aboutsummaryrefslogtreecommitdiff
path: root/crates
diff options
context:
space:
mode:
Diffstat (limited to 'crates')
-rw-r--r--crates/base_db/src/change.rs2
-rw-r--r--crates/hir/src/diagnostics.rs4
-rw-r--r--crates/hir/src/semantics.rs8
-rw-r--r--crates/hir_def/src/body.rs2
-rw-r--r--crates/hir_def/src/body/tests/block.rs29
-rw-r--r--crates/hir_def/src/diagnostics.rs28
-rw-r--r--crates/hir_def/src/lib.rs114
-rw-r--r--crates/hir_def/src/nameres.rs14
-rw-r--r--crates/hir_def/src/nameres/collector.rs81
-rw-r--r--crates/hir_def/src/nameres/path_resolution.rs21
-rw-r--r--crates/hir_expand/src/builtin_macro.rs64
-rw-r--r--crates/ide/src/diagnostics.rs67
-rw-r--r--crates/ide_assists/src/handlers/generate_enum_is_method.rs (renamed from crates/ide_assists/src/handlers/generate_enum_match_method.rs)128
-rw-r--r--crates/ide_assists/src/handlers/generate_enum_projection_method.rs331
-rw-r--r--crates/ide_assists/src/lib.rs7
-rw-r--r--crates/ide_assists/src/tests/generated.rs62
-rw-r--r--crates/ide_assists/src/utils.rs24
-rw-r--r--crates/ide_completion/src/generated_lint_completions.rs6379
-rw-r--r--crates/ide_db/src/apply_change.rs2
-rw-r--r--crates/ide_db/src/source_change.rs2
-rw-r--r--crates/mbe/Cargo.toml3
-rw-r--r--crates/mbe/src/benchmark.rs211
-rw-r--r--crates/mbe/src/expander/matcher.rs68
-rw-r--r--crates/mbe/src/lib.rs7
-rw-r--r--crates/mbe/src/syntax_bridge.rs41
-rw-r--r--crates/mbe/src/tests.rs23
-rw-r--r--crates/mbe/src/tt_iter.rs77
-rw-r--r--crates/test_utils/src/bench_fixture.rs5
28 files changed, 7515 insertions, 289 deletions
diff --git a/crates/base_db/src/change.rs b/crates/base_db/src/change.rs
index 043e03bba..04e294e41 100644
--- a/crates/base_db/src/change.rs
+++ b/crates/base_db/src/change.rs
@@ -19,7 +19,7 @@ pub struct Change {
19 19
20impl fmt::Debug for Change { 20impl fmt::Debug for Change {
21 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { 21 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
22 let mut d = fmt.debug_struct("AnalysisChange"); 22 let mut d = fmt.debug_struct("Change");
23 if let Some(roots) = &self.roots { 23 if let Some(roots) = &self.roots {
24 d.field("roots", roots); 24 d.field("roots", roots);
25 } 25 }
diff --git a/crates/hir/src/diagnostics.rs b/crates/hir/src/diagnostics.rs
index 5343a036c..b1ebba516 100644
--- a/crates/hir/src/diagnostics.rs
+++ b/crates/hir/src/diagnostics.rs
@@ -1,5 +1,7 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2pub use hir_def::diagnostics::{InactiveCode, UnresolvedModule, UnresolvedProcMacro}; 2pub use hir_def::diagnostics::{
3 InactiveCode, UnresolvedMacroCall, UnresolvedModule, UnresolvedProcMacro,
4};
3pub use hir_expand::diagnostics::{ 5pub use hir_expand::diagnostics::{
4 Diagnostic, DiagnosticCode, DiagnosticSink, DiagnosticSinkBuilder, 6 Diagnostic, DiagnosticCode, DiagnosticSink, DiagnosticSinkBuilder,
5}; 7};
diff --git a/crates/hir/src/semantics.rs b/crates/hir/src/semantics.rs
index 59292d5a2..144851f83 100644
--- a/crates/hir/src/semantics.rs
+++ b/crates/hir/src/semantics.rs
@@ -16,13 +16,12 @@ use rustc_hash::{FxHashMap, FxHashSet};
16use syntax::{ 16use syntax::{
17 algo::find_node_at_offset, 17 algo::find_node_at_offset,
18 ast::{self, GenericParamsOwner, LoopBodyOwner}, 18 ast::{self, GenericParamsOwner, LoopBodyOwner},
19 match_ast, AstNode, SyntaxNode, SyntaxToken, TextSize, 19 match_ast, AstNode, SyntaxNode, SyntaxNodePtr, SyntaxToken, TextSize,
20}; 20};
21 21
22use crate::{ 22use crate::{
23 code_model::Access, 23 code_model::Access,
24 db::HirDatabase, 24 db::HirDatabase,
25 diagnostics::Diagnostic,
26 semantics::source_to_def::{ChildContainer, SourceToDefCache, SourceToDefCtx}, 25 semantics::source_to_def::{ChildContainer, SourceToDefCache, SourceToDefCtx},
27 source_analyzer::{resolve_hir_path, SourceAnalyzer}, 26 source_analyzer::{resolve_hir_path, SourceAnalyzer},
28 AssocItem, Callable, ConstParam, Crate, Field, Function, HirFileId, Impl, InFile, Label, 27 AssocItem, Callable, ConstParam, Crate, Field, Function, HirFileId, Impl, InFile, Label,
@@ -141,7 +140,7 @@ impl<'db, DB: HirDatabase> Semantics<'db, DB> {
141 self.imp.original_range(node) 140 self.imp.original_range(node)
142 } 141 }
143 142
144 pub fn diagnostics_display_range(&self, diagnostics: &dyn Diagnostic) -> FileRange { 143 pub fn diagnostics_display_range(&self, diagnostics: InFile<SyntaxNodePtr>) -> FileRange {
145 self.imp.diagnostics_display_range(diagnostics) 144 self.imp.diagnostics_display_range(diagnostics)
146 } 145 }
147 146
@@ -385,8 +384,7 @@ impl<'db> SemanticsImpl<'db> {
385 node.as_ref().original_file_range(self.db.upcast()) 384 node.as_ref().original_file_range(self.db.upcast())
386 } 385 }
387 386
388 fn diagnostics_display_range(&self, diagnostics: &dyn Diagnostic) -> FileRange { 387 fn diagnostics_display_range(&self, src: InFile<SyntaxNodePtr>) -> FileRange {
389 let src = diagnostics.display_source();
390 let root = self.db.parse_or_expand(src.file_id).unwrap(); 388 let root = self.db.parse_or_expand(src.file_id).unwrap();
391 let node = src.value.to_node(&root); 389 let node = src.value.to_node(&root);
392 self.cache(root, src.file_id); 390 self.cache(root, src.file_id);
diff --git a/crates/hir_def/src/body.rs b/crates/hir_def/src/body.rs
index 9a432f7d1..ff4b4a0cf 100644
--- a/crates/hir_def/src/body.rs
+++ b/crates/hir_def/src/body.rs
@@ -123,7 +123,7 @@ impl Expander {
123 Some(it) => it, 123 Some(it) => it,
124 None => { 124 None => {
125 if err.is_none() { 125 if err.is_none() {
126 eprintln!("no error despite `as_call_id_with_errors` returning `None`"); 126 log::warn!("no error despite `as_call_id_with_errors` returning `None`");
127 } 127 }
128 return ExpandResult { value: None, err }; 128 return ExpandResult { value: None, err };
129 } 129 }
diff --git a/crates/hir_def/src/body/tests/block.rs b/crates/hir_def/src/body/tests/block.rs
index a5ec0883f..8bca72a17 100644
--- a/crates/hir_def/src/body/tests/block.rs
+++ b/crates/hir_def/src/body/tests/block.rs
@@ -259,3 +259,32 @@ fn main() {
259 "#]], 259 "#]],
260 ); 260 );
261} 261}
262
263#[test]
264fn underscore_import() {
265 // This used to panic, because the default (private) visibility inside block expressions would
266 // point into the containing `DefMap`, which visibilities should never be able to do.
267 mark::check!(adjust_vis_in_block_def_map);
268 check_at(
269 r#"
270mod m {
271 fn main() {
272 use Tr as _;
273 trait Tr {}
274 $0
275 }
276}
277 "#,
278 expect![[r#"
279 block scope
280 _: t
281 Tr: t
282
283 crate
284 m: t
285
286 crate::m
287 main: v
288 "#]],
289 );
290}
diff --git a/crates/hir_def/src/diagnostics.rs b/crates/hir_def/src/diagnostics.rs
index ab3f059ce..ac7474f63 100644
--- a/crates/hir_def/src/diagnostics.rs
+++ b/crates/hir_def/src/diagnostics.rs
@@ -95,6 +95,34 @@ impl Diagnostic for UnresolvedImport {
95 } 95 }
96} 96}
97 97
98// Diagnostic: unresolved-macro-call
99//
100// This diagnostic is triggered if rust-analyzer is unable to resolove path to a
101// macro in a macro invocation.
102#[derive(Debug)]
103pub struct UnresolvedMacroCall {
104 pub file: HirFileId,
105 pub node: AstPtr<ast::MacroCall>,
106}
107
108impl Diagnostic for UnresolvedMacroCall {
109 fn code(&self) -> DiagnosticCode {
110 DiagnosticCode("unresolved-macro-call")
111 }
112 fn message(&self) -> String {
113 "unresolved macro call".to_string()
114 }
115 fn display_source(&self) -> InFile<SyntaxNodePtr> {
116 InFile::new(self.file, self.node.clone().into())
117 }
118 fn as_any(&self) -> &(dyn Any + Send + 'static) {
119 self
120 }
121 fn is_experimental(&self) -> bool {
122 true
123 }
124}
125
98// Diagnostic: inactive-code 126// Diagnostic: inactive-code
99// 127//
100// This diagnostic is shown for code with inactive `#[cfg]` attributes. 128// This diagnostic is shown for code with inactive `#[cfg]` attributes.
diff --git a/crates/hir_def/src/lib.rs b/crates/hir_def/src/lib.rs
index b50923747..6802bc250 100644
--- a/crates/hir_def/src/lib.rs
+++ b/crates/hir_def/src/lib.rs
@@ -57,8 +57,10 @@ use std::{
57 57
58use base_db::{impl_intern_key, salsa, CrateId}; 58use base_db::{impl_intern_key, salsa, CrateId};
59use hir_expand::{ 59use hir_expand::{
60 ast_id_map::FileAstId, eager::expand_eager_macro, hygiene::Hygiene, AstId, HirFileId, InFile, 60 ast_id_map::FileAstId,
61 MacroCallId, MacroCallKind, MacroDefId, MacroDefKind, 61 eager::{expand_eager_macro, ErrorEmitted},
62 hygiene::Hygiene,
63 AstId, HirFileId, InFile, MacroCallId, MacroCallKind, MacroDefId, MacroDefKind,
62}; 64};
63use la_arena::Idx; 65use la_arena::Idx;
64use nameres::DefMap; 66use nameres::DefMap;
@@ -592,8 +594,15 @@ impl AsMacroCall for InFile<&ast::MacroCall> {
592 error_sink(mbe::ExpandError::Other("malformed macro invocation".into())); 594 error_sink(mbe::ExpandError::Other("malformed macro invocation".into()));
593 } 595 }
594 596
595 AstIdWithPath::new(ast_id.file_id, ast_id.value, path?) 597 macro_call_as_call_id(
596 .as_call_id_with_errors(db, krate, resolver, error_sink) 598 &AstIdWithPath::new(ast_id.file_id, ast_id.value, path?),
599 db,
600 krate,
601 resolver,
602 error_sink,
603 )
604 .ok()?
