
29 edit_builder.replace(
30 m.range.range.checked_sub(relative_start).unwrap(),
31 render_replace(m, file_src, rules),
32 );
33 }
34 edit_builder.finish()
35}
36
37struct ReplacementRenderer<'a> {
38 match_info: &'a Match,
39 file_src: &'a str,
40 rules: &'a [ResolvedRule],
41 rule: &'a ResolvedRule,
42 out: String,
43 // Map from a range within `out` to a token in `template` that represents a placeholder. This is
44 // used to validate that the generated source code doesn't split any placeholder expansions (see
45 // below).
46 placeholder_tokens_by_range: FxHashMap<TextRange, SyntaxToken>,
47 // Which placeholder tokens need to be wrapped in parenthesis in order to ensure that when `out`
48 // is parsed, placeholders don't get split. e.g. if a template of `$a.to_string()` results in `1
49 // + 2.to_string()` then the placeholder value `1 + 2` was split and needs parenthesis.
50 placeholder_tokens_requiring_parenthesis: FxHashSet<SyntaxToken>,
51}
52
53fn render_replace(match_info: &Match, file_src: &str, rules: &[ResolvedRule]) -> String {
54 let rule = &rules[match_info.rule_index];
55 let template = rule
56 .template
57 .as_ref()
58 .expect("You called MatchFinder::edits after calling MatchFinder::add_search_pattern");
59 let mut renderer = ReplacementRenderer {
60 match_info,
61 file_src,
62 rules,
63 rule,
64 out: String::new(),
65 placeholder_tokens_requiring_parenthesis: FxHashSet::default(),
66 placeholder_tokens_by_range: FxHashMap::default(),
67 };
68 renderer.render_node(&template.node);
69 renderer.maybe_rerender_with_extra_parenthesis(&template.node);
70 for comment in &match_info.ignored_comments {
71 renderer.out.push_str(&comment.syntax().to_string());
72 }
73 renderer.out
74}
75
76impl ReplacementRenderer<'_> {
77 fn render_node_children(&mut self, node: &SyntaxNode) {
78 for node_or_token in node.children_with_tokens() {
79 self.render_node_or_token(&node_or_token);
80 }
81 }
82
83 fn render_node_or_token(&mut self, node_or_token: &SyntaxElement) {
84 match node_or_token {
85 SyntaxElement::Token(token) => {
86 self.render_token(&token);
87 }
88 SyntaxElement::Node(child_node) => {
89 self.render_node(&child_node);
90 }
91 }
92 }
93
94 fn render_node(&mut self, node: &SyntaxNode) {
95 use ra_syntax::ast::AstNode;
96 if let Some(mod_path) = self.match_info.rendered_template_paths.get(&node) {
97 self.out.push_str(&mod_path.to_string());
98 // Emit everything except for the segment's name-ref, since we already effectively
99 // emitted that as part of `mod_path`.
100 if let Some(path) = ast::Path::cast(node.clone()) {
101 if let Some(segment) = path.segment() {
102 for node_or_token in segment.syntax().children_with_tokens() {
103 if node_or_token.kind() != SyntaxKind::NAME_REF {
104 self.render_node_or_token(&node_or_token);
105 }
106 }
107 }
108 }
109 } else {
110 self.render_node_children(&node);
111 }
112 }
113
114 fn render_token(&mut self, token: &SyntaxToken) {
115 if let Some(placeholder) = self.rule.get_placeholder(&token) {
116 if let Some(placeholder_value) =
117 self.match_info.placeholder_values.get(&Var(placeholder.ident.to_string()))
118 {
119 let range = &placeholder_value.range.range;
120 let mut matched_text =
121 self.file_src[usize::from(range.start())..usize::from(range.end())].to_owned();
122 let edit = matches_to_edit_at_offset(
123 &placeholder_value.inner_matches,
124 self.file_src,
125 range.start(),
126 self.rules,
127 );
128 let needs_parenthesis =
129 self.placeholder_tokens_requiring_parenthesis.contains(token);
130 edit.apply(&mut matched_text);
131 if needs_parenthesis {
132 self.out.push('(');
133 }
134 self.placeholder_tokens_by_range.insert(
135 TextRange::new(
136 TextSize::of(&self.out),
137 TextSize::of(&self.out) + TextSize::of(&matched_text),
138 ),
139 token.clone(),
140 );
141 self.out.push_str(&matched_text);
142 if needs_parenthesis {
143 self.out.push(')');
144 }
145 } else {
146 // We validated that all placeholder references were valid before we
147 // started, so this shouldn't happen.
148 panic!(
149 "Internal error: replacement referenced unknown placeholder {}",
150 placeholder.ident
151 );
152 }
153 } else {
154 self.out.push_str(token.text().as_str());
155 }
156 }
157
158 // Checks if the resulting code, when parsed doesn't split any placeholders due to different
159 // order of operations between the search pattern and the replacement template. If any do, then
160 // we rerender the template and wrap the problematic placeholders with parenthesis.
161 fn maybe_rerender_with_extra_parenthesis(&mut self, template: &SyntaxNode) {
162 if let Some(node) = parse_as_kind(&self.out, template.kind()) {
163 self.remove_node_ranges(node);
164 if self.placeholder_tokens_by_range.is_empty() {
165 return;
166 }
167 self.placeholder_tokens_requiring_parenthesis =
168 self.placeholder_tokens_by_range.values().cloned().collect();
169 self.out.clear();
170 self.render_node(template);
171 }
172 }
173
174 fn remove_node_ranges(&mut self, node: SyntaxNode) {
175 self.placeholder_tokens_by_range.remove(&node.text_range());
176 for child in node.children() {
177 self.remove_node_ranges(child);
178 }
179 }
180}
181
182fn parse_as_kind(code: &str, kind: SyntaxKind) -> Option<SyntaxNode> {
183 use ra_syntax::ast::AstNode;
184 if ast::Expr::can_cast(kind) {
185 if let Ok(expr) = ast::Expr::parse(code) {
186 return Some(expr.syntax().clone());
187 }
188 } else if ast::Item::can_cast(kind) {
189 if let Ok(item) = ast::Item::parse(code) {
190 return Some(item.syntax().clone());
191 }
192 }
193 None
194}
diff --git a/crates/ra_ssr/src/resolving.rs b/crates/ra_ssr/src/resolving.rs
deleted file mode 100644
index df60048eb..000000000
--- a/crates/ra_ssr/src/resolving.rs
+++ /dev/null
@@ -1,251 +0,0 @@
1//! This module is responsible for resolving paths within rules.
2
3use crate::errors::error;
4use crate::{parsing, SsrError};
5use parsing::Placeholder;
6use ra_db::FilePosition;
7use ra_syntax::{ast, SmolStr, SyntaxKind, SyntaxNode, SyntaxToken};
8use rustc_hash::{FxHashMap, FxHashSet};
9use test_utils::mark;
10
11pub(crate) struct ResolutionScope<'db> {
12 scope: hir::SemanticsScope<'db>,
13 hygiene: hir::Hygiene,
14 node: SyntaxNode,
15}
16
17pub(crate) struct ResolvedRule {
18 pub(crate) pattern: ResolvedPattern,
19 pub(crate) template: Option<ResolvedPattern>,
20 pub(crate) index: usize,
21}
22
23pub(crate) struct ResolvedPattern {
24 pub(crate) placeholders_by_stand_in: FxHashMap<SmolStr, parsing::Placeholder>,
25 pub(crate) node: SyntaxNode,
26 // Paths in `node` that we've resolved.
27 pub(crate) resolved_paths: FxHashMap<SyntaxNode, ResolvedPath>,
28 pub(crate) ufcs_function_calls: FxHashMap<SyntaxNode, hir::Function>,
29 pub(crate) contains_self: bool,
30}
31
32pub(crate) struct ResolvedPath {
33 pub(crate) resolution: hir::PathResolution,
34 /// The depth of the ast::Path that was resolved within the pattern.