605 .ok()
597 } 606 }
598} 607}
599 608
@@ -610,61 +619,50 @@ impl<T: ast::AstNode> AstIdWithPath<T> {
610 } 619 }
611} 620}
612 621
613impl AsMacroCall for AstIdWithPath<ast::MacroCall> { 622struct UnresolvedMacro;
614 fn as_call_id_with_errors( 623
615 &self, 624fn macro_call_as_call_id(
616 db: &dyn db::DefDatabase, 625 call: &AstIdWithPath<ast::MacroCall>,
617 krate: CrateId, 626 db: &dyn db::DefDatabase,
618 resolver: impl Fn(path::ModPath) -> Option<MacroDefId>, 627 krate: CrateId,
619 error_sink: &mut dyn FnMut(mbe::ExpandError), 628 resolver: impl Fn(path::ModPath) -> Option<MacroDefId>,
620 ) -> Option<MacroCallId> { 629 error_sink: &mut dyn FnMut(mbe::ExpandError),
621 let def: MacroDefId = resolver(self.path.clone()).or_else(|| { 630) -> Result<Result<MacroCallId, ErrorEmitted>, UnresolvedMacro> {
622 error_sink(mbe::ExpandError::Other(format!("could not resolve macro `{}`", self.path))); 631 let def: MacroDefId = resolver(call.path.clone()).ok_or(UnresolvedMacro)?;
623 None 632
624 })?; 633 let res = if let MacroDefKind::BuiltInEager(_) = def.kind {
625 634 let macro_call = InFile::new(call.ast_id.file_id, call.ast_id.to_node(db.upcast()));
626 if let MacroDefKind::BuiltInEager(_) = def.kind { 635 let hygiene = Hygiene::new(db.upcast(), call.ast_id.file_id);
627 let macro_call = InFile::new(self.ast_id.file_id, self.ast_id.to_node(db.upcast())); 636
628 let hygiene = Hygiene::new(db.upcast(), self.ast_id.file_id); 637 expand_eager_macro(
629 638 db.upcast(),
630 Some( 639 krate,
631 expand_eager_macro( 640 macro_call,
632 db.upcast(), 641 def,
633 krate, 642 &|path: ast::Path| resolver(path::ModPath::from_src(path, &hygiene)?),
634 macro_call, 643 error_sink,
635 def, 644 )
636 &|path: ast::Path| resolver(path::ModPath::from_src(path, &hygiene)?), 645 .map(MacroCallId::from)
637 error_sink, 646 } else {
638 ) 647 Ok(def.as_lazy_macro(db.upcast(), krate, MacroCallKind::FnLike(call.ast_id)).into())
639 .ok()? 648 };
640 .into(), 649 Ok(res)
641 )
642 } else {
643 Some(def.as_lazy_macro(db.upcast(), krate, MacroCallKind::FnLike(self.ast_id)).into())
644 }
645 }
646} 650}
647 651
648impl AsMacroCall for AstIdWithPath<ast::Item> { 652fn item_attr_as_call_id(
649 fn as_call_id_with_errors( 653 item_attr: &AstIdWithPath<ast::Item>,
650 &self, 654 db: &dyn db::DefDatabase,
651 db: &dyn db::DefDatabase, 655 krate: CrateId,
652 krate: CrateId, 656 resolver: impl Fn(path::ModPath) -> Option<MacroDefId>,
653 resolver: impl Fn(path::ModPath) -> Option<MacroDefId>, 657) -> Result<MacroCallId, UnresolvedMacro> {
654 error_sink: &mut dyn FnMut(mbe::ExpandError), 658 let def: MacroDefId = resolver(item_attr.path.clone()).ok_or(UnresolvedMacro)?;
655 ) -> Option<MacroCallId> { 659 let last_segment = item_attr.path.segments().last().ok_or(UnresolvedMacro)?;
656 let def: MacroDefId = resolver(self.path.clone()).or_else(|| { 660 let res = def
657 error_sink(mbe::ExpandError::Other(format!("could not resolve macro `{}`", self.path))); 661 .as_lazy_macro(
658 None 662 db.upcast(),
659 })?; 663 krate,
660 664 MacroCallKind::Attr(item_attr.ast_id, last_segment.to_string()),
661 Some(
662 def.as_lazy_macro(
663 db.upcast(),
664 krate,
665 MacroCallKind::Attr(self.ast_id, self.path.segments().last()?.to_string()),
666 )
667 .into(),
668 ) 665 )
669 } 666 .into();
667 Ok(res)
670} 668}
diff --git a/crates/hir_def/src/nameres.rs b/crates/hir_def/src/nameres.rs
index f92232eb3..6a3456f2e 100644
--- a/crates/hir_def/src/nameres.rs
+++ b/crates/hir_def/src/nameres.rs
@@ -417,6 +417,8 @@ mod diagnostics {
417 417
418 UnresolvedProcMacro { ast: MacroCallKind }, 418 UnresolvedProcMacro { ast: MacroCallKind },
419 419
420 UnresolvedMacroCall { ast: AstId<ast::MacroCall> },
421
420 MacroError { ast: MacroCallKind, message: String }, 422 MacroError { ast: MacroCallKind, message: String },
421 } 423 }
422 424
@@ -477,6 +479,13 @@ mod diagnostics {
477 Self { in_module: container, kind: DiagnosticKind::MacroError { ast, message } } 479 Self { in_module: container, kind: DiagnosticKind::MacroError { ast, message } }
478 } 480 }
479 481
482 pub(super) fn unresolved_macro_call(
483 container: LocalModuleId,
484 ast: AstId<ast::MacroCall>,
485 ) -> Self {
486 Self { in_module: container, kind: DiagnosticKind::UnresolvedMacroCall { ast } }
487 }
488
480 pub(super) fn add_to( 489 pub(super) fn add_to(
481 &self, 490 &self,
482 db: &dyn DefDatabase, 491 db: &dyn DefDatabase,
@@ -589,6 +598,11 @@ mod diagnostics {
589 }); 598 });
590 } 599 }
591 600
601 DiagnosticKind::UnresolvedMacroCall { ast } => {
602 let node = ast.to_node(db.upcast());
603 sink.push(UnresolvedMacroCall { file: ast.file_id, node: AstPtr::new(&node) });
604 }
605
592 DiagnosticKind::MacroError { ast, message } => { 606 DiagnosticKind::MacroError { ast, message } => {
593 let (file, ast) = match ast { 607 let (file, ast) = match ast {
594 MacroCallKind::FnLike(ast) => { 608 MacroCallKind::FnLike(ast) => {
diff --git a/crates/hir_def/src/nameres/collector.rs b/crates/hir_def/src/nameres/collector.rs
index 9996a0807..e51d89b43 100644
--- a/crates/hir_def/src/nameres/collector.rs
+++ b/crates/hir_def/src/nameres/collector.rs
@@ -13,7 +13,7 @@ use hir_expand::{
13 builtin_macro::find_builtin_macro, 13 builtin_macro::find_builtin_macro,
14 name::{AsName, Name}, 14 name::{AsName, Name},
15 proc_macro::ProcMacroExpander, 15 proc_macro::ProcMacroExpander,
16 HirFileId, MacroCallId, MacroCallKind, MacroDefId, MacroDefKind, 16 HirFileId, MacroCallId, MacroDefId, MacroDefKind,
17}; 17};
18use hir_expand::{InFile, MacroCallLoc}; 18use hir_expand::{InFile, MacroCallLoc};
19use rustc_hash::{FxHashMap, FxHashSet}; 19use rustc_hash::{FxHashMap, FxHashSet};
@@ -24,11 +24,13 @@ use tt::{Leaf, TokenTree};
24use crate::{ 24use crate::{
25 attr::Attrs, 25 attr::Attrs,
26 db::DefDatabase, 26 db::DefDatabase,
27 item_attr_as_call_id,
27 item_scope::{ImportType, PerNsGlobImports}, 28 item_scope::{ImportType, PerNsGlobImports},
28 item_tree::{ 29 item_tree::{
29 self, FileItemTreeId, ItemTree, ItemTreeId, MacroCall, MacroRules, Mod, ModItem, ModKind, 30 self, FileItemTreeId, ItemTree, ItemTreeId, MacroCall, MacroRules, Mod, ModItem, ModKind,
30 StructDefKind, 31 StructDefKind,
31 }, 32 },
33 macro_call_as_call_id,
32 nameres::{ 34 nameres::{
33 diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint, 35 diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint,
34 BuiltinShadowMode, DefMap, ModuleData, ModuleOrigin, ResolveMode, 36 BuiltinShadowMode, DefMap, ModuleData, ModuleOrigin, ResolveMode,
@@ -36,9 +38,9 @@ use crate::{
36 path::{ImportAlias, ModPath, PathKind}, 38 path::{ImportAlias, ModPath, PathKind},
37 per_ns::PerNs, 39 per_ns::PerNs,
38 visibility::{RawVisibility, Visibility}, 40 visibility::{RawVisibility, Visibility},
39 AdtId, AsMacroCall, AstId, AstIdWithPath, ConstLoc, ContainerId, EnumLoc, EnumVariantId, 41 AdtId, AstId, AstIdWithPath, ConstLoc, ContainerId, EnumLoc, EnumVariantId, FunctionLoc,
40 FunctionLoc, ImplLoc, Intern, LocalModuleId, ModuleDefId, StaticLoc, StructLoc, TraitLoc, 42 ImplLoc, Intern, LocalModuleId, ModuleDefId, StaticLoc, StructLoc, TraitLoc, TypeAliasLoc,
41 TypeAliasLoc, UnionLoc, 43 UnionLoc, UnresolvedMacro,
42}; 44};
43 45
44const GLOB_RECURSION_LIMIT: usize = 100; 46const GLOB_RECURSION_LIMIT: usize = 100;
@@ -790,8 +792,11 @@ impl DefCollector<'_> {
790 return false; 792 return false;
791 } 793 }
792 794
793 if let Some(call_id) = 795 match macro_call_as_call_id(
794 directive.ast_id.as_call_id(self.db, self.def_map.krate, |path| { 796 &directive.ast_id,
797 self.db,
798 self.def_map.krate,
799 |path| {
795 let resolved_res = self.def_map.resolve_path_fp_with_macro( 800 let resolved_res = self.def_map.resolve_path_fp_with_macro(
796 self.db, 801 self.db,
797 ResolveMode::Other, 802 ResolveMode::Other,
@@ -800,24 +805,29 @@ impl DefCollector<'_> {
800 BuiltinShadowMode::Module, 805 BuiltinShadowMode::Module,
801 ); 806 );
802 resolved_res.resolved_def.take_macros() 807 resolved_res.resolved_def.take_macros()
803 }) 808 },
804 { 809 &mut |_err| (),
805 resolved.push((directive.module_id, call_id, directive.depth)); 810 ) {
806 res = ReachedFixedPoint::No; 811 Ok(Ok(call_id)) => {
807 return false; 812 resolved.push((directive.module_id, call_id, directive.depth));
813 res = ReachedFixedPoint::No;
814 return false;
815 }
816 Err(UnresolvedMacro) | Ok(Err(_)) => {}
808 } 817 }
809 818
810 true 819 true
811 }); 820 });
812 attribute_macros.retain(|directive| { 821 attribute_macros.retain(|directive| {
813 if let Some(call_id) = 822 match item_attr_as_call_id(&directive.ast_id, self.db, self.def_map.krate, |path| {
814 directive.ast_id.as_call_id(self.db, self.def_map.krate, |path| { 823 self.resolve_attribute_macro(&directive, &path)
815 self.resolve_attribute_macro(&directive, &path) 824 }) {
816 }) 825 Ok(call_id) => {
817 { 826 resolved.push((directive.module_id, call_id, 0));
818 resolved.push((directive.module_id, call_id, 0)); 827 res = ReachedFixedPoint::No;
819 res = ReachedFixedPoint::No; 828 return false;
820 return false; 829 }
830 Err(UnresolvedMacro) => (),
821 } 831 }
822 832
823 true 833 true
@@ -902,7 +912,8 @@ impl DefCollector<'_> {
902 912
903 for directive in &self.unexpanded_macros { 913 for directive in &self.unexpanded_macros {
904 let mut error = None; 914 let mut error = None;
905 directive.ast_id.as_call_id_with_errors( 915 match macro_call_as_call_id(
916 &directive.ast_id,
906 self.db, 917 self.db,
907 self.def_map.krate, 918 self.def_map.krate,
908 |path| { 919 |path| {
@@ -918,15 +929,15 @@ impl DefCollector<'_> {
918 &mut |e| { 929 &mut |e| {
919 error.get_or_insert(e); 930 error.get_or_insert(e);
920 }, 931 },
921 ); 932 ) {
922 933 Ok(_) => (),
923 if let Some(err) = error { 934 Err(UnresolvedMacro) => {
924 self.def_map.diagnostics.push(DefDiagnostic::macro_error( 935 self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call(
925 directive.module_id, 936 directive.module_id,
926 MacroCallKind::FnLike(directive.ast_id.ast_id), 937 directive.ast_id.ast_id,
927 err.to_string(), 938 ));
928 )); 939 }
929 } 940 };
930 } 941 }
931 942
932 // Emit diagnostics for all remaining unresolved imports. 943 // Emit diagnostics for all remaining unresolved imports.
@@ -1446,8 +1457,11 @@ impl ModCollector<'_, '_> {
1446 let mut ast_id = AstIdWithPath::new(self.file_id, mac.ast_id, mac.path.clone()); 1457 let mut ast_id = AstIdWithPath::new(self.file_id, mac.ast_id, mac.path.clone());
1447 1458
1448 // Case 1: try to resolve in legacy scope and expand macro_rules 1459 // Case 1: try to resolve in legacy scope and expand macro_rules
1449 if let Some(macro_call_id) = 1460 if let Ok(Ok(macro_call_id)) = macro_call_as_call_id(
1450 ast_id.as_call_id(self.def_collector.db, self.def_collector.def_map.krate, |path| { 1461 &ast_id,
1462 self.def_collector.db,
1463 self.def_collector.def_map.krate,
1464 |path| {
1451 path.as_ident().and_then(|name| { 1465 path.as_ident().and_then(|name| {
1452 self.def_collector.def_map.with_ancestor_maps( 1466 self.def_collector.def_map.with_ancestor_maps(
1453 self.def_collector.db, 1467 self.def_collector.db,
@@ -1455,8 +1469,9 @@ impl ModCollector<'_, '_> {
1455 &mut |map, module| map[module].scope.get_legacy_macro(&name), 1469 &mut |map, module| map[module].scope.get_legacy_macro(&name),
1456 ) 1470 )
1457 }) 1471 })
1458 }) 1472 },
1459 { 1473 &mut |_err| (),
1474 ) {
1460 self.def_collector.unexpanded_macros.push(MacroDirective { 1475 self.def_collector.unexpanded_macros.push(MacroDirective {
1461 module_id: self.module_id, 1476 module_id: self.module_id,
1462 ast_id, 1477 ast_id,
diff --git a/crates/hir_def/src/nameres/path_resolution.rs b/crates/hir_def/src/nameres/path_resolution.rs
index fdcdc23ae..dd1db0094 100644
--- a/crates/hir_def/src/nameres/path_resolution.rs
+++ b/crates/hir_def/src/nameres/path_resolution.rs
@@ -77,7 +77,7 @@ impl DefMap {
77 original_module: LocalModuleId, 77 original_module: LocalModuleId,
78 visibility: &RawVisibility, 78 visibility: &RawVisibility,
79 ) -> Option<Visibility> { 79 ) -> Option<Visibility> {
80 match visibility { 80 let mut vis = match visibility {
81 RawVisibility::Module(path) => { 81 RawVisibility::Module(path) => {
82 let (result, remaining) = 82 let (result, remaining) =
83 self.resolve_path(db, original_module, &path, BuiltinShadowMode::Module); 83 self.resolve_path(db, original_module, &path, BuiltinShadowMode::Module);
@@ -86,15 +86,28 @@ impl DefMap {
86 } 86 }
87 let types = result.take_types()?; 87 let types = result.take_types()?;
88 match types { 88 match types {
89 ModuleDefId::ModuleId(m) => Some(Visibility::Module(m)), 89 ModuleDefId::ModuleId(m) => Visibility::Module(m),
90 _ => { 90 _ => {
91 // error: visibility needs to refer to module 91 // error: visibility needs to refer to module
92 None 92 return None;
93 } 93 }
94 } 94 }
95 } 95 }
96 RawVisibility::Public => Some(Visibility::Public), 96 RawVisibility::Public => Visibility::Public,
97 };
98
99 // In block expressions, `self` normally refers to the containing non-block module, and
100 // `super` to its parent (etc.). However, visibilities must only refer to a module in the
101 // DefMap they're written in, so we restrict them when that happens.
102 if let Visibility::Module(m) = vis {
103 if self.block_id() != m.block {
104 mark::hit!(adjust_vis_in_block_def_map);
105 vis = Visibility::Module(self.module_id(self.root()));
106 log::debug!("visibility {:?} points outside DefMap, adjusting to {:?}", m, vis);
107 }
97 } 108 }
109
110 Some(vis)
98 } 111 }
99 112
100 // Returns Yes if we are sure that additions to `ItemMap` wouldn't change 113 // Returns Yes if we are sure that additions to `ItemMap` wouldn't change
diff --git a/crates/hir_expand/src/builtin_macro.rs b/crates/hir_expand/src/builtin_macro.rs
index 57bc6fbd7..eb57ea7d6 100644
--- a/crates/hir_expand/src/builtin_macro.rs
+++ b/crates/hir_expand/src/builtin_macro.rs
@@ -6,7 +6,7 @@ use crate::{
6 6
7use base_db::{AnchoredPath, FileId}; 7use base_db::{AnchoredPath, FileId};
8use either::Either; 8use either::Either;
9use mbe::{parse_to_token_tree, ExpandResult}; 9use mbe::{parse_exprs_with_sep, parse_to_token_tree, ExpandResult};
10use parser::FragmentKind; 10use parser::FragmentKind;
11use syntax::ast::{self, AstToken}; 11use syntax::ast::{self, AstToken};
12 12
@@ -182,25 +182,10 @@ fn assert_expand(
182 // ```, 182 // ```,
183 // which is wrong but useful. 183 // which is wrong but useful.
184 184
185 let mut args = Vec::new(); 185 let args = parse_exprs_with_sep(tt, ',');
186 let mut current = Vec::new();
187 for tt in tt.token_trees.iter().cloned() {
188 match tt {
189 tt::TokenTree::Leaf(tt::Leaf::Punct(p)) if p.char == ',' => {
190 args.push(current);
191 current = Vec::new();
192 }
193 _ => {
194 current.push(tt);
195 }
196 }
197 }
198 if !current.is_empty() {
199 args.push(current);
200 }
201 186
202 let arg_tts = args.into_iter().flat_map(|arg| { 187 let arg_tts = args.into_iter().flat_map(|arg| {
203 quote! { &(##arg), } 188 quote! { &(#arg), }
204 }.token_trees).collect::<Vec<_>>(); 189 }.token_trees).collect::<Vec<_>>();
205 190
206 let expanded = quote! { 191 let expanded = quote! {
@@ -238,35 +223,21 @@ fn format_args_expand(
238 // ]) 223 // ])
239 // ```, 224 // ```,
240 // which is still not really correct, but close enough for now 225 // which is still not really correct, but close enough for now
241 let mut args = Vec::new(); 226 let mut args = parse_exprs_with_sep(tt, ',');
242 let mut current = Vec::new(); 227
243 for tt in tt.token_trees.iter().cloned() {
244 match tt {
245 tt::TokenTree::Leaf(tt::Leaf::Punct(p)) if p.char == ',' => {
246 args.push(current);
247 current = Vec::new();
248 }
249 _ => {
250 current.push(tt);
251 }
252 }
253 }
254 if !current.is_empty() {
255 args.push(current);
256 }
257 if args.is_empty() { 228 if args.is_empty() {
258 return ExpandResult::only_err(mbe::ExpandError::NoMatchingRule); 229 return ExpandResult::only_err(mbe::ExpandError::NoMatchingRule);
259 } 230 }
260 for arg in &mut args { 231 for arg in &mut args {
261 // Remove `key =`. 232 // Remove `key =`.
262 if matches!(arg.get(1), Some(tt::TokenTree::Leaf(tt::Leaf::Punct(p))) if p.char == '=' && p.spacing != tt::Spacing::Joint) 233 if matches!(arg.token_trees.get(1), Some(tt::TokenTree::Leaf(tt::Leaf::Punct(p))) if p.char == '=' && p.spacing != tt::Spacing::Joint)
263 { 234 {
264 arg.drain(..2); 235 arg.token_trees.drain(..2);
265 } 236 }
266 } 237 }
267 let _format_string = args.remove(0); 238 let _format_string = args.remove(0);
268 let arg_tts = args.into_iter().flat_map(|arg| { 239 let arg_tts = args.into_iter().flat_map(|arg| {
269 quote! { std::fmt::ArgumentV1::new(&(##arg), std::fmt::Display::fmt), } 240 quote! { std::fmt::ArgumentV1::new(&(#arg), std::fmt::Display::fmt), }
270 }.token_trees).collect::<Vec<_>>(); 241 }.token_trees).collect::<Vec<_>>();
271 let expanded = quote! { 242 let expanded = quote! {
272 std::fmt::Arguments::new_v1(&[], &[##arg_tts]) 243 std::fmt::Arguments::new_v1(&[], &[##arg_tts])
@@ -720,6 +691,25 @@ mod tests {
720 } 691 }
721 692
722 #[test] 693 #[test]
694 fn test_format_args_expand_with_comma_exprs() {
695 let expanded = expand_builtin_macro(
696 r#"
697 #[rustc_builtin_macro]
698 macro_rules! format_args {
699 ($fmt:expr) => ({ /* compiler built-in */ });
700 ($fmt:expr, $($args:tt)*) => ({ /* compiler built-in */ })
701 }
702 format_args!("{} {:?}", a::<A,B>(), b);
703 "#,
704 );
705
706 assert_eq!(
707 expanded,
708 r#"std::fmt::Arguments::new_v1(&[], &[std::fmt::ArgumentV1::new(&(a::<A,B>()),std::fmt::Display::fmt),std::fmt::ArgumentV1::new(&(b),std::fmt::Display::fmt),])"#
709 );
710 }
711
712 #[test]
723 fn test_include_bytes_expand() { 713 fn test_include_bytes_expand() {
724 let expanded = expand_builtin_macro( 714 let expanded = expand_builtin_macro(
725 r#" 715 r#"
diff --git a/crates/ide/src/diagnostics.rs b/crates/ide/src/diagnostics.rs
index 8607139ba..fe32f39b6 100644
--- a/crates/ide/src/diagnostics.rs
+++ b/crates/ide/src/diagnostics.rs
@@ -10,15 +10,16 @@ mod field_shorthand;
10use std::cell::RefCell; 10use std::cell::RefCell;
11 11
12use hir::{ 12use hir::{
13 db::AstDatabase,
13 diagnostics::{Diagnostic as _, DiagnosticCode, DiagnosticSinkBuilder}, 14 diagnostics::{Diagnostic as _, DiagnosticCode, DiagnosticSinkBuilder},
14 Semantics, 15 InFile, Semantics,
15}; 16};
16use ide_db::{base_db::SourceDatabase, RootDatabase}; 17use ide_db::{base_db::SourceDatabase, RootDatabase};
17use itertools::Itertools; 18use itertools::Itertools;
18use rustc_hash::FxHashSet; 19use rustc_hash::FxHashSet;
19use syntax::{ 20use syntax::{
20 ast::{self, AstNode}, 21 ast::{self, AstNode},
21 SyntaxNode, TextRange, 22 SyntaxNode, SyntaxNodePtr, TextRange,
22}; 23};
23use text_edit::TextEdit; 24use text_edit::TextEdit;
24 25
@@ -147,20 +148,38 @@ pub(crate) fn diagnostics(
147 148
148 // Override severity and mark as unused. 149 // Override severity and mark as unused.
149 res.borrow_mut().push( 150 res.borrow_mut().push(
150 Diagnostic::hint(sema.diagnostics_display_range(d).range, d.message()) 151 Diagnostic::hint(
151 .with_unused(true) 152 sema.diagnostics_display_range(d.display_source()).range,
152 .with_code(Some(d.code())), 153 d.message(),
154 )
155 .with_unused(true)
156 .with_code(Some(d.code())),
153 ); 157 );
154 }) 158 })
155 .on::<hir::diagnostics::UnresolvedProcMacro, _>(|d| { 159 .on::<hir::diagnostics::UnresolvedProcMacro, _>(|d| {
156 // Use more accurate position if available. 160 // Use more accurate position if available.
157 let display_range = 161 let display_range = d
158 d.precise_location.unwrap_or_else(|| sema.diagnostics_display_range(d).range); 162 .precise_location
163 .unwrap_or_else(|| sema.diagnostics_display_range(d.display_source()).range);
159 164
160 // FIXME: it would be nice to tell the user whether proc macros are currently disabled 165 // FIXME: it would be nice to tell the user whether proc macros are currently disabled
161 res.borrow_mut() 166 res.borrow_mut()
162 .push(Diagnostic::hint(display_range, d.message()).with_code(Some(d.code()))); 167 .push(Diagnostic::hint(display_range, d.message()).with_code(Some(d.code())));
163 }) 168 })
169 .on::<hir::diagnostics::UnresolvedMacroCall, _>(|d| {
170 let last_path_segment = sema.db.parse_or_expand(d.file).and_then(|root| {
171 d.node
172 .to_node(&root)
173 .path()
174 .and_then(|it| it.segment())
175 .and_then(|it| it.name_ref())
176 .map(|it| InFile::new(d.file, SyntaxNodePtr::new(it.syntax())))
177 });
178 let diagnostics = last_path_segment.unwrap_or_else(|| d.display_source());
179 let display_range = sema.diagnostics_display_range(diagnostics).range;
180 res.borrow_mut()
181 .push(Diagnostic::error(display_range, d.message()).with_code(Some(d.code())));
182 })
164 // Only collect experimental diagnostics when they're enabled. 183 // Only collect experimental diagnostics when they're enabled.
165 .filter(|diag| !(diag.is_experimental() && config.disable_experimental)) 184 .filter(|diag| !(diag.is_experimental() && config.disable_experimental))
166 .filter(|diag| !config.disabled.contains(diag.code().as_str())); 185 .filter(|diag| !config.disabled.contains(diag.code().as_str()));
@@ -170,8 +189,11 @@ pub(crate) fn diagnostics(
170 // Diagnostics not handled above get no fix and default treatment. 189 // Diagnostics not handled above get no fix and default treatment.
171 .build(|d| { 190 .build(|d| {
172 res.borrow_mut().push( 191 res.borrow_mut().push(
173 Diagnostic::error(sema.diagnostics_display_range(d).range, d.message()) 192 Diagnostic::error(
174 .with_code(Some(d.code())), 193 sema.diagnostics_display_range(d.display_source()).range,
194 d.message(),
195 )
196 .with_code(Some(d.code())),
175 ); 197 );
176 }); 198 });
177 199
@@ -183,13 +205,13 @@ pub(crate) fn diagnostics(
183} 205}
184 206
185fn diagnostic_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic { 207fn diagnostic_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic {
186 Diagnostic::error(sema.diagnostics_display_range(d).range, d.message()) 208 Diagnostic::error(sema.diagnostics_display_range(d.display_source()).range, d.message())
187 .with_fix(d.fix(&sema)) 209 .with_fix(d.fix(&sema))
188 .with_code(Some(d.code())) 210 .with_code(Some(d.code()))
189} 211}
190 212
191fn warning_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic { 213fn warning_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic {
192 Diagnostic::hint(sema.diagnostics_display_range(d).range, d.message()) 214 Diagnostic::hint(sema.diagnostics_display_range(d.display_source()).range, d.message())
193 .with_fix(d.fix(&sema)) 215 .with_fix(d.fix(&sema))
194 .with_code(Some(d.code())) 216 .with_code(Some(d.code()))
195} 217}
@@ -646,6 +668,29 @@ fn test_fn() {
646 } 668 }
647 669
648 #[test] 670 #[test]
671 fn test_unresolved_macro_range() {
672 check_expect(
673 r#"foo::bar!(92);"#,
674 expect![[r#"
675 [
676 Diagnostic {
677 message: "unresolved macro call",
678 range: 5..8,
679 severity: Error,
680 fix: None,
681 unused: false,
682 code: Some(
683 DiagnosticCode(
684 "unresolved-macro-call",
685 ),
686 ),
687 },
688 ]
689 "#]],
690 );
691 }
692
693 #[test]
649 fn range_mapping_out_of_macros() { 694 fn range_mapping_out_of_macros() {
650 // FIXME: this is very wrong, but somewhat tricky to fix. 695 // FIXME: this is very wrong, but somewhat tricky to fix.
651 check_fix( 696 check_fix(
diff --git a/crates/ide_assists/src/handlers/generate_enum_match_method.rs b/crates/ide_assists/src/handlers/generate_enum_is_method.rs
index aeb887e71..7e181a480 100644
--- a/crates/ide_assists/src/handlers/generate_enum_match_method.rs
+++ b/crates/ide_assists/src/handlers/generate_enum_is_method.rs
@@ -1,14 +1,13 @@
1use stdx::{format_to, to_lower_snake_case}; 1use stdx::to_lower_snake_case;
2use syntax::ast::VisibilityOwner; 2use syntax::ast::VisibilityOwner;
3use syntax::ast::{self, AstNode, NameOwner}; 3use syntax::ast::{self, AstNode, NameOwner};
4use test_utils::mark;
5 4
6use crate::{ 5use crate::{
7 utils::{find_impl_block_end, find_struct_impl, generate_impl_text}, 6 utils::{add_method_to_adt, find_struct_impl},
8 AssistContext, AssistId, AssistKind, Assists, 7 AssistContext, AssistId, AssistKind, Assists,
9}; 8};
10 9
11// Assist: generate_enum_match_method 10// Assist: generate_enum_is_method
12// 11//
13// Generate an `is_` method for an enum variant. 12// Generate an `is_` method for an enum variant.