35 pub(crate) depth: u32,
36}
37
38impl ResolvedRule {
39 pub(crate) fn new(
40 rule: parsing::ParsedRule,
41 resolution_scope: &ResolutionScope,
42 index: usize,
43 ) -> Result<ResolvedRule, SsrError> {
44 let resolver =
45 Resolver { resolution_scope, placeholders_by_stand_in: rule.placeholders_by_stand_in };
46 let resolved_template = if let Some(template) = rule.template {
47 Some(resolver.resolve_pattern_tree(template)?)
48 } else {
49 None
50 };
51 Ok(ResolvedRule {
52 pattern: resolver.resolve_pattern_tree(rule.pattern)?,
53 template: resolved_template,
54 index,
55 })
56 }
57
58 pub(crate) fn get_placeholder(&self, token: &SyntaxToken) -> Option<&Placeholder> {
59 if token.kind() != SyntaxKind::IDENT {
60 return None;
61 }
62 self.pattern.placeholders_by_stand_in.get(token.text())
63 }
64}
65
66struct Resolver<'a, 'db> {
67 resolution_scope: &'a ResolutionScope<'db>,
68 placeholders_by_stand_in: FxHashMap<SmolStr, parsing::Placeholder>,
69}
70
71impl Resolver<'_, '_> {
72 fn resolve_pattern_tree(&self, pattern: SyntaxNode) -> Result<ResolvedPattern, SsrError> {
73 use ra_syntax::{SyntaxElement, T};
74 let mut resolved_paths = FxHashMap::default();
75 self.resolve(pattern.clone(), 0, &mut resolved_paths)?;
76 let ufcs_function_calls = resolved_paths
77 .iter()
78 .filter_map(|(path_node, resolved)| {
79 if let Some(grandparent) = path_node.parent().and_then(|parent| parent.parent()) {
80 if grandparent.kind() == SyntaxKind::CALL_EXPR {
81 if let hir::PathResolution::AssocItem(hir::AssocItem::Function(function)) =
82 &resolved.resolution
83 {
84 return Some((grandparent, *function));
85 }
86 }
87 }
88 None
89 })
90 .collect();
91 let contains_self =
92 pattern.descendants_with_tokens().any(|node_or_token| match node_or_token {
93 SyntaxElement::Token(t) => t.kind() == T![self],
94 _ => false,
95 });
96 Ok(ResolvedPattern {
97 node: pattern,
98 resolved_paths,
99 placeholders_by_stand_in: self.placeholders_by_stand_in.clone(),
100 ufcs_function_calls,
101 contains_self,
102 })
103 }
104
105 fn resolve(
106 &self,
107 node: SyntaxNode,
108 depth: u32,
109 resolved_paths: &mut FxHashMap<SyntaxNode, ResolvedPath>,
110 ) -> Result<(), SsrError> {
111 use ra_syntax::ast::AstNode;
112 if let Some(path) = ast::Path::cast(node.clone()) {
113 if is_self(&path) {
114 // Self cannot be resolved like other paths.
115 return Ok(());
116 }
117 // Check if this is an appropriate place in the path to resolve. If the path is
118 // something like `a::B::<i32>::c` then we want to resolve `a::B`. If the path contains
119 // a placeholder. e.g. `a::$b::c` then we want to resolve `a`.
120 if !path_contains_type_arguments(path.qualifier())
121 && !self.path_contains_placeholder(&path)
122 {
123 let resolution = self
124 .resolution_scope
125 .resolve_path(&path)
126 .ok_or_else(|| error!("Failed to resolve path `{}`", node.text()))?;
127 resolved_paths.insert(node, ResolvedPath { resolution, depth });
128 return Ok(());
129 }
130 }
131 for node in node.children() {
132 self.resolve(node, depth + 1, resolved_paths)?;
133 }
134 Ok(())
135 }
136
137 /// Returns whether `path` contains a placeholder, but ignores any placeholders within type
138 /// arguments.
139 fn path_contains_placeholder(&self, path: &ast::Path) -> bool {
140 if let Some(segment) = path.segment() {
141 if let Some(name_ref) = segment.name_ref() {
142 if self.placeholders_by_stand_in.contains_key(name_ref.text()) {
143 return true;
144 }
145 }
146 }
147 if let Some(qualifier) = path.qualifier() {
148 return self.path_contains_placeholder(&qualifier);
149 }
150 false
151 }
152}
153
154impl<'db> ResolutionScope<'db> {
155 pub(crate) fn new(
156 sema: &hir::Semantics<'db, ra_ide_db::RootDatabase>,
157 resolve_context: FilePosition,
158 ) -> ResolutionScope<'db> {
159 use ra_syntax::ast::AstNode;
160 let file = sema.parse(resolve_context.file_id);
161 // Find a node at the requested position, falling back to the whole file.
162 let node = file
163 .syntax()
164 .token_at_offset(resolve_context.offset)
165 .left_biased()
166 .map(|token| token.parent())
167 .unwrap_or_else(|| file.syntax().clone());
168 let node = pick_node_for_resolution(node);
169 let scope = sema.scope(&node);
170 ResolutionScope {
171 scope,
172 hygiene: hir::Hygiene::new(sema.db, resolve_context.file_id.into()),
173 node,
174 }
175 }
176
177 /// Returns the function in which SSR was invoked, if any.
178 pub(crate) fn current_function(&self) -> Option<SyntaxNode> {
179 self.node.ancestors().find(|node| node.kind() == SyntaxKind::FN).map(|node| node.clone())
180 }
181
182 fn resolve_path(&self, path: &ast::Path) -> Option<hir::PathResolution> {
183 let hir_path = hir::Path::from_src(path.clone(), &self.hygiene)?;
184 // First try resolving the whole path. This will work for things like
185 // `std::collections::HashMap`, but will fail for things like
186 // `std::collections::HashMap::new`.
187 if let Some(resolution) = self.scope.resolve_hir_path(&hir_path) {
188 return Some(resolution);
189 }
190 // Resolution failed, try resolving the qualifier (e.g. `std::collections::HashMap` and if
191 // that succeeds, then iterate through the candidates on the resolved type with the provided
192 // name.
193 let resolved_qualifier = self.scope.resolve_hir_path_qualifier(&hir_path.qualifier()?)?;
194 if let hir::PathResolution::Def(hir::ModuleDef::Adt(adt)) = resolved_qualifier {
195 adt.ty(self.scope.db).iterate_path_candidates(
196 self.scope.db,
197 self.scope.module()?.krate(),
198 &FxHashSet::default(),
199 Some(hir_path.segments().last()?.name),
200 |_ty, assoc_item| Some(hir::PathResolution::AssocItem(assoc_item)),
201 )
202 } else {
203 None
204 }
205 }
206}
207
208fn is_self(path: &ast::Path) -> bool {
209 path.segment().map(|segment| segment.self_token().is_some()).unwrap_or(false)
210}
211
212/// Returns a suitable node for resolving paths in the current scope. If we create a scope based on
213/// a statement node, then we can't resolve local variables that were defined in the current scope
214/// (only in parent scopes). So we find another node, ideally a child of the statement where local
215/// variable resolution is permitted.
216fn pick_node_for_resolution(node: SyntaxNode) -> SyntaxNode {
217 match node.kind() {
218 SyntaxKind::EXPR_STMT => {
219 if let Some(n) = node.first_child() {
220 mark::hit!(cursor_after_semicolon);
221 return n;
222 }
223 }
224 SyntaxKind::LET_STMT | SyntaxKind::IDENT_PAT => {
225 if let Some(next) = node.next_sibling() {
226 return pick_node_for_resolution(next);
227 }
228 }
229 SyntaxKind::NAME => {
230 if let Some(parent) = node.parent() {
231 return pick_node_for_resolution(parent);
232 }
233 }
234 _ => {}
235 }
236 node
237}
238
239/// Returns whether `path` or any of its qualifiers contains type arguments.