14// 13//
@@ -34,79 +33,52 @@ use crate::{
34// } 33// }
35// } 34// }
36// ``` 35// ```
37pub(crate) fn generate_enum_match_method(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { 36pub(crate) fn generate_enum_is_method(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
38 let variant = ctx.find_node_at_offset::<ast::Variant>()?; 37 let variant = ctx.find_node_at_offset::<ast::Variant>()?;
39 let variant_name = variant.name()?; 38 let variant_name = variant.name()?;
40 let parent_enum = variant.parent_enum(); 39 let parent_enum = ast::Adt::Enum(variant.parent_enum());
41 if !matches!(variant.kind(), ast::StructKind::Unit) { 40 let pattern_suffix = match variant.kind() {
42 mark::hit!(test_gen_enum_match_on_non_unit_variant_not_implemented); 41 ast::StructKind::Record(_) => " { .. }",
43 return None; 42 ast::StructKind::Tuple(_) => "(..)",
44 } 43 ast::StructKind::Unit => "",
44 };
45 45
46 let enum_lowercase_name = to_lower_snake_case(&parent_enum.name()?.to_string()); 46 let enum_lowercase_name = to_lower_snake_case(&parent_enum.name()?.to_string());
47 let fn_name = to_lower_snake_case(&variant_name.to_string()); 47 let fn_name = format!("is_{}", &to_lower_snake_case(variant_name.text()));
48 48
49 // Return early if we've found an existing new fn 49 // Return early if we've found an existing new fn
50 let impl_def = find_struct_impl( 50 let impl_def = find_struct_impl(&ctx, &parent_enum, &fn_name)?;
51 &ctx,
52 &ast::Adt::Enum(parent_enum.clone()),
53 format!("is_{}", fn_name).as_str(),
54 )?;
55 51
56 let target = variant.syntax().text_range(); 52 let target = variant.syntax().text_range();
57 acc.add( 53 acc.add(
58 AssistId("generate_enum_match_method", AssistKind::Generate), 54 AssistId("generate_enum_is_method", AssistKind::Generate),
59 "Generate an `is_` method for an enum variant", 55 "Generate an `is_` method for an enum variant",
60 target, 56 target,
61 |builder| { 57 |builder| {
62 let mut buf = String::with_capacity(512);
63
64 if impl_def.is_some() {
65 buf.push('\n');
66 }
67
68 let vis = parent_enum.visibility().map_or(String::new(), |v| format!("{} ", v)); 58 let vis = parent_enum.visibility().map_or(String::new(), |v| format!("{} ", v));
69 format_to!( 59 let method = format!(
70 buf,
71 " /// Returns `true` if the {} is [`{}`]. 60 " /// Returns `true` if the {} is [`{}`].
72 {}fn is_{}(&self) -> bool {{ 61 {}fn {}(&self) -> bool {{
73 matches!(self, Self::{}) 62 matches!(self, Self::{}{})
74 }}", 63 }}",
75 enum_lowercase_name, 64 enum_lowercase_name, variant_name, vis, fn_name, variant_name, pattern_suffix,
76 variant_name,
77 vis,
78 fn_name,
79 variant_name
80 ); 65 );
81 66
82 let start_offset = impl_def 67 add_method_to_adt(builder, &parent_enum, impl_def, &method);
83 .and_then(|impl_def| find_impl_block_end(impl_def, &mut buf))
84 .unwrap_or_else(|| {
85 buf = generate_impl_text(&ast::Adt::Enum(parent_enum.clone()), &buf);
86 parent_enum.syntax().text_range().end()
87 });
88
89 builder.insert(start_offset, buf);
90 }, 68 },
91 ) 69 )
92} 70}
93 71
94#[cfg(test)] 72#[cfg(test)]
95mod tests { 73mod tests {
96 use test_utils::mark;
97
98 use crate::tests::{check_assist, check_assist_not_applicable}; 74 use crate::tests::{check_assist, check_assist_not_applicable};
99 75
100 use super::*; 76 use super::*;
101 77
102 fn check_not_applicable(ra_fixture: &str) {
103 check_assist_not_applicable(generate_enum_match_method, ra_fixture)
104 }
105
106 #[test] 78 #[test]
107 fn test_generate_enum_match_from_variant() { 79 fn test_generate_enum_is_from_variant() {
108 check_assist( 80 check_assist(
109 generate_enum_match_method, 81 generate_enum_is_method,
110 r#" 82 r#"
111enum Variant { 83enum Variant {
112 Undefined, 84 Undefined,
@@ -129,8 +101,9 @@ impl Variant {
129 } 101 }
130 102
131 #[test] 103 #[test]
132 fn test_generate_enum_match_already_implemented() { 104 fn test_generate_enum_is_already_implemented() {
133 check_not_applicable( 105 check_assist_not_applicable(
106 generate_enum_is_method,
134 r#" 107 r#"
135enum Variant { 108enum Variant {
136 Undefined, 109 Undefined,
@@ -147,22 +120,59 @@ impl Variant {
147 } 120 }
148 121
149 #[test] 122 #[test]
150 fn test_add_from_impl_no_element() { 123 fn test_generate_enum_is_from_tuple_variant() {
151 mark::check!(test_gen_enum_match_on_non_unit_variant_not_implemented); 124 check_assist(
152 check_not_applicable( 125 generate_enum_is_method,
153 r#" 126 r#"
154enum Variant { 127enum Variant {
155 Undefined, 128 Undefined,
156 Minor(u32)$0, 129 Minor(u32)$0,
157 Major, 130 Major,
158}"#, 131}"#,
132 r#"enum Variant {
133 Undefined,
134 Minor(u32),
135 Major,
136}
137
138impl Variant {
139 /// Returns `true` if the variant is [`Minor`].
140 fn is_minor(&self) -> bool {
141 matches!(self, Self::Minor(..))
142 }
143}"#,
144 );
145 }
146
147 #[test]
148 fn test_generate_enum_is_from_record_variant() {
149 check_assist(
150 generate_enum_is_method,
151 r#"
152enum Variant {
153 Undefined,
154 Minor { foo: i32 }$0,
155 Major,
156}"#,
157 r#"enum Variant {
158 Undefined,
159 Minor { foo: i32 },
160 Major,
161}
162
163impl Variant {
164 /// Returns `true` if the variant is [`Minor`].
165 fn is_minor(&self) -> bool {
166 matches!(self, Self::Minor { .. })
167 }
168}"#,
159 ); 169 );
160 } 170 }
161 171
162 #[test] 172 #[test]
163 fn test_generate_enum_match_from_variant_with_one_variant() { 173 fn test_generate_enum_is_from_variant_with_one_variant() {
164 check_assist( 174 check_assist(
165 generate_enum_match_method, 175 generate_enum_is_method,
166 r#"enum Variant { Undefi$0ned }"#, 176 r#"enum Variant { Undefi$0ned }"#,
167 r#" 177 r#"
168enum Variant { Undefined } 178enum Variant { Undefined }
@@ -177,9 +187,9 @@ impl Variant {
177 } 187 }
178 188
179 #[test] 189 #[test]
180 fn test_generate_enum_match_from_variant_with_visibility_marker() { 190 fn test_generate_enum_is_from_variant_with_visibility_marker() {
181 check_assist( 191 check_assist(
182 generate_enum_match_method, 192 generate_enum_is_method,
183 r#" 193 r#"
184pub(crate) enum Variant { 194pub(crate) enum Variant {
185 Undefined, 195 Undefined,
@@ -202,9 +212,9 @@ impl Variant {
202 } 212 }
203 213
204 #[test] 214 #[test]
205 fn test_multiple_generate_enum_match_from_variant() { 215 fn test_multiple_generate_enum_is_from_variant() {
206 check_assist( 216 check_assist(
207 generate_enum_match_method, 217 generate_enum_is_method,
208 r#" 218 r#"
209enum Variant { 219enum Variant {
210 Undefined, 220 Undefined,
diff --git a/crates/ide_assists/src/handlers/generate_enum_projection_method.rs b/crates/ide_assists/src/handlers/generate_enum_projection_method.rs
new file mode 100644
index 000000000..871bcab50
--- /dev/null
+++ b/crates/ide_assists/src/handlers/generate_enum_projection_method.rs
@@ -0,0 +1,331 @@
1use itertools::Itertools;
2use stdx::to_lower_snake_case;
3use syntax::ast::VisibilityOwner;
4use syntax::ast::{self, AstNode, NameOwner};
5
6use crate::{
7 utils::{add_method_to_adt, find_struct_impl},
8 AssistContext, AssistId, AssistKind, Assists,
9};
10
11// Assist: generate_enum_try_into_method
12//
13// Generate an `try_into_` method for an enum variant.
14//
15// ```
16// enum Value {
17// Number(i32),
18// Text(String)$0,
19// }
20// ```
21// ->
22// ```
23// enum Value {
24// Number(i32),
25// Text(String),
26// }
27//
28// impl Value {
29// fn try_into_text(self) -> Result<String, Self> {
30// if let Self::Text(v) = self {
31// Ok(v)
32// } else {
33// Err(self)
34// }
35// }
36// }
37// ```
38pub(crate) fn generate_enum_try_into_method(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
39 generate_enum_projection_method(
40 acc,
41 ctx,
42 "generate_enum_try_into_method",
43 "Generate an `try_into_` method for an enum variant",
44 ProjectionProps {
45 fn_name_prefix: "try_into",
46 self_param: "self",
47 return_prefix: "Result<",
48 return_suffix: ", Self>",
49 happy_case: "Ok",
50 sad_case: "Err(self)",
51 },
52 )
53}
54
55// Assist: generate_enum_as_method
56//
57// Generate an `as_` method for an enum variant.
58//
59// ```
60// enum Value {
61// Number(i32),
62// Text(String)$0,
63// }
64// ```
65// ->
66// ```
67// enum Value {
68// Number(i32),
69// Text(String),
70// }
71//
72// impl Value {
73// fn as_text(&self) -> Option<&String> {
74// if let Self::Text(v) = self {
75// Some(v)
76// } else {
77// None
78// }
79// }
80// }
81// ```
82pub(crate) fn generate_enum_as_method(acc: &mut Assists, ctx: &AssistContext) -> Option<()> {
83 generate_enum_projection_method(
84 acc,
85 ctx,
86 "generate_enum_as_method",
87 "Generate an `as_` method for an enum variant",
88 ProjectionProps {
89 fn_name_prefix: "as",
90 self_param: "&self",
91 return_prefix: "Option<&",
92 return_suffix: ">",
93 happy_case: "Some",
94 sad_case: "None",
95 },
96 )
97}
98
99struct ProjectionProps {
100 fn_name_prefix: &'static str,
101 self_param: &'static str,
102 return_prefix: &'static str,
103 return_suffix: &'static str,
104 happy_case: &'static str,
105 sad_case: &'static str,
106}
107
108fn generate_enum_projection_method(
109 acc: &mut Assists,
110 ctx: &AssistContext,
111 assist_id: &'static str,
112 assist_description: &str,
113 props: ProjectionProps,
114) -> Option<()> {
115 let variant = ctx.find_node_at_offset::<ast::Variant>()?;
116 let variant_name = variant.name()?;
117 let parent_enum = ast::Adt::Enum(variant.parent_enum());
118
119 let (pattern_suffix, field_type, bound_name) = match variant.kind() {
120 ast::StructKind::Record(record) => {
121 let (field,) = record.fields().collect_tuple()?;
122 let name = field.name()?.to_string();
123 let ty = field.ty()?;
124 let pattern_suffix = format!(" {{ {} }}", name);
125 (pattern_suffix, ty, name)
126 }
127 ast::StructKind::Tuple(tuple) => {
128 let (field,) = tuple.fields().collect_tuple()?;
129 let ty = field.ty()?;
130 ("(v)".to_owned(), ty, "v".to_owned())
131 }
132 ast::StructKind::Unit => return None,
133 };
134
135 let fn_name = format!("{}_{}", props.fn_name_prefix, &to_lower_snake_case(variant_name.text()));
136
137 // Return early if we've found an existing new fn
138 let impl_def = find_struct_impl(&ctx, &parent_enum, &fn_name)?;
139
140 let target = variant.syntax().text_range();
141 acc.add(AssistId(assist_id, AssistKind::Generate), assist_description, target, |builder| {
142 let vis = parent_enum.visibility().map_or(String::new(), |v| format!("{} ", v));
143 let method = format!(
144 " {0}fn {1}({2}) -> {3}{4}{5} {{
145 if let Self::{6}{7} = self {{
146 {8}({9})
147 }} else {{
148 {10}
149 }}
150 }}",
151 vis,
152 fn_name,
153 props.self_param,
154 props.return_prefix,
155 field_type.syntax(),
156 props.return_suffix,
157 variant_name,
158 pattern_suffix,
159 props.happy_case,
160 bound_name,
161 props.sad_case,
162 );
163
164 add_method_to_adt(builder, &parent_enum, impl_def, &method);
165 })
166}
167
168#[cfg(test)]
169mod tests {
170 use crate::tests::{check_assist, check_assist_not_applicable};
171
172 use super::*;
173
174 #[test]
175 fn test_generate_enum_try_into_tuple_variant() {
176 check_assist(
177 generate_enum_try_into_method,
178 r#"
179enum Value {
180 Number(i32),
181 Text(String)$0,
182}"#,
183 r#"enum Value {
184 Number(i32),
185 Text(String),
186}
187
188impl Value {
189 fn try_into_text(self) -> Result<String, Self> {
190 if let Self::Text(v) = self {
191 Ok(v)
192 } else {
193 Err(self)
194 }
195 }
196}"#,
197 );
198 }
199
200 #[test]
201 fn test_generate_enum_try_into_already_implemented() {
202 check_assist_not_applicable(
203 generate_enum_try_into_method,
204 r#"enum Value {
205 Number(i32),
206 Text(String)$0,
207}
208
209impl Value {
210 fn try_into_text(self) -> Result<String, Self> {
211 if let Self::Text(v) = self {
212 Ok(v)
213 } else {
214 Err(self)
215 }
216 }
217}"#,
218 );
219 }
220
221 #[test]
222 fn test_generate_enum_try_into_unit_variant() {
223 check_assist_not_applicable(
224 generate_enum_try_into_method,
225 r#"enum Value {
226 Number(i32),
227 Text(String),
228 Unit$0,
229}"#,
230 );
231 }
232
233 #[test]
234 fn test_generate_enum_try_into_record_with_multiple_fields() {
235 check_assist_not_applicable(
236 generate_enum_try_into_method,
237 r#"enum Value {
238 Number(i32),
239 Text(String),
240 Both { first: i32, second: String }$0,
241}"#,
242 );
243 }
244
245 #[test]
246 fn test_generate_enum_try_into_tuple_with_multiple_fields() {
247 check_assist_not_applicable(
248 generate_enum_try_into_method,
249 r#"enum Value {
250 Number(i32),
251 Text(String, String)$0,
252}"#,
253 );
254 }
255
256 #[test]
257 fn test_generate_enum_try_into_record_variant() {
258 check_assist(
259 generate_enum_try_into_method,
260 r#"enum Value {
261 Number(i32),
262 Text { text: String }$0,
263}"#,
264 r#"enum Value {
265 Number(i32),
266 Text { text: String },
267}
268
269impl Value {
270 fn try_into_text(self) -> Result<String, Self> {
271 if let Self::Text { text } = self {
272 Ok(text)
273 } else {
274 Err(self)
275 }
276 }
277}"#,
278 );
279 }