240fn path_contains_type_arguments(path: Option<ast::Path>) -> bool {
241 if let Some(path) = path {
242 if let Some(segment) = path.segment() {
243 if segment.generic_arg_list().is_some() {
244 mark::hit!(type_arguments_within_path);
245 return true;
246 }
247 }
248 return path_contains_type_arguments(path.qualifier());
249 }
250 false
251}
diff --git a/crates/ra_ssr/src/search.rs b/crates/ra_ssr/src/search.rs
deleted file mode 100644
index 85ffa2ac2..000000000
--- a/crates/ra_ssr/src/search.rs
+++ /dev/null
@@ -1,282 +0,0 @@
1//! Searching for matches.
2
3use crate::{
4 matching,
5 resolving::{ResolvedPath, ResolvedPattern, ResolvedRule},
6 Match, MatchFinder,
7};
8use ra_db::{FileId, FileRange};
9use ra_ide_db::{
10 defs::Definition,
11 search::{Reference, SearchScope},
12};
13use ra_syntax::{ast, AstNode, SyntaxKind, SyntaxNode};
14use rustc_hash::FxHashSet;
15use test_utils::mark;
16
17/// A cache for the results of find_usages. This is for when we have multiple patterns that have the
18/// same path. e.g. if the pattern was `foo::Bar` that can parse as a path, an expression, a type
19/// and as a pattern. In each, the usages of `foo::Bar` are the same and we'd like to avoid finding
20/// them more than once.
21#[derive(Default)]
22pub(crate) struct UsageCache {
23 usages: Vec<(Definition, Vec<Reference>)>,
24}
25
26impl<'db> MatchFinder<'db> {
27 /// Adds all matches for `rule` to `matches_out`. Matches may overlap in ways that make
28 /// replacement impossible, so further processing is required in order to properly nest matches
29 /// and remove overlapping matches. This is done in the `nesting` module.
30 pub(crate) fn find_matches_for_rule(
31 &self,
32 rule: &ResolvedRule,
33 usage_cache: &mut UsageCache,
34 matches_out: &mut Vec<Match>,
35 ) {
36 if rule.pattern.contains_self {
37 // If the pattern contains `self` we restrict the scope of the search to just the
38 // current method. No other method can reference the same `self`. This makes the
39 // behavior of `self` consistent with other variables.
40 if let Some(current_function) = self.resolution_scope.current_function() {
41 self.slow_scan_node(&current_function, rule, &None, matches_out);
42 }
43 return;
44 }
45 if pick_path_for_usages(&rule.pattern).is_none() {
46 self.slow_scan(rule, matches_out);
47 return;
48 }
49 self.find_matches_for_pattern_tree(rule, &rule.pattern, usage_cache, matches_out);
50 }
51
52 fn find_matches_for_pattern_tree(
53 &self,
54 rule: &ResolvedRule,
55 pattern: &ResolvedPattern,
56 usage_cache: &mut UsageCache,
57 matches_out: &mut Vec<Match>,
58 ) {
59 if let Some(resolved_path) = pick_path_for_usages(pattern) {
60 let definition: Definition = resolved_path.resolution.clone().into();
61 for reference in self.find_usages(usage_cache, definition) {
62 if let Some(node_to_match) = self.find_node_to_match(resolved_path, reference) {
63 if !is_search_permitted_ancestors(&node_to_match) {
64 mark::hit!(use_declaration_with_braces);
65 continue;
66 }
67 self.try_add_match(rule, &node_to_match, &None, matches_out);
68 }
69 }
70 }
71 }
72
73 fn find_node_to_match(
74 &self,
75 resolved_path: &ResolvedPath,
76 reference: &Reference,
77 ) -> Option<SyntaxNode> {
78 let file = self.sema.parse(reference.file_range.file_id);
79 let depth = resolved_path.depth as usize;
80 let offset = reference.file_range.range.start();
81 if let Some(path) =
82 self.sema.find_node_at_offset_with_descend::<ast::Path>(file.syntax(), offset)
83 {
84 self.sema.ancestors_with_macros(path.syntax().clone()).skip(depth).next()
85 } else if let Some(path) =
86 self.sema.find_node_at_offset_with_descend::<ast::MethodCallExpr>(file.syntax(), offset)
87 {
88 // If the pattern contained a path and we found a reference to that path that wasn't
89 // itself a path, but was a method call, then we need to adjust how far up to try
90 // matching by how deep the path was within a CallExpr. The structure would have been
91 // CallExpr, PathExpr, Path - i.e. a depth offset of 2. We don't need to check if the
92 // path was part of a CallExpr because if it wasn't then all that will happen is we'll
93 // fail to match, which is the desired behavior.
94 const PATH_DEPTH_IN_CALL_EXPR: usize = 2;
95 if depth < PATH_DEPTH_IN_CALL_EXPR {
96 return None;
97 }
98 self.sema
99 .ancestors_with_macros(path.syntax().clone())
100 .skip(depth - PATH_DEPTH_IN_CALL_EXPR)
101 .next()
102 } else {
103 None
104 }
105 }
106
107 fn find_usages<'a>(
108 &self,
109 usage_cache: &'a mut UsageCache,
110 definition: Definition,
111 ) -> &'a [Reference] {
112 // Logically if a lookup succeeds we should just return it. Unfortunately returning it would
113 // extend the lifetime of the borrow, then we wouldn't be able to do the insertion on a
114 // cache miss. This is a limitation of NLL and is fixed with Polonius. For now we do two
115 // lookups in the case of a cache hit.
116 if usage_cache.find(&definition).is_none() {
117 let usages = definition.find_usages(&self.sema, Some(self.search_scope()));
118 usage_cache.usages.push((definition, usages));
119 return &usage_cache.usages.last().unwrap().1;
120 }
121 usage_cache.find(&definition).unwrap()
122 }
123
124 /// Returns the scope within which we want to search. We don't want un unrestricted search
125 /// scope, since we don't want to find references in external dependencies.
126 fn search_scope(&self) -> SearchScope {
127 // FIXME: We should ideally have a test that checks that we edit local roots and not library
128 // roots. This probably would require some changes to fixtures, since currently everything
129 // seems to get put into a single source root.
130 let mut files = Vec::new();
131 self.search_files_do(|file_id| {
132 files.push(file_id);
133 });
134 SearchScope::files(&files)
135 }
136
137 fn slow_scan(&self, rule: &ResolvedRule, matches_out: &mut Vec<Match>) {
138 self.search_files_do(|file_id| {
139 let file = self.sema.parse(file_id);
140 let code = file.syntax();
141 self.slow_scan_node(code, rule, &None, matches_out);
142 })
143 }
144
145 fn search_files_do(&self, mut callback: impl FnMut(FileId)) {
146 if self.restrict_ranges.is_empty() {
147 // Unrestricted search.
148 use ra_db::SourceDatabaseExt;
149 use ra_ide_db::symbol_index::SymbolsDatabase;
150 for &root in self.sema.db.local_roots().iter() {
151 let sr = self.sema.db.source_root(root);
152 for file_id in sr.iter() {
153 callback(file_id);
154 }
155 }
156 } else {
157 // Search is restricted, deduplicate file IDs (generally only one).
158 let mut files = FxHashSet::default();
159 for range in &self.restrict_ranges {
160 if files.insert(range.file_id) {
161 callback(range.file_id);
162 }
163 }
164 }
165 }
166
167 fn slow_scan_node(
168 &self,
169 code: &SyntaxNode,
170 rule: &ResolvedRule,
171 restrict_range: &Option<FileRange>,
172 matches_out: &mut Vec<Match>,
173 ) {
174 if !is_search_permitted(code) {
175 return;
176 }
177 self.try_add_match(rule, &code, restrict_range, matches_out);
178 // If we've got a macro call, we already tried matching it pre-expansion, which is the only
179 // way to match the whole macro, now try expanding it and matching the expansion.
180 if let Some(macro_call) = ast::MacroCall::cast(code.clone()) {
181 if let Some(expanded) = self.sema.expand(&macro_call) {
182 if let Some(tt) = macro_call.token_tree() {
183 // When matching within a macro expansion, we only want to allow matches of
184 // nodes that originated entirely from within the token tree of the macro call.
185 // i.e. we don't want to match something that came from the macro itself.