280
281 #[test]
282 fn test_generate_enum_as_tuple_variant() {
283 check_assist(
284 generate_enum_as_method,
285 r#"
286enum Value {
287 Number(i32),
288 Text(String)$0,
289}"#,
290 r#"enum Value {
291 Number(i32),
292 Text(String),
293}
294
295impl Value {
296 fn as_text(&self) -> Option<&String> {
297 if let Self::Text(v) = self {
298 Some(v)
299 } else {
300 None
301 }
302 }
303}"#,
304 );
305 }
306
307 #[test]
308 fn test_generate_enum_as_record_variant() {
309 check_assist(
310 generate_enum_as_method,
311 r#"enum Value {
312 Number(i32),
313 Text { text: String }$0,
314}"#,
315 r#"enum Value {
316 Number(i32),
317 Text { text: String },
318}
319
320impl Value {
321 fn as_text(&self) -> Option<&String> {
322 if let Self::Text { text } = self {
323 Some(text)
324 } else {
325 None
326 }
327 }
328}"#,
329 );
330 }
331}
diff --git a/crates/ide_assists/src/lib.rs b/crates/ide_assists/src/lib.rs
index f4c7e6fbf..4c067d451 100644
--- a/crates/ide_assists/src/lib.rs
+++ b/crates/ide_assists/src/lib.rs
@@ -128,7 +128,8 @@ mod handlers {
128 mod flip_trait_bound; 128 mod flip_trait_bound;
129 mod generate_default_from_enum_variant; 129 mod generate_default_from_enum_variant;
130 mod generate_derive; 130 mod generate_derive;
131 mod generate_enum_match_method; 131 mod generate_enum_is_method;
132 mod generate_enum_projection_method;
132 mod generate_from_impl_for_enum; 133 mod generate_from_impl_for_enum;
133 mod generate_function; 134 mod generate_function;
134 mod generate_getter; 135 mod generate_getter;
@@ -189,7 +190,9 @@ mod handlers {
189 flip_trait_bound::flip_trait_bound, 190 flip_trait_bound::flip_trait_bound,
190 generate_default_from_enum_variant::generate_default_from_enum_variant, 191 generate_default_from_enum_variant::generate_default_from_enum_variant,
191 generate_derive::generate_derive, 192 generate_derive::generate_derive,
192 generate_enum_match_method::generate_enum_match_method, 193 generate_enum_is_method::generate_enum_is_method,
194 generate_enum_projection_method::generate_enum_try_into_method,
195 generate_enum_projection_method::generate_enum_as_method,
193 generate_from_impl_for_enum::generate_from_impl_for_enum, 196 generate_from_impl_for_enum::generate_from_impl_for_enum,
194 generate_function::generate_function, 197 generate_function::generate_function,
195 generate_getter::generate_getter, 198 generate_getter::generate_getter,
diff --git a/crates/ide_assists/src/tests/generated.rs b/crates/ide_assists/src/tests/generated.rs
index d42875822..7f6dbbccf 100644
--- a/crates/ide_assists/src/tests/generated.rs
+++ b/crates/ide_assists/src/tests/generated.rs
@@ -483,9 +483,38 @@ struct Point {
483} 483}
484 484
485#[test] 485#[test]
486fn doctest_generate_enum_match_method() { 486fn doctest_generate_enum_as_method() {
487 check_doc_test( 487 check_doc_test(
488 "generate_enum_match_method", 488 "generate_enum_as_method",
489 r#####"
490enum Value {
491 Number(i32),
492 Text(String)$0,
493}
494"#####,
495 r#####"
496enum Value {
497 Number(i32),
498 Text(String),
499}
500
501impl Value {
502 fn as_text(&self) -> Option<&String> {
503 if let Self::Text(v) = self {
504 Some(v)
505 } else {
506 None
507 }
508 }
509}
510"#####,
511 )
512}
513
514#[test]
515fn doctest_generate_enum_is_method() {
516 check_doc_test(
517 "generate_enum_is_method",
489 r#####" 518 r#####"
490enum Version { 519enum Version {
491 Undefined, 520 Undefined,
@@ -511,6 +540,35 @@ impl Version {
511} 540}
512 541
513#[test] 542#[test]
543fn doctest_generate_enum_try_into_method() {
544 check_doc_test(
545 "generate_enum_try_into_method",
546 r#####"
547enum Value {
548 Number(i32),
549 Text(String)$0,
550}
551"#####,
552 r#####"
553enum Value {
554 Number(i32),
555 Text(String),
556}
557
558impl Value {
559 fn try_into_text(self) -> Result<String, Self> {
560 if let Self::Text(v) = self {
561 Ok(v)
562 } else {
563 Err(self)
564 }
565 }
566}
567"#####,
568 )
569}
570
571#[test]
514fn doctest_generate_from_impl_for_enum() { 572fn doctest_generate_from_impl_for_enum() {
515 check_doc_test( 573 check_doc_test(
516 "generate_from_impl_for_enum", 574 "generate_from_impl_for_enum",
diff --git a/crates/ide_assists/src/utils.rs b/crates/ide_assists/src/utils.rs
index 276792bc1..880ab6fe3 100644
--- a/crates/ide_assists/src/utils.rs
+++ b/crates/ide_assists/src/utils.rs
@@ -21,7 +21,7 @@ use syntax::{
21}; 21};
22 22
23use crate::{ 23use crate::{
24 assist_context::AssistContext, 24 assist_context::{AssistBuilder, AssistContext},
25 ast_transform::{self, AstTransform, QualifyPaths, SubstituteTypeParams}, 25 ast_transform::{self, AstTransform, QualifyPaths, SubstituteTypeParams},
26}; 26};
27 27
@@ -464,3 +464,25 @@ fn generate_impl_text_inner(adt: &ast::Adt, trait_text: Option<&str>, code: &str
464 464
465 buf 465 buf
466} 466}
467
468pub(crate) fn add_method_to_adt(
469 builder: &mut AssistBuilder,
470 adt: &ast::Adt,
471 impl_def: Option<ast::Impl>,
472 method: &str,
473) {
474 let mut buf = String::with_capacity(method.len() + 2);
475 if impl_def.is_some() {
476 buf.push('\n');
477 }
478 buf.push_str(method);
479
480 let start_offset = impl_def
481 .and_then(|impl_def| find_impl_block_end(impl_def, &mut buf))
482 .unwrap_or_else(|| {
483 buf = generate_impl_text(&adt, &buf);
484 adt.syntax().text_range().end()
485 });
486
487 builder.insert(start_offset, buf);
488}
diff --git a/crates/ide_completion/src/generated_lint_completions.rs b/crates/ide_completion/src/generated_lint_completions.rs
index 87df7f1c9..0d405350d 100644
--- a/crates/ide_completion/src/generated_lint_completions.rs
+++ b/crates/ide_completion/src/generated_lint_completions.rs
@@ -1,5 +1,6380 @@
1//! Generated file, do not edit by hand, see `xtask/src/codegen` 1//! Generated file, do not edit by hand, see `xtask/src/codegen`
2 2
3use crate::completions::attribute::LintCompletion; 3use crate::completions::attribute::LintCompletion;
4pub (super) const FEATURES : & [LintCompletion] = & [LintCompletion { label : "non_ascii_idents" , description : "# `non_ascii_idents`\n\nThe tracking issue for this feature is: [#55467]\n\n[#55467]: https://github.com/rust-lang/rust/issues/55467\n\n------------------------\n\nThe `non_ascii_idents` feature adds support for non-ASCII identifiers.\n\n## Examples\n\n```rust\n#![feature(non_ascii_idents)]\n\nconst ε: f64 = 0.00001f64;\nconst Π: f64 = 3.14f64;\n```\n\n## Changes to the language reference\n\n> **<sup>Lexer:<sup>** \n> IDENTIFIER : \n> &nbsp;&nbsp; &nbsp;&nbsp; XID_start XID_continue<sup>\\*</sup> \n> &nbsp;&nbsp; | `_` XID_continue<sup>+</sup> \n\nAn identifier is any nonempty Unicode string of the following form:\n\nEither\n\n * The first character has property [`XID_start`]\n * The remaining characters have property [`XID_continue`]\n\nOr\n\n * The first character is `_`\n * The identifier is more than one character, `_` alone is not an identifier\n * The remaining characters have property [`XID_continue`]\n\nthat does _not_ occur in the set of [strict keywords].\n\n> **Note**: [`XID_start`] and [`XID_continue`] as character properties cover the\n> character ranges used to form the more familiar C and Java language-family\n> identifiers.\n\n[`XID_start`]: http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Start%3A%5D&abb=on&g=&i=\n[`XID_continue`]: http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Continue%3A%5D&abb=on&g=&i=\n[strict keywords]: ../../reference/keywords.md#strict-keywords\n" } , LintCompletion { label : "custom_test_frameworks" , description : "# `custom_test_frameworks`\n\nThe tracking issue for this feature is: [#50297]\n\n[#50297]: https://github.com/rust-lang/rust/issues/50297\n\n------------------------\n\nThe `custom_test_frameworks` feature allows the use of `#[test_case]` and `#![test_runner]`.\nAny function, const, or static can be annotated with `#[test_case]` causing it to be aggregated (like `#[test]`)\nand be passed to the test runner determined by the `#![test_runner]` crate attribute.\n\n```rust\n#![feature(custom_test_frameworks)]\n#![test_runner(my_runner)]\n\nfn my_runner(tests: &[&i32]) {\n for t in tests {\n if **t == 0 {\n println!(\"PASSED\");\n } else {\n println!(\"FAILED\");\n }\n }\n}\n\n#[test_case]\nconst WILL_PASS: i32 = 0;\n\n#[test_case]\nconst WILL_FAIL: i32 = 4;\n```\n\n" } , LintCompletion { label : "abi_msp430_interrupt" , description : "# `abi_msp430_interrupt`\n\nThe tracking issue for this feature is: [#38487]\n\n[#38487]: https://github.com/rust-lang/rust/issues/38487\n\n------------------------\n\nIn the MSP430 architecture, interrupt handlers have a special calling\nconvention. You can use the `\"msp430-interrupt\"` ABI to make the compiler apply\nthe right calling convention to the interrupt handlers you define.\n\n<!-- NOTE(ignore) this example is specific to the msp430 target -->\n\n``` rust,ignore\n#![feature(abi_msp430_interrupt)]\n#![no_std]\n\n// Place the interrupt handler at the appropriate memory address\n// (Alternatively, you can use `#[used]` and remove `pub` and `#[no_mangle]`)\n#[link_section = \"__interrupt_vector_10\"]\n#[no_mangle]\npub static TIM0_VECTOR: extern \"msp430-interrupt\" fn() = tim0;\n\n// The interrupt handler\nextern \"msp430-interrupt\" fn tim0() {\n // ..\n}\n```\n\n``` text\n$ msp430-elf-objdump -CD ./target/msp430/release/app\nDisassembly of section __interrupt_vector_10:\n\n0000fff2 <TIM0_VECTOR>:\n fff2: 00 c0 interrupt service routine at 0xc000\n\nDisassembly of section .text:\n\n0000c000 <int::tim0>:\n c000: 00 13 reti\n```\n" } , LintCompletion { label : "link_args" , description : "# `link_args`\n\nThe tracking issue for this feature is: [#29596]\n\n[#29596]: https://github.com/rust-lang/rust/issues/29596\n\n------------------------\n\nYou can tell `rustc` how to customize linking, and that is via the `link_args`\nattribute. This attribute is applied to `extern` blocks and specifies raw flags\nwhich need to get passed to the linker when producing an artifact. An example\nusage would be:\n\n```rust,no_run\n#![feature(link_args)]\n\n#[link_args = \"-foo -bar -baz\"]\nextern {}\n# fn main() {}\n```\n\nNote that this feature is currently hidden behind the `feature(link_args)` gate\nbecause this is not a sanctioned way of performing linking. Right now `rustc`\nshells out to the system linker (`gcc` on most systems, `link.exe` on MSVC), so\nit makes sense to provide extra command line arguments, but this will not\nalways be the case. In the future `rustc` may use LLVM directly to link native\nlibraries, in which case `link_args` will have no meaning. You can achieve the\nsame effect as the `link_args` attribute with the `-C link-args` argument to\n`rustc`.\n\nIt is highly recommended to *not* use this attribute, and rather use the more\nformal `#[link(...)]` attribute on `extern` blocks instead.\n" } , LintCompletion { label : "const_eval_limit" , description : "# `const_eval_limit`\n\nThe tracking issue for this feature is: [#67217]\n\n[#67217]: https://github.com/rust-lang/rust/issues/67217\n\nThe `const_eval_limit` allows someone to limit the evaluation steps the CTFE undertakes to evaluate a `const fn`.\n" } , LintCompletion { label : "marker_trait_attr" , description : "# `marker_trait_attr`\n\nThe tracking issue for this feature is: [#29864]\n\n[#29864]: https://github.com/rust-lang/rust/issues/29864\n\n------------------------\n\nNormally, Rust keeps you from adding trait implementations that could\noverlap with each other, as it would be ambiguous which to use. This\nfeature, however, carves out an exception to that rule: a trait can\nopt-in to having overlapping implementations, at the cost that those\nimplementations are not allowed to override anything (and thus the\ntrait itself cannot have any associated items, as they're pointless\nwhen they'd need to do the same thing for every type anyway).\n\n```rust\n#![feature(marker_trait_attr)]\n\n#[marker] trait CheapToClone: Clone {}\n\nimpl<T: Copy> CheapToClone for T {}\n\n// These could potentially overlap with the blanket implementation above,\n// so are only allowed because CheapToClone is a marker trait.\nimpl<T: CheapToClone, U: CheapToClone> CheapToClone for (T, U) {}\nimpl<T: CheapToClone> CheapToClone for std::ops::Range<T> {}\n\nfn cheap_clone<T: CheapToClone>(t: T) -> T {\n t.clone()\n}\n```\n\nThis is expected to replace the unstable `overlapping_marker_traits`\nfeature, which applied to all empty traits (without needing an opt-in).\n" } , LintCompletion { label : "ffi_const" , description : "# `ffi_const`\n\nThe tracking issue for this feature is: [#58328]\n\n------\n\nThe `#[ffi_const]` attribute applies clang's `const` attribute to foreign\nfunctions declarations.\n\nThat is, `#[ffi_const]` functions shall have no effects except for its return\nvalue, which can only depend on the values of the function parameters, and is\nnot affected by changes to the observable state of the program.