186 self.slow_scan_node(
187 &expanded,
188 rule,
189 &Some(self.sema.original_range(tt.syntax())),
190 matches_out,
191 );
192 }
193 }
194 }
195 for child in code.children() {
196 self.slow_scan_node(&child, rule, restrict_range, matches_out);
197 }
198 }
199
200 fn try_add_match(
201 &self,
202 rule: &ResolvedRule,
203 code: &SyntaxNode,
204 restrict_range: &Option<FileRange>,
205 matches_out: &mut Vec<Match>,
206 ) {
207 if !self.within_range_restrictions(code) {
208 mark::hit!(replace_nonpath_within_selection);
209 return;
210 }
211 if let Ok(m) = matching::get_match(false, rule, code, restrict_range, &self.sema) {
212 matches_out.push(m);
213 }
214 }
215
216 /// Returns whether `code` is within one of our range restrictions if we have any. No range
217 /// restrictions is considered unrestricted and always returns true.
218 fn within_range_restrictions(&self, code: &SyntaxNode) -> bool {
219 if self.restrict_ranges.is_empty() {
220 // There is no range restriction.
221 return true;
222 }
223 let node_range = self.sema.original_range(code);
224 for range in &self.restrict_ranges {
225 if range.file_id == node_range.file_id && range.range.contains_range(node_range.range) {
226 return true;
227 }
228 }
229 false
230 }
231}
232
233/// Returns whether we support matching within `node` and all of its ancestors.
234fn is_search_permitted_ancestors(node: &SyntaxNode) -> bool {
235 if let Some(parent) = node.parent() {
236 if !is_search_permitted_ancestors(&parent) {
237 return false;
238 }
239 }
240 is_search_permitted(node)
241}
242
243/// Returns whether we support matching within this kind of node.
244fn is_search_permitted(node: &SyntaxNode) -> bool {
245 // FIXME: Properly handle use declarations. At the moment, if our search pattern is `foo::bar`
246 // and the code is `use foo::{baz, bar}`, we'll match `bar`, since it resolves to `foo::bar`.
247 // However we'll then replace just the part we matched `bar`. We probably need to instead remove
248 // `bar` and insert a new use declaration.
249 node.kind() != SyntaxKind::USE
250}
251
252impl UsageCache {
253 fn find(&mut self, definition: &Definition) -> Option<&[Reference]> {
254 // We expect a very small number of cache entries (generally 1), so a linear scan should be
255 // fast enough and avoids the need to implement Hash for Definition.
256 for (d, refs) in &self.usages {
257 if d == definition {
258 return Some(refs);
259 }
260 }
261 None
262 }
263}
264
265/// Returns a path that's suitable for path resolution. We exclude builtin types, since they aren't
266/// something that we can find references to. We then somewhat arbitrarily pick the path that is the
267/// longest as this is hopefully more likely to be less common, making it faster to find.
268fn pick_path_for_usages(pattern: &ResolvedPattern) -> Option<&ResolvedPath> {
269 // FIXME: Take the scope of the resolved path into account. e.g. if there are any paths that are
270 // private to the current module, then we definitely would want to pick them over say a path
271 // from std. Possibly we should go further than this and intersect the search scopes for all
272 // resolved paths then search only in that scope.
273 pattern
274 .resolved_paths
275 .iter()
276 .filter(|(_, p)| {
277 !matches!(p.resolution, hir::PathResolution::Def(hir::ModuleDef::BuiltinType(_)))
278 })
279 .map(|(node, resolved)| (node.text().len(), resolved))
280 .max_by(|(a, _), (b, _)| a.cmp(b))
281 .map(|(_, resolved)| resolved)
282}
diff --git a/crates/ra_ssr/src/tests.rs b/crates/ra_ssr/src/tests.rs
deleted file mode 100644
index d483640df..000000000
--- a/crates/ra_ssr/src/tests.rs
+++ /dev/null
@@ -1,1081 +0,0 @@
1use crate::{MatchFinder, SsrRule};
2use expect::{expect, Expect};
3use ra_db::{salsa::Durability, FileId, FilePosition, FileRange, SourceDatabaseExt};
4use rustc_hash::FxHashSet;
5use std::sync::Arc;
6use test_utils::{mark, RangeOrOffset};
7
8fn parse_error_text(query: &str) -> String {
9 format!("{}", query.parse::<SsrRule>().unwrap_err())
10}
11
12#[test]
13fn parser_empty_query() {
14 assert_eq!(parse_error_text(""), "Parse error: Cannot find delimiter `==>>`");
15}
16
17#[test]
18fn parser_no_delimiter() {
19 assert_eq!(parse_error_text("foo()"), "Parse error: Cannot find delimiter `==>>`");
20}
21
22#[test]
23fn parser_two_delimiters() {
24 assert_eq!(
25 parse_error_text("foo() ==>> a ==>> b "),
26 "Parse error: More than one delimiter found"
27 );
28}
29
30#[test]
31fn parser_repeated_name() {
32 assert_eq!(
33 parse_error_text("foo($a, $a) ==>>"),
34 "Parse error: Name `a` repeats more than once"
35 );
36}
37
38#[test]
39fn parser_invalid_pattern() {
40 assert_eq!(
41 parse_error_text(" ==>> ()"),
42 "Parse error: Not a valid Rust expression, type, item, path or pattern"
43 );
44}
45
46#[test]
47fn parser_invalid_template() {
48 assert_eq!(
49 parse_error_text("() ==>> )"),
50 "Parse error: Not a valid Rust expression, type, item, path or pattern"
51 );
52}
53
54#[test]
55fn parser_undefined_placeholder_in_replacement() {
56 assert_eq!(
57 parse_error_text("42 ==>> $a"),
58 "Parse error: Replacement contains undefined placeholders: $a"
59 );
60}
61
62/// `code` may optionally contain a cursor marker `<|>`. If it doesn't, then the position will be
63/// the start of the file. If there's a second cursor marker, then we'll return a single range.
64pub(crate) fn single_file(code: &str) -> (ra_ide_db::RootDatabase, FilePosition, Vec<FileRange>) {
65 use ra_db::fixture::WithFixture;
66 use ra_ide_db::symbol_index::SymbolsDatabase;
67 let (mut db, file_id, range_or_offset) = if code.contains(test_utils::CURSOR_MARKER) {
68 ra_ide_db::RootDatabase::with_range_or_offset(code)
69 } else {
70 let (db, file_id) = ra_ide_db::RootDatabase::with_single_file(code);
71 (db, file_id, RangeOrOffset::Offset(0.into()))
72 };
73 let selections;
74 let position;
75 match range_or_offset {
76 RangeOrOffset::Range(range) => {
77 position = FilePosition { file_id, offset: range.start() };
78 selections = vec![FileRange { file_id, range: range }];
79 }
80 RangeOrOffset::Offset(offset) => {
81 position = FilePosition { file_id, offset };
82 selections = vec![];
83 }
84 }
85 let mut local_roots = FxHashSet::default();
86 local_roots.insert(ra_db::fixture::WORKSPACE);
87 db.set_local_roots_with_durability(Arc::new(local_roots), Durability::HIGH);
88 (db, position, selections)
89}
90
91fn assert_ssr_transform(rule: &str, input: &str, expected: Expect) {
92 assert_ssr_transforms(&[rule], input, expected);
93}
94
95fn assert_ssr_transforms(rules: &[&str], input: &str, expected: Expect) {
96 let (db, position, selections) = single_file(input);
97 let mut match_finder = MatchFinder::in_context(&db, position, selections);
98 for rule in rules {
99 let rule: SsrRule = rule.parse().unwrap();
100 match_finder.add_rule(rule).unwrap();
101 }
102 let edits = match_finder.edits();
103 if edits.is_empty() {
104 panic!("No edits were made");
105 }
106 assert_eq!(edits[0].file_id, position.file_id);
107 // Note, db.file_text is not necessarily the same as `input`, since fixture parsing alters
108 // stuff.
109 let mut actual = db.file_text(position.file_id).to_string();
110 edits[0].edit.apply(&mut actual);
111 expected.assert_eq(&actual);
112}
113
114fn print_match_debug_info(match_finder: &MatchFinder, file_id: FileId, snippet: &str) {
115 let debug_info = match_finder.debug_where_text_equal(file_id, snippet);
116 println!(
117 "Match debug info: {} nodes had text exactly equal to '{}'",
118 debug_info.len(),
119 snippet
120 );
121 for (index, d) in debug_info.iter().enumerate() {
122 println!("Node #{}\n{:#?}\n", index, d);
123 }
124}
125
126fn assert_matches(pattern: &str, code: &str, expected: &[&str]) {
127 let (db, position, selections) = single_file(code);
128 let mut match_finder = MatchFinder::in_context(&db, position, selections);
129 match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
130 let matched_strings: Vec<String> =
131 match_finder.matches().flattened().matches.iter().map(|m| m.matched_text()).collect();
132 if matched_strings != expected && !expected.is_empty() {
133 print_match_debug_info(&match_finder, position.file_id, &expected[0]);
134 }
135 assert_eq!(matched_strings, expected);
136}
137
138fn assert_no_match(pattern: &str, code: &str) {
139 let (db, position, selections) = single_file(code);
140 let mut match_finder = MatchFinder::in_context(&db, position, selections);
141 match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
142 let matches = match_finder.matches().flattened().matches;
143 if !matches.is_empty() {
144 print_match_debug_info(&match_finder, position.file_id, &matches[0].matched_text());
145 panic!("Got {} matches when we expected none: {:#?}", matches.len(), matches);
146 }
147}
148
149fn assert_match_failure_reason(pattern: &str, code: &str, snippet: &str, expected_reason: &str) {
150 let (db, position, selections) = single_file(code);
151 let mut match_finder = MatchFinder::in_context(&db, position, selections);
152 match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap();
153 let mut reasons = Vec::new();
154 for d in match_finder.debug_where_text_equal(position.file_id, snippet) {
155 if let Some(reason) = d.match_failure_reason() {
156 reasons.push(reason.to_owned());
157 }
158 }
159 assert_eq!(reasons, vec![expected_reason]);
160}
161
162#[test]
163fn ssr_function_to_method() {
164 assert_ssr_transform(
165 "my_function($a, $b) ==>> ($a).my_method($b)",
166 "fn my_function() {} fn main() { loop { my_function( other_func(x, y), z + w) } }",
167 expect![["fn my_function() {} fn main() { loop { (other_func(x, y)).my_method(z + w) } }"]],
168 )
169}
170
171#[test]
172fn ssr_nested_function() {
173 assert_ssr_transform(
174 "foo($a, $b, $c) ==>> bar($c, baz($a, $b))",
175 r#"
176 //- /lib.rs crate:foo
177 fn foo() {}
178 fn bar() {}
179 fn baz() {}
180 fn main { foo (x + value.method(b), x+y-z, true && false) }
181 "#,
182 expect![[r#"
183 fn foo() {}
184 fn bar() {}
185 fn baz() {}
186 fn main { bar(true && false, baz(x + value.method(b), x+y-z)) }
187 "#]],
188 )
189}
190
191#[test]
192fn ssr_expected_spacing() {
193 assert_ssr_transform(
194 "foo($x) + bar() ==>> bar($x)",
195 "fn foo() {} fn bar() {} fn main() { foo(5) + bar() }",
196 expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]],
197 );
198}
199
200#[test]
201fn ssr_with_extra_space() {
202 assert_ssr_transform(
203 "foo($x ) + bar() ==>> bar($x)",
204 "fn foo() {} fn bar() {} fn main() { foo( 5 ) +bar( ) }",
205 expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]],
206 );
207}
208
209#[test]
210fn ssr_keeps_nested_comment() {
211 assert_ssr_transform(
212 "foo($x) ==>> bar($x)",
213 "fn foo() {} fn bar() {} fn main() { foo(other(5 /* using 5 */)) }",
214 expect![["fn foo() {} fn bar() {} fn main() { bar(other(5 /* using 5 */)) }"]],
215 )
216}
217
218#[test]
219fn ssr_keeps_comment() {
220 assert_ssr_transform(
221 "foo($x) ==>> bar($x)",
222 "fn foo() {} fn bar() {} fn main() { foo(5 /* using 5 */) }",
223 expect![["fn foo() {} fn bar() {} fn main() { bar(5)/* using 5 */ }"]],
224 )
225}
226
227#[test]
228fn ssr_struct_lit() {
229 assert_ssr_transform(
230 "Foo{a: $a, b: $b} ==>> Foo::new($a, $b)",
231 r#"
232 struct Foo() {}
233 impl Foo { fn new() {} }
234 fn main() { Foo{b:2, a:1} }
235 "#,
236 expect![[r#"
237 struct Foo() {}
238 impl Foo { fn new() {} }
239 fn main() { Foo::new(1, 2) }
240 "#]],
241 )
242}
243
244#[test]
245fn ignores_whitespace() {
246 assert_matches("1+2", "fn f() -> i32 {1 + 2}", &["1 + 2"]);
247 assert_matches("1 + 2", "fn f() -> i32 {1+2}", &["1+2"]);
248}
249
250#[test]
251fn no_match() {
252 assert_no_match("1 + 3", "fn f() -> i32 {1 + 2}");
253}
254
255#[test]
256fn match_fn_definition() {
257 assert_matches("fn $a($b: $t) {$c}", "fn f(a: i32) {bar()}", &["fn f(a: i32) {bar()}"]);
258}
259
260#[test]
261fn match_struct_definition() {
262 let code = r#"
263 struct Option<T> {}
264 struct Bar {}
265 struct Foo {name: Option<String>}"#;
266 assert_matches("struct $n {$f: Option<String>}", code, &["struct Foo {name: Option<String>}"]);
267}
268
269#[test]
270fn match_expr() {
271 let code = r#"
272 fn foo() {}
273 fn f() -> i32 {foo(40 + 2, 42)}"#;
274 assert_matches("foo($a, $b)", code, &["foo(40 + 2, 42)"]);
275 assert_no_match("foo($a, $b, $c)", code);
276 assert_no_match("foo($a)", code);
277}
278
279#[test]
280fn match_nested_method_calls() {
281 assert_matches(
282 "$a.z().z().z()",
283 "fn f() {h().i().j().z().z().z().d().e()}",
284 &["h().i().j().z().z().z()"],
285 );
286}
287
288// Make sure that our node matching semantics don't differ within macro calls.
289#[test]
290fn match_nested_method_calls_with_macro_call() {
291 assert_matches(
292 "$a.z().z().z()",
293 r#"
294 macro_rules! m1 { ($a:expr) => {$a}; }
295 fn f() {m1!(h().i().j().z().z().z().d().e())}"#,
296 &["h().i().j().z().z().z()"],
297 );
298}
299
300#[test]
301fn match_complex_expr() {
302 let code = r#"
303 fn foo() {} fn bar() {}
304 fn f() -> i32 {foo(bar(40, 2), 42)}"#;
305 assert_matches("foo($a, $b)", code, &["foo(bar(40, 2), 42)"]);
306 assert_no_match("foo($a, $b, $c)", code);
307 assert_no_match("foo($a)", code);
308 assert_matches("bar($a, $b)", code, &["bar(40, 2)"]);
309}
310
311// Trailing commas in the code should be ignored.
312#[test]
313fn match_with_trailing_commas() {
314 // Code has comma, pattern doesn't.
315 assert_matches("foo($a, $b)", "fn foo() {} fn f() {foo(1, 2,);}", &["foo(1, 2,)"]);
316 assert_matches("Foo{$a, $b}", "struct Foo {} fn f() {Foo{1, 2,};}", &["Foo{1, 2,}"]);
317
318 // Pattern has comma, code doesn't.