\n\nApplying the `#[ffi_const]` attribute to a function that violates these\nrequirements is undefined behaviour.\n\nThis attribute enables Rust to perform common optimizations, like sub-expression\nelimination, and it can avoid emitting some calls in repeated invocations of the\nfunction with the same argument values regardless of other operations being\nperformed in between these functions calls (as opposed to `#[ffi_pure]`\nfunctions).\n\n## Pitfalls\n\nA `#[ffi_const]` function can only read global memory that would not affect\nits return value for the whole execution of the program (e.g. immutable global\nmemory). `#[ffi_const]` functions are referentially-transparent and therefore\nmore strict than `#[ffi_pure]` functions.\n\nA common pitfall involves applying the `#[ffi_const]` attribute to a\nfunction that reads memory through pointer arguments which do not necessarily\npoint to immutable global memory.\n\nA `#[ffi_const]` function that returns unit has no effect on the abstract\nmachine's state, and a `#[ffi_const]` function cannot be `#[ffi_pure]`.\n\nA `#[ffi_const]` function must not diverge, neither via a side effect (e.g. a\ncall to `abort`) nor by infinite loops.\n\nWhen translating C headers to Rust FFI, it is worth verifying for which targets\nthe `const` attribute is enabled in those headers, and using the appropriate\n`cfg` macros in the Rust side to match those definitions. While the semantics of\n`const` are implemented identically by many C and C++ compilers, e.g., clang,\n[GCC], [ARM C/C++ compiler], [IBM ILE C/C++], etc. they are not necessarily\nimplemented in this way on all of them. It is therefore also worth verifying\nthat the semantics of the C toolchain used to compile the binary being linked\nagainst are compatible with those of the `#[ffi_const]`.\n\n[#58328]: https://github.com/rust-lang/rust/issues/58328\n[ARM C/C++ compiler]: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacgigch.html\n[GCC]: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-const-function-attribute\n[IBM ILE C/C++]: https://www.ibm.com/support/knowledgecenter/fr/ssw_ibm_i_71/rzarg/fn_attrib_const.htm\n" } , LintCompletion { label : "doc_spotlight" , description : "# `doc_spotlight`\n\nThe tracking issue for this feature is: [#45040]\n\nThe `doc_spotlight` feature allows the use of the `spotlight` parameter to the `#[doc]` attribute,\nto \"spotlight\" a specific trait on the return values of functions. Adding a `#[doc(spotlight)]`\nattribute to a trait definition will make rustdoc print extra information for functions which return\na type that implements that trait. This attribute is applied to the `Iterator`, `io::Read`, and\n`io::Write` traits in the standard library.\n\nYou can do this on your own traits, like this:\n\n```\n#![feature(doc_spotlight)]\n\n#[doc(spotlight)]\npub trait MyTrait {}\n\npub struct MyStruct;\nimpl MyTrait for MyStruct {}\n\n/// The docs for this function will have an extra line about `MyStruct` implementing `MyTrait`,\n/// without having to write that yourself!\npub fn my_fn() -> MyStruct { MyStruct }\n```\n\nThis feature was originally implemented in PR [#45039].\n\n[#45040]: https://github.com/rust-lang/rust/issues/45040\n[#45039]: https://github.com/rust-lang/rust/pull/45039\n" } , LintCompletion { label : "compiler_builtins" , description : "# `compiler_builtins`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "lang_items" , description : "# `lang_items`\n\nThe tracking issue for this feature is: None.\n\n------------------------\n\nThe `rustc` compiler has certain pluggable operations, that is,\nfunctionality that isn't hard-coded into the language, but is\nimplemented in libraries, with a special marker to tell the compiler\nit exists. The marker is the attribute `#[lang = \"...\"]` and there are\nvarious different values of `...`, i.e. various different 'lang\nitems'.\n\nFor example, `Box` pointers require two lang items, one for allocation\nand one for deallocation. A freestanding program that uses the `Box`\nsugar for dynamic allocations via `malloc` and `free`:\n\n```rust,ignore\n#![feature(lang_items, box_syntax, start, libc, core_intrinsics)]\n#![no_std]\nuse core::intrinsics;\nuse core::panic::PanicInfo;\n\nextern crate libc;\n\n#[lang = \"owned_box\"]\npub struct Box<T>(*mut T);\n\n#[lang = \"exchange_malloc\"]\nunsafe fn allocate(size: usize, _align: usize) -> *mut u8 {\n let p = libc::malloc(size as libc::size_t) as *mut u8;\n\n // Check if `malloc` failed:\n if p as usize == 0 {\n intrinsics::abort();\n }\n\n p\n}\n\n#[lang = \"box_free\"]\nunsafe fn box_free<T: ?Sized>(ptr: *mut T) {\n libc::free(ptr as *mut libc::c_void)\n}\n\n#[start]\nfn main(_argc: isize, _argv: *const *const u8) -> isize {\n let _x = box 1;\n\n 0\n}\n\n#[lang = \"eh_personality\"] extern fn rust_eh_personality() {}\n#[lang = \"panic_impl\"] extern fn rust_begin_panic(info: &PanicInfo) -> ! { unsafe { intrinsics::abort() } }\n#[no_mangle] pub extern fn rust_eh_register_frames () {}\n#[no_mangle] pub extern fn rust_eh_unregister_frames () {}\n```\n\nNote the use of `abort`: the `exchange_malloc` lang item is assumed to\nreturn a valid pointer, and so needs to do the check internally.\n\nOther features provided by lang items include:\n\n- overloadable operators via traits: the traits corresponding to the\n `==`, `<`, dereferencing (`*`) and `+` (etc.) operators are all\n marked with lang items; those specific four are `eq`, `ord`,\n `deref`, and `add` respectively.\n- stack unwinding and general failure; the `eh_personality`,\n `panic` and `panic_bounds_checks` lang items.\n- the traits in `std::marker` used to indicate types of\n various kinds; lang items `send`, `sync` and `copy`.\n- the marker types and variance indicators found in\n `std::marker`; lang items `covariant_type`,\n `contravariant_lifetime`, etc.\n\nLang items are loaded lazily by the compiler; e.g. if one never uses\n`Box` then there is no need to define functions for `exchange_malloc`\nand `box_free`. `rustc` will emit an error when an item is needed\nbut not found in the current crate or any that it depends on.\n\nMost lang items are defined by `libcore`, but if you're trying to build\nan executable without the standard library, you'll run into the need\nfor lang items. The rest of this page focuses on this use-case, even though\nlang items are a bit broader than that.\n\n### Using libc\n\nIn order to build a `#[no_std]` executable we will need libc as a dependency.\nWe can specify this using our `Cargo.toml` file:\n\n```toml\n[dependencies]\nlibc = { version = \"0.2.14\", default-features = false }\n```\n\nNote that the default features have been disabled. This is a critical step -\n**the default features of libc include the standard library and so must be\ndisabled.**\n\n### Writing an executable without stdlib\n\nControlling the entry point is possible in two ways: the `#[start]` attribute,\nor overriding the default shim for the C `main` function with your own.\n\nThe function marked `#[start]` is passed the command line parameters\nin the same format as C:\n\n```rust,ignore\n#![feature(lang_items, core_intrinsics)]\n#![feature(start)]\n#![no_std]\nuse core::intrinsics;\nuse core::panic::PanicInfo;\n\n// Pull in the system libc library for what crt0.o likely requires.\nextern crate libc;\n\n// Entry point for this program.\n#[start]\nfn start(_argc: isize, _argv: *const *const u8) -> isize {\n 0\n}\n\n// These functions are used by the compiler, but not\n// for a bare-bones hello world. These are normally\n// provided by libstd.\n#[lang = \"eh_personality\"]\n#[no_mangle]\npub extern fn rust_eh_personality() {\n}\n\n#[lang = \"panic_impl\"]\n#[no_mangle]\npub extern fn rust_begin_panic(info: &PanicInfo) -> ! {\n unsafe { intrinsics::abort() }\n}\n```\n\nTo override the compiler-inserted `main` shim, one has to disable it\nwith `#![no_main]` and then create the appropriate symbol with the\ncorrect ABI and the correct name, which requires overriding the\ncompiler's name mangling too:\n\n```rust,ignore\n#![feature(lang_items, core_intrinsics)]\n#![feature(start)]\n#![no_std]\n#![no_main]\nuse core::intrinsics;\nuse core::panic::PanicInfo;\n\n// Pull in the system libc library for what crt0.o likely requires.\nextern crate libc;\n\n// Entry point for this program.\n#[no_mangle] // ensure that this symbol is called `main` in the output\npub extern fn main(_argc: i32, _argv: *const *const u8) -> i32 {\n 0\n}\n\n// These functions are used by the compiler, but not\n// for a bare-bones hello world. These are normally\n// provided by libstd.\n#[lang = \"eh_personality\"]\n#[no_mangle]\npub extern fn rust_eh_personality() {\n}\n\n#[lang = \"panic_impl\"]\n#[no_mangle]\npub extern fn rust_begin_panic(info: &PanicInfo) -> ! {\n unsafe { intrinsics::abort() }\n}\n```\n\nIn many cases, you may need to manually link to the `compiler_builtins` crate\nwhen building a `no_std` binary. You may observe this via linker error messages\nsuch as \"```undefined reference to `__rust_probestack'```\".\n\n## More about the language items\n\nThe compiler currently makes a few assumptions about symbols which are\navailable in the executable to call. Normally these functions are provided by\nthe standard library, but without it you must define your own. These symbols\nare called \"language items\", and they each have an internal name, and then a\nsignature that an implementation must conform to.\n\nThe first of these functions, `rust_eh_personality`, is used by the failure\nmechanisms of the compiler. This is often mapped to GCC's personality function\n(see the [libstd implementation][unwind] for more information), but crates\nwhich do not trigger a panic can be assured that this function is never\ncalled. The language item's name is `eh_personality`.\n\n[unwind]: https://github.com/rust-lang/rust/blob/master/src/libpanic_unwind/gcc.rs\n\nThe second function, `rust_begin_panic`, is also used by the failure mechanisms of the\ncompiler. When a panic happens, this controls the message that's displayed on\nthe screen. While the language item's name is `panic_impl`, the symbol name is\n`rust_begin_panic`.\n\nFinally, a `eh_catch_typeinfo` static is needed for certain targets which\nimplement Rust panics on top of C++ exceptions.\n\n## List of all language items\n\nThis is a list of all language items in Rust along with where they are located in\nthe source code.\n\n- Primitives\n - `i8`: `libcore/num/mod.rs`\n - `i16`: `libcore/num/mod.rs`\n - `i32`: `libcore/num/mod.rs`\n - `i64`: `libcore/num/mod.rs`\n - `i128`: `libcore/num/mod.rs`\n - `isize`: `libcore/num/mod.rs`\n - `u8`: `libcore/num/mod.rs`\n - `u16`: `libcore/num/mod.rs`\n - `u32`: `libcore/num/mod.rs`\n - `u64`: `libcore/num/mod.rs`\n - `u128`: `libcore/num/mod.rs`\n - `usize`: `libcore/num/mod.rs`\n - `f32`: `libstd/f32.rs`\n - `f64`: `libstd/f64.rs`\n - `char`: `libcore/char.rs`\n - `slice`: `liballoc/slice.rs`\n - `str`: `liballoc/str.rs`\n - `const_ptr`: `libcore/ptr.rs`\n - `mut_ptr`: `libcore/ptr.rs`\n - `unsafe_cell`: `libcore/cell.rs`\n- Runtime\n - `start`: `libstd/rt.rs`\n - `eh_personality`: `libpanic_unwind/emcc.rs` (EMCC)\n - `eh_personality`: `libpanic_unwind/gcc.rs` (GNU)\n - `eh_personality`: `libpanic_unwind/seh.rs` (SEH)\n - `eh_catch_typeinfo`: `libpanic_unwind/emcc.rs` (EMCC)\n - `panic`: `libcore/panicking.rs`\n - `panic_bounds_check`: `libcore/panicking.rs`\n - `panic_impl`: `libcore/panicking.rs`\n - `panic_impl`: `libstd/panicking.rs`\n- Allocations\n - `owned_box`: `liballoc/boxed.rs`\n - `exchange_malloc`: `liballoc/heap.rs`\n - `box_free`: `liballoc/heap.rs`\n- Operands\n - `not`: `libcore/ops/bit.rs`\n - `bitand`: `libcore/ops/bit.rs`\n - `bitor`: `libcore/ops/bit.rs`\n - `bitxor`: `libcore/ops/bit.rs`\n - `shl`: `libcore/ops/bit.rs`\n - `shr`: `libcore/ops/bit.rs`\n - `bitand_assign`: `libcore/ops/bit.rs`\n - `bitor_assign`: `libcore/ops/bit.rs`\n - `bitxor_assign`: `libcore/ops/bit.rs`\n - `shl_assign`: `libcore/ops/bit.rs`\n - `shr_assign`: `libcore/ops/bit.rs`\n - `deref`: `libcore/ops/deref.rs`\n - `deref_mut`: `libcore/ops/deref.rs`\n - `index`: `libcore/ops/index.rs`\n - `index_mut`: `libcore/ops/index.rs`\n - `add`: `libcore/ops/arith.rs`\n - `sub`: `libcore/ops/arith.rs`\n - `mul`: `libcore/ops/arith.rs`\n - `div`: `libcore/ops/arith.rs`\n - `rem`: `libcore/ops/arith.rs`\n - `neg`: `libcore/ops/arith.rs`\n - `add_assign`: `libcore/ops/arith.rs`\n - `sub_assign`: `libcore/ops/arith.rs`\n - `mul_assign`: `libcore/ops/arith.rs`\n - `div_assign`: `libcore/ops/arith.rs`\n - `rem_assign`: `libcore/ops/arith.rs`\n - `eq`: `libcore/cmp.rs`\n - `ord`: `libcore/cmp.rs`\n- Functions\n - `fn`: `libcore/ops/function.rs`\n - `fn_mut`: `libcore/ops/function.rs`\n - `fn_once`: `libcore/ops/function.rs`\n - `generator_state`: `libcore/ops/generator.rs`\n - `generator`: `libcore/ops/generator.rs`\n- Other\n - `coerce_unsized`: `libcore/ops/unsize.rs`\n - `drop`: `libcore/ops/drop.rs`\n - `drop_in_place`: `libcore/ptr.rs`\n - `clone`: `libcore/clone.rs`\n - `copy`: `libcore/marker.rs`\n - `send`: `libcore/marker.rs`\n - `sized`: `libcore/marker.rs`\n - `unsize`: `libcore/marker.rs`\n - `sync`: `libcore/marker.rs`\n - `phantom_data`: `libcore/marker.rs`\n - `discriminant_kind`: `libcore/marker.rs`\n - `freeze`: `libcore/marker.rs`\n - `debug_trait`: `libcore/fmt/mod.rs`\n - `non_zero`: `libcore/nonzero.rs`\n - `arc`: `liballoc/sync.rs`\n - `rc`: `liballoc/rc.rs`\n" } , LintCompletion { label : "member_constraints" , description : "# `member_constraints`\n\nThe tracking issue for this feature is: [#61997]\n\n[#61997]: https://github.com/rust-lang/rust/issues/61997\n\n------------------------\n\nThe `member_constraints` feature gate lets you use `impl Trait` syntax with\nmultiple unrelated lifetime parameters.\n\nA simple example is:\n\n```rust\n#![feature(member_constraints)]\n\ntrait Trait<'a, 'b> { }\nimpl<T> Trait<'_, '_> for T {}\n\nfn foo<'a, 'b>(x: &'a u32, y: &'b u32) -> impl Trait<'a, 'b> {\n (x, y)\n}\n\nfn main() { }\n```\n\nWithout the `member_constraints` feature gate, the above example is an\nerror because both `'a` and `'b` appear in the impl Trait bounds, but\nneither outlives the other.\n" } , LintCompletion { label : "crate_visibility_modifier" , description : "# `crate_visibility_modifier`\n\nThe tracking issue for this feature is: [#53120]\n\n[#53120]: https://github.com/rust-lang/rust/issues/53120\n\n-----\n\nThe `crate_visibility_modifier` feature allows the `crate` keyword to be used\nas a visibility modifier synonymous to `pub(crate)`, indicating that a type\n(function, _&c._) is to be visible to the entire enclosing crate, but not to\nother crates.\n\n```rust\n#![feature(crate_visibility_modifier)]\n\ncrate struct Foo {\n bar: usize,\n}\n```\n" } , LintCompletion { label : "try_blocks" , description : "# `try_blocks`\n\nThe tracking issue for this feature is: [#31436]\n\n[#31436]: https://github.com/rust-lang/rust/issues/31436\n\n------------------------\n\nThe `try_blocks` feature adds support for `try` blocks. A `try`\nblock creates a new scope one can use the `?` operator in.\n\n```rust,edition2018\n#![feature(try_blocks)]\n\nuse std::num::ParseIntError;\n\nlet result: Result<i32, ParseIntError> = try {\n \"1\".parse::<i32>()?\n + \"2\".parse::<i32>()?\n + \"3\".parse::<i32>()?\n};\nassert_eq!(result, Ok(6));\n\nlet result: Result<i32, ParseIntError> = try {\n \"1\".parse::<i32>()?\n + \"foo\".parse::<i32>()?\n + \"3\".parse::<i32>()?\n};\nassert!(result.is_err());\n```\n" } , LintCompletion { label : "const_in_array_repeat_expressions" , description : "# `const_in_array_repeat_expressions`\n\nThe tracking issue for this feature is: [#49147]\n\n[#49147]: https://github.com/rust-lang/rust/issues/49147\n\n------------------------\n\nRelaxes the rules for repeat expressions, `[x; N]` such that `x` may also be `const` (strictly\nspeaking rvalue promotable), in addition to `typeof(x): Copy`. The result of `[x; N]` where `x` is\n`const` is itself also `const`.\n" } , LintCompletion { label : "negative_impls" , description : "# `negative_impls`\n\nThe tracking issue for this feature is [#68318].\n\n[#68318]: https://github.com/rust-lang/rust/issues/68318\n\n----\n\nWith the feature gate `negative_impls`, you can write negative impls as well as positive ones:\n\n```rust\n#![feature(negative_impls)]\ntrait DerefMut { }\nimpl<T: ?Sized> !DerefMut for &T { }\n```\n\nNegative impls indicate a semver guarantee that the given trait will not be implemented for the given types. Negative impls play an additional purpose for auto traits, described below.\n\nNegative impls have the following characteristics:\n\n* They do not have any items.\n* They must obey the orphan rules as if they were a positive impl.\n* They cannot \"overlap\" with any positive impls.\n\n## Semver interaction\n\nIt is a breaking change to remove a negative impl. Negative impls are a commitment not to implement the given trait for the named types.\n\n## Orphan and overlap rules\n\nNegative impls must obey the same orphan rules as a positive impl. This implies you cannot add a negative impl for types defined in upstream crates and so forth.\n\nSimilarly, negative impls cannot overlap with positive impls, again using the same \"overlap\" check that we ordinarily use to determine if two impls overlap. (Note that positive impls typically cannot overlap with one another either, except as permitted by specialization.)\n\n## Interaction with auto traits\n\nDeclaring a negative impl `impl !SomeAutoTrait for SomeType` for an\nauto-trait serves two purposes:\n\n* as with any trait, it declares that `SomeType` will never implement `SomeAutoTrait`;\n* it disables the automatic `SomeType: SomeAutoTrait` impl that would otherwise have been generated.\n\nNote that, at present, there is no way to indicate that a given type\ndoes not implement an auto trait *but that it may do so in the\nfuture*. For ordinary types, this is done by simply not declaring any\nimpl at all, but that is not an option for auto traits. A workaround\nis that one could embed a marker type as one of the fields, where the\nmarker type is `!AutoTrait`.\n\n## Immediate uses\n\nNegative impls are used to declare that `&T: !DerefMut` and `&mut T: !Clone`, as required to fix the soundness of `Pin` described in [#66544](https://github.com/rust-lang/rust/issues/66544).\n\nThis serves two purposes:\n\n* For proving the correctness of unsafe code, we can use that impl as evidence that no `DerefMut` or `Clone` impl exists.\n* It prevents downstream crates from creating such impls.\n" } , LintCompletion { label : "c_variadic" , description : "# `c_variadic`\n\nThe tracking issue for this feature is: [#44930]\n\n[#44930]: https://github.com/rust-lang/rust/issues/44930\n\n------------------------\n\nThe `c_variadic` language feature enables C-variadic functions to be\ndefined in Rust. The may be called both from within Rust and via FFI.\n\n## Examples\n\n```rust\n#![feature(c_variadic)]\n\npub unsafe extern \"C\" fn add(n: usize, mut args: ...) -> usize {\n let mut sum = 0;\n for _ in 0..n {\n sum += args.arg::<usize>();\n }\n sum\n}\n```\n" } , LintCompletion { label : "profiler_runtime" , description : "# `profiler_runtime`\n\nThe tracking issue for this feature is: [#42524](https://github.com/rust-lang/rust/issues/42524).\n\n------------------------\n" } , LintCompletion { label : "box_syntax" , description : "# `box_syntax`\n\nThe tracking issue for this feature is: [#49733]\n\n[#49733]: https://github.com/rust-lang/rust/issues/49733\n\nSee also [`box_patterns`](box-patterns.md)\n\n------------------------\n\nCurrently the only stable way to create a `Box` is via the `Box::new` method.\nAlso it is not possible in stable Rust to destructure a `Box` in a match\npattern. The unstable `box` keyword can be used to create a `Box`. An example\nusage would be:\n\n```rust\n#![feature(box_syntax)]\n\nfn main() {\n let b = box 5;\n}\n```\n" } , LintCompletion { label : "ffi_pure" , description : "# `ffi_pure`\n\nThe tracking issue for this feature is: [#58329]\n\n------\n\nThe `#[ffi_pure]` attribute applies clang's `pure` attribute to foreign\nfunctions declarations.\n\nThat is, `#[ffi_pure]` functions shall have no effects except for its return\nvalue, which shall not change across two consecutive function calls with\nthe same parameters.\n\nApplying the `#[ffi_pure]` attribute to a function that violates these\nrequirements is undefined behavior.\n\nThis attribute enables Rust to perform common optimizations, like sub-expression\nelimination and loop optimizations. Some common examples of pure functions are\n`strlen` or `memcmp`.\n\nThese optimizations are only applicable when the compiler can prove that no\nprogram state observable by the `#[ffi_pure]` function has changed between calls\nof the function, which could alter the result. See also the `#[ffi_const]`\nattribute, which provides stronger guarantees regarding the allowable behavior\nof a function, enabling further optimization.\n\n## Pitfalls\n\nA `#[ffi_pure]` function can read global memory through the function\nparameters (e.g. pointers), globals, etc. `#[ffi_pure]` functions are not\nreferentially-transparent, and are therefore more relaxed than `#[ffi_const]`\nfunctions.\n\nHowever, accesing global memory through volatile or atomic reads can violate the\nrequirement that two consecutive function calls shall return the same value.\n\nA `pure` function that returns unit has no effect on the abstract machine's\nstate.\n\nA `#[ffi_pure]` function must not diverge, neither via a side effect (e.g. a\ncall to `abort`) nor by infinite loops.\n\nWhen translating C headers to Rust FFI, it is worth verifying for which targets\nthe `pure` attribute is enabled in those headers, and using the appropriate\n`cfg` macros in the Rust side to match those definitions. While the semantics of\n`pure` are implemented identically by many C and C++ compilers, e.g., clang,\n[GCC], [ARM C/C++ compiler], [IBM ILE C/C++], etc. they are not necessarily\nimplemented in this way on all of them. It is therefore also worth verifying\nthat the semantics of the C toolchain used to compile the binary being linked\nagainst are compatible with those of the `#[ffi_pure]`.\n\n\n[#58329]: https://github.com/rust-lang/rust/issues/58329\n[ARM C/C++ compiler]: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacigdac.html\n[GCC]: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-pure-function-attribute\n[IBM ILE C/C++]: https://www.ibm.com/support/knowledgecenter/fr/ssw_ibm_i_71/rzarg/fn_attrib_pure.htm\n" } , LintCompletion { label : "arbitrary_enum_discriminant" , description : "# `arbitrary_enum_discriminant`\n\nThe tracking issue for this feature is: [#60553]\n\n[#60553]: https://github.com/rust-lang/rust/issues/60553\n\n------------------------\n\nThe `arbitrary_enum_discriminant` feature permits tuple-like and\nstruct-like enum variants with `#[repr(<int-type>)]` to have explicit discriminants.\n\n## Examples\n\n```rust\n#![feature(arbitrary_enum_discriminant)]\n\n#[allow(dead_code)]\n#[repr(u8)]\nenum Enum {\n Unit = 3,\n Tuple(u16) = 2,\n Struct {\n a: u8,\n b: u16,\n } = 1,\n}\n\nimpl Enum {\n fn tag(&self) -> u8 {\n unsafe { *(self as *const Self as *const u8) }\n }\n}\n\nassert_eq!(3, Enum::Unit.tag());\nassert_eq!(2, Enum::Tuple(5).tag());\nassert_eq!(1, Enum::Struct{a: 7, b: 11}.tag());\n```\n" } , LintCompletion { label : "unsized_locals" , description : "# `unsized_locals`\n\nThe tracking issue for this feature is: [#48055]\n\n[#48055]: https://github.com/rust-lang/rust/issues/48055\n\n------------------------\n\nThis implements [RFC1909]. When turned on, you can have unsized arguments and locals:\n\n[RFC1909]: https://github.com/rust-lang/rfcs/blob/master/text/1909-unsized-rvalues.md\n\n```rust\n#![feature(unsized_locals)]\n\nuse std::any::Any;\n\nfn main() {\n let x: Box<dyn Any> = Box::new(42);\n let x: dyn Any = *x;\n // ^ unsized local variable\n // ^^ unsized temporary\n foo(x);\n}\n\nfn foo(_: dyn Any) {}\n// ^^^^^^ unsized argument\n```\n\nThe RFC still forbids the following unsized expressions:\n\n```rust,ignore\n#![feature(unsized_locals)]\n\nuse std::any::Any;\n\nstruct MyStruct<T: ?Sized> {\n content: T,\n}\n\nstruct MyTupleStruct<T: ?Sized>(T);\n\nfn answer() -> Box<dyn Any> {\n Box::new(42)\n}\n\nfn main() {\n // You CANNOT have unsized statics.\n static X: dyn Any = *answer(); // ERROR\n const Y: dyn Any = *answer(); // ERROR\n\n // You CANNOT have struct initialized unsized.\n MyStruct { content: *answer() }; // ERROR\n MyTupleStruct(*answer()); // ERROR\n (42, *answer()); // ERROR\n\n // You CANNOT have unsized return types.\n fn my_function() -> dyn Any { *answer() } // ERROR\n\n // You CAN have unsized local variables...\n let mut x: dyn Any = *answer(); // OK\n // ...but you CANNOT reassign to them.\n x = *answer(); // ERROR\n\n // You CANNOT even initialize them separately.\n let y: dyn Any; // OK\n y = *answer(); // ERROR\n\n // Not mentioned in the RFC, but by-move captured variables are also Sized.\n let x: dyn Any = *answer();\n (move || { // ERROR\n let y = x;\n })();\n\n // You CAN create a closure with unsized arguments,\n // but you CANNOT call it.\n // This is an implementation detail and may be changed in the future.\n let f = |x: dyn Any| {};\n f(*answer()); // ERROR\n}\n```\n\n## By-value trait objects\n\nWith this feature, you can have by-value `self` arguments without `Self: Sized` bounds.\n\n```rust\n#![feature(unsized_locals)]\n\ntrait Foo {\n fn foo(self) {}\n}\n\nimpl<T: ?Sized> Foo for T {}\n\nfn main() {\n let slice: Box<[i32]> = Box::new([1, 2, 3]);\n <[i32] as Foo>::foo(*slice);\n}\n```\n\nAnd `Foo` will also be object-safe.