319 assert_matches("foo($a, $b,)", "fn foo() {} fn f() {foo(1, 2);}", &["foo(1, 2)"]);
320 assert_matches("Foo{$a, $b,}", "struct Foo {} fn f() {Foo{1, 2};}", &["Foo{1, 2}"]);
321}
322
323#[test]
324fn match_type() {
325 assert_matches("i32", "fn f() -> i32 {1 + 2}", &["i32"]);
326 assert_matches(
327 "Option<$a>",
328 "struct Option<T> {} fn f() -> Option<i32> {42}",
329 &["Option<i32>"],
330 );
331 assert_no_match(
332 "Option<$a>",
333 "struct Option<T> {} struct Result<T, E> {} fn f() -> Result<i32, ()> {42}",
334 );
335}
336
337#[test]
338fn match_struct_instantiation() {
339 let code = r#"
340 struct Foo {bar: i32, baz: i32}
341 fn f() {Foo {bar: 1, baz: 2}}"#;
342 assert_matches("Foo {bar: 1, baz: 2}", code, &["Foo {bar: 1, baz: 2}"]);
343 // Now with placeholders for all parts of the struct.
344 assert_matches("Foo {$a: $b, $c: $d}", code, &["Foo {bar: 1, baz: 2}"]);
345 assert_matches("Foo {}", "struct Foo {} fn f() {Foo {}}", &["Foo {}"]);
346}
347
348#[test]
349fn match_path() {
350 let code = r#"
351 mod foo {
352 pub fn bar() {}
353 }
354 fn f() {foo::bar(42)}"#;
355 assert_matches("foo::bar", code, &["foo::bar"]);
356 assert_matches("$a::bar", code, &["foo::bar"]);
357 assert_matches("foo::$b", code, &["foo::bar"]);
358}
359
360#[test]
361fn match_pattern() {
362 assert_matches("Some($a)", "struct Some(); fn f() {if let Some(x) = foo() {}}", &["Some(x)"]);
363}
364
365// If our pattern has a full path, e.g. a::b::c() and the code has c(), but c resolves to
366// a::b::c, then we should match.
367#[test]
368fn match_fully_qualified_fn_path() {
369 let code = r#"
370 mod a {
371 pub mod b {
372 pub fn c(_: i32) {}
373 }
374 }
375 use a::b::c;
376 fn f1() {
377 c(42);
378 }
379 "#;
380 assert_matches("a::b::c($a)", code, &["c(42)"]);
381}
382
383#[test]
384fn match_resolved_type_name() {
385 let code = r#"
386 mod m1 {
387 pub mod m2 {
388 pub trait Foo<T> {}
389 }
390 }
391 mod m3 {
392 trait Foo<T> {}
393 fn f1(f: Option<&dyn Foo<bool>>) {}
394 }
395 mod m4 {
396 use crate::m1::m2::Foo;
397 fn f1(f: Option<&dyn Foo<i32>>) {}
398 }
399 "#;
400 assert_matches("m1::m2::Foo<$t>", code, &["Foo<i32>"]);
401}
402
403#[test]
404fn type_arguments_within_path() {
405 mark::check!(type_arguments_within_path);
406 let code = r#"
407 mod foo {
408 pub struct Bar<T> {t: T}
409 impl<T> Bar<T> {
410 pub fn baz() {}
411 }
412 }
413 fn f1() {foo::Bar::<i32>::baz();}
414 "#;
415 assert_no_match("foo::Bar::<i64>::baz()", code);
416 assert_matches("foo::Bar::<i32>::baz()", code, &["foo::Bar::<i32>::baz()"]);
417}
418
419#[test]
420fn literal_constraint() {
421 mark::check!(literal_constraint);
422 let code = r#"
423 enum Option<T> { Some(T), None }
424 use Option::Some;
425 fn f1() {
426 let x1 = Some(42);
427 let x2 = Some("foo");
428 let x3 = Some(x1);
429 let x4 = Some(40 + 2);
430 let x5 = Some(true);
431 }
432 "#;
433 assert_matches("Some(${a:kind(literal)})", code, &["Some(42)", "Some(\"foo\")", "Some(true)"]);
434 assert_matches("Some(${a:not(kind(literal))})", code, &["Some(x1)", "Some(40 + 2)"]);
435}
436
437#[test]
438fn match_reordered_struct_instantiation() {
439 assert_matches(
440 "Foo {aa: 1, b: 2, ccc: 3}",
441 "struct Foo {} fn f() {Foo {b: 2, ccc: 3, aa: 1}}",
442 &["Foo {b: 2, ccc: 3, aa: 1}"],
443 );
444 assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {b: 1}}");
445 assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {a: 2}}");
446 assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {a: 1}}");
447 assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {b: 2}}");
448 assert_no_match("Foo {a: 1, }", "struct Foo {} fn f() {Foo {a: 1, b: 2}}");
449 assert_no_match("Foo {a: 1, z: 9}", "struct Foo {} fn f() {Foo {a: 1}}");
450}
451
452#[test]
453fn match_macro_invocation() {
454 assert_matches(
455 "foo!($a)",
456 "macro_rules! foo {() => {}} fn() {foo(foo!(foo()))}",
457 &["foo!(foo())"],
458 );
459 assert_matches(
460 "foo!(41, $a, 43)",
461 "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43)}",
462 &["foo!(41, 42, 43)"],
463 );
464 assert_no_match("foo!(50, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}");
465 assert_no_match("foo!(41, $a, 50)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}");
466 assert_matches(
467 "foo!($a())",
468 "macro_rules! foo {() => {}} fn() {foo!(bar())}",
469 &["foo!(bar())"],
470 );
471}
472
473// When matching within a macro expansion, we only allow matches of nodes that originated from
474// the macro call, not from the macro definition.
475#[test]
476fn no_match_expression_from_macro() {
477 assert_no_match(
478 "$a.clone()",
479 r#"
480 macro_rules! m1 {
481 () => {42.clone()}
482 }
483 fn f1() {m1!()}
484 "#,
485 );
486}
487
488// We definitely don't want to allow matching of an expression that part originates from the
489// macro call `42` and part from the macro definition `.clone()`.
490#[test]
491fn no_match_split_expression() {
492 assert_no_match(
493 "$a.clone()",
494 r#"
495 macro_rules! m1 {
496 ($x:expr) => {$x.clone()}
497 }
498 fn f1() {m1!(42)}
499 "#,
500 );
501}
502
503#[test]
504fn replace_function_call() {
505 // This test also makes sure that we ignore empty-ranges.
506 assert_ssr_transform(
507 "foo() ==>> bar()",
508 "fn foo() {<|><|>} fn bar() {} fn f1() {foo(); foo();}",
509 expect![["fn foo() {} fn bar() {} fn f1() {bar(); bar();}"]],
510 );
511}
512
513#[test]
514fn replace_function_call_with_placeholders() {
515 assert_ssr_transform(
516 "foo($a, $b) ==>> bar($b, $a)",
517 "fn foo() {} fn bar() {} fn f1() {foo(5, 42)}",
518 expect![["fn foo() {} fn bar() {} fn f1() {bar(42, 5)}"]],
519 );
520}
521
522#[test]
523fn replace_nested_function_calls() {
524 assert_ssr_transform(
525 "foo($a) ==>> bar($a)",
526 "fn foo() {} fn bar() {} fn f1() {foo(foo(42))}",
527 expect![["fn foo() {} fn bar() {} fn f1() {bar(bar(42))}"]],
528 );
529}
530
531#[test]
532fn replace_associated_function_call() {
533 assert_ssr_transform(
534 "Foo::new() ==>> Bar::new()",
535 r#"
536 struct Foo {}
537 impl Foo { fn new() {} }
538 struct Bar {}
539 impl Bar { fn new() {} }
540 fn f1() {Foo::new();}
541 "#,
542 expect![[r#"
543 struct Foo {}
544 impl Foo { fn new() {} }
545 struct Bar {}
546 impl Bar { fn new() {} }
547 fn f1() {Bar::new();}
548 "#]],
549 );
550}
551
552#[test]
553fn replace_path_in_different_contexts() {
554 // Note the <|> inside module a::b which marks the point where the rule is interpreted. We
555 // replace foo with bar, but both need different path qualifiers in different contexts. In f4,
556 // foo is unqualified because of a use statement, however the replacement needs to be fully
557 // qualified.
558 assert_ssr_transform(
559 "c::foo() ==>> c::bar()",
560 r#"
561 mod a {
562 pub mod b {<|>
563 pub mod c {
564 pub fn foo() {}
565 pub fn bar() {}
566 fn f1() { foo() }
567 }
568 fn f2() { c::foo() }
569 }
570 fn f3() { b::c::foo() }
571 }
572 use a::b::c::foo;
573 fn f4() { foo() }
574 "#,
575 expect![[r#"
576 mod a {
577 pub mod b {
578 pub mod c {
579 pub fn foo() {}
580 pub fn bar() {}
581 fn f1() { bar() }
582 }
583 fn f2() { c::bar() }
584 }
585 fn f3() { b::c::bar() }
586 }
587 use a::b::c::foo;
588 fn f4() { a::b::c::bar() }
589 "#]],
590 );
591}
592
593#[test]
594fn replace_associated_function_with_generics() {
595 assert_ssr_transform(
596 "c::Foo::<$a>::new() ==>> d::Bar::<$a>::default()",
597 r#"
598 mod c {
599 pub struct Foo<T> {v: T}
600 impl<T> Foo<T> { pub fn new() {} }
601 fn f1() {
602 Foo::<i32>::new();
603 }
604 }
605 mod d {
606 pub struct Bar<T> {v: T}
607 impl<T> Bar<T> { pub fn default() {} }
608 fn f1() {
609 super::c::Foo::<i32>::new();
610 }
611 }
612 "#,
613 expect![[r#"
614 mod c {
615 pub struct Foo<T> {v: T}
616 impl<T> Foo<T> { pub fn new() {} }
617 fn f1() {
618 crate::d::Bar::<i32>::default();
619 }
620 }
621 mod d {
622 pub struct Bar<T> {v: T}
623 impl<T> Bar<T> { pub fn default() {} }
624 fn f1() {
625 Bar::<i32>::default();
626 }
627 }
628 "#]],
629 );
630}
631
632#[test]
633fn replace_type() {
634 assert_ssr_transform(
635 "Result<(), $a> ==>> Option<$a>",
636 "struct Result<T, E> {} struct Option<T> {} fn f1() -> Result<(), Vec<Error>> {foo()}",
637 expect![[
638 "struct Result<T, E> {} struct Option<T> {} fn f1() -> Option<Vec<Error>> {foo()}"
639 ]],
640 );
641}
642
643#[test]
644fn replace_macro_invocations() {
645 assert_ssr_transform(
646 "try!($a) ==>> $a?",
647 "macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(try!(foo()));}",
648 expect![["macro_rules! try {() => {}} fn f1() -> Result<(), E> {bar(foo()?);}"]],
649 );
650 assert_ssr_transform(
651 "foo!($a($b)) ==>> foo($b, $a)",
652 "macro_rules! foo {() => {}} fn f1() {foo!(abc(def() + 2));}",
653 expect![["macro_rules! foo {() => {}} fn f1() {foo(def() + 2, abc);}"]],
654 );
655}
656
657#[test]
658fn replace_binary_op() {
659 assert_ssr_transform(
660 "$a + $b ==>> $b + $a",
661 "fn f() {2 * 3 + 4 * 5}",
662 expect![["fn f() {4 * 5 + 2 * 3}"]],
663 );
664 assert_ssr_transform(
665 "$a + $b ==>> $b + $a",
666 "fn f() {1 + 2 + 3 + 4}",
667 expect![[r#"fn f() {4 + (3 + (2 + 1))}"#]],
668 );
669}
670
671#[test]
672fn match_binary_op() {
673 assert_matches("$a + $b", "fn f() {1 + 2 + 3 + 4}", &["1 + 2", "1 + 2 + 3", "1 + 2 + 3 + 4"]);
674}
675
676#[test]
677fn multiple_rules() {
678 assert_ssr_transforms(
679 &["$a + 1 ==>> add_one($a)", "$a + $b ==>> add($a, $b)"],
680 "fn add() {} fn add_one() {} fn f() -> i32 {3 + 2 + 1}",
681 expect![["fn add() {} fn add_one() {} fn f() -> i32 {add_one(add(3, 2))}"]],
682 )
683}
684
685#[test]
686fn multiple_rules_with_nested_matches() {
687 assert_ssr_transforms(
688 &["foo1($a) ==>> bar1($a)", "foo2($a) ==>> bar2($a)"],
689 r#"
690 fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {}
691 fn f() {foo1(foo2(foo1(foo2(foo1(42)))))}
692 "#,
693 expect![[r#"
694 fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {}
695 fn f() {bar1(bar2(bar1(bar2(bar1(42)))))}
696 "#]],
697 )
698}
699
700#[test]
701fn match_within_macro_invocation() {
702 let code = r#"
703 macro_rules! foo {
704 ($a:stmt; $b:expr) => {
705 $b
706 };
707 }
708 struct A {}
709 impl A {
710 fn bar() {}
711 }
712 fn f1() {
713 let aaa = A {};
714 foo!(macro_ignores_this(); aaa.bar());
715 }
716 "#;
717 assert_matches("$a.bar()", code, &["aaa.bar()"]);
718}
719
720#[test]
721fn replace_within_macro_expansion() {
722 assert_ssr_transform(
723 "$a.foo() ==>> bar($a)",
724 r#"
725 macro_rules! macro1 {
726 ($a:expr) => {$a}
727 }
728 fn bar() {}
729 fn f() {macro1!(5.x().foo().o2())}
730 "#,
731 expect![[r#"
732 macro_rules! macro1 {
733 ($a:expr) => {$a}
734 }
735 fn bar() {}
736 fn f() {macro1!(bar(5.x()).o2())}
737 "#]],
738 )
739}
740
741#[test]
742fn replace_outside_and_within_macro_expansion() {
743 assert_ssr_transform(
744 "foo($a) ==>> bar($a)",
745 r#"
746 fn foo() {} fn bar() {}
747 macro_rules! macro1 {
748 ($a:expr) => {$a}
749 }
750 fn f() {foo(foo(macro1!(foo(foo(42)))))}
751 "#,
752 expect![[r#"
753 fn foo() {} fn bar() {}
754 macro_rules! macro1 {
755 ($a:expr) => {$a}
756 }
757 fn f() {bar(bar(macro1!(bar(bar(42)))))}
758 "#]],
759 )
760}
761
762#[test]
763fn preserves_whitespace_within_macro_expansion() {
764 assert_ssr_transform(
765 "$a + $b ==>> $b - $a",
766 r#"
767 macro_rules! macro1 {
768 ($a:expr) => {$a}
769 }
770 fn f() {macro1!(1 * 2 + 3 + 4}
771 "#,
772 expect![[r#"
773 macro_rules! macro1 {
774 ($a:expr) => {$a}
775 }
776 fn f() {macro1!(4 - (3 - 1 * 2)}
777 "#]],
778 )
779}
780
781#[test]
782fn add_parenthesis_when_necessary() {
783 assert_ssr_transform(
784 "foo($a) ==>> $a.to_string()",
785 r#"
786 fn foo(_: i32) {}
787 fn bar3(v: i32) {
788 foo(1 + 2);
789 foo(-v);
790 }
791 "#,
792 expect![[r#"
793 fn foo(_: i32) {}
794 fn bar3(v: i32) {
795 (1 + 2).to_string();
796 (-v).to_string();
797 }
798 "#]],
799 )
800}
801
802#[test]
803fn match_failure_reasons() {
804 let code = r#"
805 fn bar() {}
806 macro_rules! foo {
807 ($a:expr) => {
808 1 + $a + 2
809 };
810 }
811 fn f1() {
812 bar(1, 2);
813 foo!(5 + 43.to_string() + 5);
814 }
815 "#;
816 assert_match_failure_reason(
817 "bar($a, 3)",
818 code,
819 "bar(1, 2)",
820 r#"Pattern wanted token '3' (INT_NUMBER), but code had token '2' (INT_NUMBER)"#,
821 );
822 assert_match_failure_reason(
823 "42.to_string()",
824 code,
825 "43.to_string()",
826 r#"Pattern wanted token '42' (INT_NUMBER), but code had token '43' (INT_NUMBER)"#,
827 );
828}
829
830#[test]
831fn overlapping_possible_matches() {
832 // There are three possible matches here, however the middle one, `foo(foo(foo(42)))` shouldn't
833 // match because it overlaps with the outer match. The inner match is permitted since it's is
834 // contained entirely within the placeholder of the outer match.
835 assert_matches(
836 "foo(foo($a))",
837 "fn foo() {} fn main() {foo(foo(foo(foo(42))))}",
838 &["foo(foo(42))", "foo(foo(foo(foo(42))))"],
839 );
840}
841
842#[test]
843fn use_declaration_with_braces() {
844 // It would be OK for a path rule to match and alter a use declaration. We shouldn't mess it up
845 // though. In particular, we must not change `use foo::{baz, bar}` to `use foo::{baz,
846 // foo2::bar2}`.
847 mark::check!(use_declaration_with_braces);
848 assert_ssr_transform(
849 "foo::bar ==>> foo2::bar2",
850 r#"
851 mod foo { pub fn bar() {} pub fn baz() {} }
852 mod foo2 { pub fn bar2() {} }
853 use foo::{baz, bar};
854 fn main() { bar() }
855 "#,
856 expect![["
857 mod foo { pub fn bar() {} pub fn baz() {} }
858 mod foo2 { pub fn bar2() {} }
859 use foo::{baz, bar};
860 fn main() { foo2::bar2() }
861 "]],
862 )
863}
864
865#[test]
866fn ufcs_matches_method_call() {
867 let code = r#"
868 struct Foo {}
869 impl Foo {
870 fn new(_: i32) -> Foo { Foo {} }
871 fn do_stuff(&self, _: i32) {}
872 }
873 struct Bar {}
874 impl Bar {
875 fn new(_: i32) -> Bar { Bar {} }
876 fn do_stuff(&self, v: i32) {}
877 }
878 fn main() {
879 let b = Bar {};
880 let f = Foo {};
881 b.do_stuff(1);
882 f.do_stuff(2);
883 Foo::new(4).do_stuff(3);
884 // Too many / too few args - should never match
885 f.do_stuff(2, 10);
886 f.do_stuff();
887 }
888 "#;
889 assert_matches("Foo::do_stuff($a, $b)", code, &["f.do_stuff(2)", "Foo::new(4).do_stuff(3)"]);
890 // The arguments needs special handling in the case of a function call matching a method call
891 // and the first argument is different.
892 assert_matches("Foo::do_stuff($a, 2)", code, &["f.do_stuff(2)"]);
893 assert_matches("Foo::do_stuff(Foo::new(4), $b)", code, &["Foo::new(4).do_stuff(3)"]);
894
895 assert_ssr_transform(
896 "Foo::do_stuff(Foo::new($a), $b) ==>> Bar::new($b).do_stuff($a)",
897 code,
898 expect![[r#"
899 struct Foo {}
900 impl Foo {
901 fn new(_: i32) -> Foo { Foo {} }
902 fn do_stuff(&self, _: i32) {}
903 }
904 struct Bar {}
905 impl Bar {
906 fn new(_: i32) -> Bar { Bar {} }
907 fn do_stuff(&self, v: i32) {}
908 }
909 fn main() {
910 let b = Bar {};
911 let f = Foo {};
912 b.do_stuff(1);
913 f.do_stuff(2);
914 Bar::new(3).do_stuff(4);
915 // Too many / too few args - should never match
916 f.do_stuff(2, 10);
917 f.do_stuff();
918 }
919 "#]],
920 );
921}
922
923#[test]
924fn pattern_is_a_single_segment_path() {
925 mark::check!(pattern_is_a_single_segment_path);
926 // The first function should not be altered because the `foo` in scope at the cursor position is
927 // a different `foo`. This case is special because "foo" can be parsed as a pattern (IDENT_PAT ->
928 // NAME -> IDENT), which contains no path. If we're not careful we'll end up matching the `foo`
929 // in `let foo` from the first function. Whether we should match the `let foo` in the second
930 // function is less clear. At the moment, we don't. Doing so sounds like a rename operation,
931 // which isn't really what SSR is for, especially since the replacement `bar` must be able to be
932 // resolved, which means if we rename `foo` we'll get a name collision.
933 assert_ssr_transform(
934 "foo ==>> bar",
935 r#"
936 fn f1() -> i32 {
937 let foo = 1;
938 let bar = 2;
939 foo
940 }
941 fn f1() -> i32 {
942 let foo = 1;
943 let bar = 2;
944 foo<|>
945 }
946 "#,
947 expect![[r#"
948 fn f1() -> i32 {
949 let foo = 1;
950 let bar = 2;
951 foo
952 }
953 fn f1() -> i32 {
954 let foo = 1;
955 let bar = 2;
956 bar
957 }
958 "#]],
959 );
960}
961
962#[test]
963fn replace_local_variable_reference() {
964 // The pattern references a local variable `foo` in the block containing the cursor. We should
965 // only replace references to this variable `foo`, not other variables that just happen to have
966 // the same name.
967 mark::check!(cursor_after_semicolon);
968 assert_ssr_transform(
969 "foo + $a ==>> $a - foo",
970 r#"
971 fn bar1() -> i32 {
972 let mut res = 0;
973 let foo = 5;
974 res += foo + 1;
975 let foo = 10;
976 res += foo + 2;<|>
977 res += foo + 3;
978 let foo = 15;
979 res += foo + 4;
980 res
981 }
982 "#,
983 expect![[r#"
984 fn bar1() -> i32 {
985 let mut res = 0;
986 let foo = 5;
987 res += foo + 1;
988 let foo = 10;
989 res += 2 - foo;
990 res += 3 - foo;
991 let foo = 15;
992 res += foo + 4;
993 res
994 }
995 "#]],
996 )
997}
998
999#[test]
1000fn replace_path_within_selection() {
1001 assert_ssr_transform(
1002 "foo ==>> bar",
1003 r#"
1004 fn main() {
1005 let foo = 41;
1006 let bar = 42;
1007 do_stuff(foo);
1008 do_stuff(foo);<|>
1009 do_stuff(foo);
1010 do_stuff(foo);<|>
1011 do_stuff(foo);
1012 }"#,
1013 expect![[r#"
1014 fn main() {
1015 let foo = 41;
1016 let bar = 42;
1017 do_stuff(foo);
1018 do_stuff(foo);
1019 do_stuff(bar);
1020 do_stuff(bar);
1021 do_stuff(foo);
1022 }"#]],
1023 );
1024}
1025
1026#[test]
1027fn replace_nonpath_within_selection() {
1028 mark::check!(replace_nonpath_within_selection);
1029 assert_ssr_transform(
1030 "$a + $b ==>> $b * $a",
1031 r#"
1032 fn main() {
1033 let v = 1 + 2;<|>
1034 let v2 = 3 + 3;
1035 let v3 = 4 + 5;<|>
1036 let v4 = 6 + 7;
1037 }"#,
1038 expect![[r#"
1039 fn main() {
1040 let v = 1 + 2;
1041 let v2 = 3 * 3;
1042 let v3 = 5 * 4;
1043 let v4 = 6 + 7;
1044 }"#]],
1045 );
1046}
1047
1048#[test]
1049fn replace_self() {
1050 // `foo(self)` occurs twice in the code, however only the first occurrence is the `self` that's
1051 // in scope where the rule is invoked.
1052 assert_ssr_transform(
1053 "foo(self) ==>> bar(self)",
1054 r#"
1055 struct S1 {}
1056 fn foo(_: &S1) {}
1057 fn bar(_: &S1) {}
1058 impl S1 {
1059 fn f1(&self) {
1060 foo(self)<|>
1061 }
1062 fn f2(&self) {
1063 foo(self)
1064 }
1065 }
1066 "#,
1067 expect![[r#"
1068 struct S1 {}
1069 fn foo(_: &S1) {}
1070 fn bar(_: &S1) {}
1071 impl S1 {
1072 fn f1(&self) {
1073 bar(self)
1074 }
1075 fn f2(&self) {
1076 foo(self)
1077 }
1078 }
1079 "#]],
1080 );
1081}