\n\n```rust\n#![feature(unsized_locals)]\n\ntrait Foo {\n fn foo(self) {}\n}\n\nimpl<T: ?Sized> Foo for T {}\n\nfn main () {\n let slice: Box<dyn Foo> = Box::new([1, 2, 3]);\n // doesn't compile yet\n <dyn Foo as Foo>::foo(*slice);\n}\n```\n\nOne of the objectives of this feature is to allow `Box<dyn FnOnce>`.\n\n## Variable length arrays\n\nThe RFC also describes an extension to the array literal syntax: `[e; dyn n]`. In the syntax, `n` isn't necessarily a constant expression. The array is dynamically allocated on the stack and has the type of `[T]`, instead of `[T; n]`.\n\n```rust,ignore\n#![feature(unsized_locals)]\n\nfn mergesort<T: Ord>(a: &mut [T]) {\n let mut tmp = [T; dyn a.len()];\n // ...\n}\n\nfn main() {\n let mut a = [3, 1, 5, 6];\n mergesort(&mut a);\n assert_eq!(a, [1, 3, 5, 6]);\n}\n```\n\nVLAs are not implemented yet. The syntax isn't final, either. We may need an alternative syntax for Rust 2015 because, in Rust 2015, expressions like `[e; dyn(1)]` would be ambiguous. One possible alternative proposed in the RFC is `[e; n]`: if `n` captures one or more local variables, then it is considered as `[e; dyn n]`.\n\n## Advisory on stack usage\n\nIt's advised not to casually use the `#![feature(unsized_locals)]` feature. Typical use-cases are:\n\n- When you need a by-value trait objects.\n- When you really need a fast allocation of small temporary arrays.\n\nAnother pitfall is repetitive allocation and temporaries. Currently the compiler simply extends the stack frame every time it encounters an unsized assignment. So for example, the code\n\n```rust\n#![feature(unsized_locals)]\n\nfn main() {\n let x: Box<[i32]> = Box::new([1, 2, 3, 4, 5]);\n let _x = {{{{{{{{{{*x}}}}}}}}}};\n}\n```\n\nand the code\n\n```rust\n#![feature(unsized_locals)]\n\nfn main() {\n for _ in 0..10 {\n let x: Box<[i32]> = Box::new([1, 2, 3, 4, 5]);\n let _x = *x;\n }\n}\n```\n\nwill unnecessarily extend the stack frame.\n" } , LintCompletion { label : "cfg_sanitize" , description : "# `cfg_sanitize`\n\nThe tracking issue for this feature is: [#39699]\n\n[#39699]: https://github.com/rust-lang/rust/issues/39699\n\n------------------------\n\nThe `cfg_sanitize` feature makes it possible to execute different code\ndepending on whether a particular sanitizer is enabled or not.\n\n## Examples\n\n```rust\n#![feature(cfg_sanitize)]\n\n#[cfg(sanitize = \"thread\")]\nfn a() {\n // ...\n}\n\n#[cfg(not(sanitize = \"thread\"))]\nfn a() {\n // ...\n}\n\nfn b() {\n if cfg!(sanitize = \"leak\") {\n // ...\n } else {\n // ...\n }\n}\n```\n" } , LintCompletion { label : "cmse_nonsecure_entry" , description : "# `cmse_nonsecure_entry`\n\nThe tracking issue for this feature is: [#75835]\n\n[#75835]: https://github.com/rust-lang/rust/issues/75835\n\n------------------------\n\nThe [TrustZone-M\nfeature](https://developer.arm.com/documentation/100690/latest/) is available\nfor targets with the Armv8-M architecture profile (`thumbv8m` in their target\nname).\nLLVM, the Rust compiler and the linker are providing\n[support](https://developer.arm.com/documentation/ecm0359818/latest/) for the\nTrustZone-M feature.\n\nOne of the things provided, with this unstable feature, is the\n`cmse_nonsecure_entry` attribute. This attribute marks a Secure function as an\nentry function (see [section\n5.4](https://developer.arm.com/documentation/ecm0359818/latest/) for details).\nWith this attribute, the compiler will do the following:\n* add a special symbol on the function which is the `__acle_se_` prefix and the\n standard function name\n* constrain the number of parameters to avoid using the Non-Secure stack\n* before returning from the function, clear registers that might contain Secure\n information\n* use the `BXNS` instruction to return\n\nBecause the stack can not be used to pass parameters, there will be compilation\nerrors if:\n* the total size of all parameters is too big (for example more than four 32\n bits integers)\n* the entry function is not using a C ABI\n\nThe special symbol `__acle_se_` will be used by the linker to generate a secure\ngateway veneer.\n\n<!-- NOTE(ignore) this example is specific to thumbv8m targets -->\n\n``` rust,ignore\n#![feature(cmse_nonsecure_entry)]\n\n#[no_mangle]\n#[cmse_nonsecure_entry]\npub extern \"C\" fn entry_function(input: u32) -> u32 {\n input + 6\n}\n```\n\n``` text\n$ rustc --emit obj --crate-type lib --target thumbv8m.main-none-eabi function.rs\n$ arm-none-eabi-objdump -D function.o\n\n00000000 <entry_function>:\n 0: b580 push {r7, lr}\n 2: 466f mov r7, sp\n 4: b082 sub sp, #8\n 6: 9001 str r0, [sp, #4]\n 8: 1d81 adds r1, r0, #6\n a: 460a mov r2, r1\n c: 4281 cmp r1, r0\n e: 9200 str r2, [sp, #0]\n 10: d30b bcc.n 2a <entry_function+0x2a>\n 12: e7ff b.n 14 <entry_function+0x14>\n 14: 9800 ldr r0, [sp, #0]\n 16: b002 add sp, #8\n 18: e8bd 4080 ldmia.w sp!, {r7, lr}\n 1c: 4671 mov r1, lr\n 1e: 4672 mov r2, lr\n 20: 4673 mov r3, lr\n 22: 46f4 mov ip, lr\n 24: f38e 8800 msr CPSR_f, lr\n 28: 4774 bxns lr\n 2a: f240 0000 movw r0, #0\n 2e: f2c0 0000 movt r0, #0\n 32: f240 0200 movw r2, #0\n 36: f2c0 0200 movt r2, #0\n 3a: 211c movs r1, #28\n 3c: f7ff fffe bl 0 <_ZN4core9panicking5panic17h5c028258ca2fb3f5E>\n 40: defe udf #254 ; 0xfe\n```\n" } , LintCompletion { label : "cfg_version" , description : "# `cfg_version`\n\nThe tracking issue for this feature is: [#64796]\n\n[#64796]: https://github.com/rust-lang/rust/issues/64796\n\n------------------------\n\nThe `cfg_version` feature makes it possible to execute different code\ndepending on the compiler version.\n\n## Examples\n\n```rust\n#![feature(cfg_version)]\n\n#[cfg(version(\"1.42\"))]\nfn a() {\n // ...\n}\n\n#[cfg(not(version(\"1.42\")))]\nfn a() {\n // ...\n}\n\nfn b() {\n if cfg!(version(\"1.42\")) {\n // ...\n } else {\n // ...\n }\n}\n```\n" } , LintCompletion { label : "unsized_tuple_coercion" , description : "# `unsized_tuple_coercion`\n\nThe tracking issue for this feature is: [#42877]\n\n[#42877]: https://github.com/rust-lang/rust/issues/42877\n\n------------------------\n\nThis is a part of [RFC0401]. According to the RFC, there should be an implementation like this:\n\n```rust,ignore\nimpl<..., T, U: ?Sized> Unsized<(..., U)> for (..., T) where T: Unsized<U> {}\n```\n\nThis implementation is currently gated behind `#[feature(unsized_tuple_coercion)]` to avoid insta-stability. Therefore you can use it like this:\n\n```rust\n#![feature(unsized_tuple_coercion)]\n\nfn main() {\n let x : ([i32; 3], [i32; 3]) = ([1, 2, 3], [4, 5, 6]);\n let y : &([i32; 3], [i32]) = &x;\n assert_eq!(y.1[0], 4);\n}\n```\n\n[RFC0401]: https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md\n" } , LintCompletion { label : "generators" , description : "# `generators`\n\nThe tracking issue for this feature is: [#43122]\n\n[#43122]: https://github.com/rust-lang/rust/issues/43122\n\n------------------------\n\nThe `generators` feature gate in Rust allows you to define generator or\ncoroutine literals. A generator is a \"resumable function\" that syntactically\nresembles a closure but compiles to much different semantics in the compiler\nitself. The primary feature of a generator is that it can be suspended during\nexecution to be resumed at a later date. Generators use the `yield` keyword to\n\"return\", and then the caller can `resume` a generator to resume execution just\nafter the `yield` keyword.\n\nGenerators are an extra-unstable feature in the compiler right now. Added in\n[RFC 2033] they're mostly intended right now as a information/constraint\ngathering phase. The intent is that experimentation can happen on the nightly\ncompiler before actual stabilization. A further RFC will be required to\nstabilize generators/coroutines and will likely contain at least a few small\ntweaks to the overall design.\n\n[RFC 2033]: https://github.com/rust-lang/rfcs/pull/2033\n\nA syntactical example of a generator is:\n\n```rust\n#![feature(generators, generator_trait)]\n\nuse std::ops::{Generator, GeneratorState};\nuse std::pin::Pin;\n\nfn main() {\n let mut generator = || {\n yield 1;\n return \"foo\"\n };\n\n match Pin::new(&mut generator).resume(()) {\n GeneratorState::Yielded(1) => {}\n _ => panic!(\"unexpected value from resume\"),\n }\n match Pin::new(&mut generator).resume(()) {\n GeneratorState::Complete(\"foo\") => {}\n _ => panic!(\"unexpected value from resume\"),\n }\n}\n```\n\nGenerators are closure-like literals which can contain a `yield` statement. The\n`yield` statement takes an optional expression of a value to yield out of the\ngenerator. All generator literals implement the `Generator` trait in the\n`std::ops` module. The `Generator` trait has one main method, `resume`, which\nresumes execution of the generator at the previous suspension point.\n\nAn example of the control flow of generators is that the following example\nprints all numbers in order:\n\n```rust\n#![feature(generators, generator_trait)]\n\nuse std::ops::Generator;\nuse std::pin::Pin;\n\nfn main() {\n let mut generator = || {\n println!(\"2\");\n yield;\n println!(\"4\");\n };\n\n println!(\"1\");\n Pin::new(&mut generator).resume(());\n println!(\"3\");\n Pin::new(&mut generator).resume(());\n println!(\"5\");\n}\n```\n\nAt this time the main intended use case of generators is an implementation\nprimitive for async/await syntax, but generators will likely be extended to\nergonomic implementations of iterators and other primitives in the future.\nFeedback on the design and usage is always appreciated!\n\n### The `Generator` trait\n\nThe `Generator` trait in `std::ops` currently looks like:\n\n```rust\n# #![feature(arbitrary_self_types, generator_trait)]\n# use std::ops::GeneratorState;\n# use std::pin::Pin;\n\npub trait Generator<R = ()> {\n type Yield;\n type Return;\n fn resume(self: Pin<&mut Self>, resume: R) -> GeneratorState<Self::Yield, Self::Return>;\n}\n```\n\nThe `Generator::Yield` type is the type of values that can be yielded with the\n`yield` statement. The `Generator::Return` type is the returned type of the\ngenerator. This is typically the last expression in a generator's definition or\nany value passed to `return` in a generator. The `resume` function is the entry\npoint for executing the `Generator` itself.\n\nThe return value of `resume`, `GeneratorState`, looks like:\n\n```rust\npub enum GeneratorState<Y, R> {\n Yielded(Y),\n Complete(R),\n}\n```\n\nThe `Yielded` variant indicates that the generator can later be resumed. This\ncorresponds to a `yield` point in a generator. The `Complete` variant indicates\nthat the generator is complete and cannot be resumed again. Calling `resume`\nafter a generator has returned `Complete` will likely result in a panic of the\nprogram.\n\n### Closure-like semantics\n\nThe closure-like syntax for generators alludes to the fact that they also have\nclosure-like semantics. Namely:\n\n* When created, a generator executes no code. A closure literal does not\n actually execute any of the closure's code on construction, and similarly a\n generator literal does not execute any code inside the generator when\n constructed.\n\n* Generators can capture outer variables by reference or by move, and this can\n be tweaked with the `move` keyword at the beginning of the closure. Like\n closures all generators will have an implicit environment which is inferred by\n the compiler. Outer variables can be moved into a generator for use as the\n generator progresses.\n\n* Generator literals produce a value with a unique type which implements the\n `std::ops::Generator` trait. This allows actual execution of the generator\n through the `Generator::resume` method as well as also naming it in return\n types and such.\n\n* Traits like `Send` and `Sync` are automatically implemented for a `Generator`\n depending on the captured variables of the environment. Unlike closures,\n generators also depend on variables live across suspension points. This means\n that although the ambient environment may be `Send` or `Sync`, the generator\n itself may not be due to internal variables live across `yield` points being\n not-`Send` or not-`Sync`. Note that generators do\n not implement traits like `Copy` or `Clone` automatically.\n\n* Whenever a generator is dropped it will drop all captured environment\n variables.\n\n### Generators as state machines\n\nIn the compiler, generators are currently compiled as state machines. Each\n`yield` expression will correspond to a different state that stores all live\nvariables over that suspension point. Resumption of a generator will dispatch on\nthe current state and then execute internally until a `yield` is reached, at\nwhich point all state is saved off in the generator and a value is returned.\n\nLet's take a look at an example to see what's going on here:\n\n```rust\n#![feature(generators, generator_trait)]\n\nuse std::ops::Generator;\nuse std::pin::Pin;\n\nfn main() {\n let ret = \"foo\";\n let mut generator = move || {\n yield 1;\n return ret\n };\n\n Pin::new(&mut generator).resume(());\n Pin::new(&mut generator).resume(());\n}\n```\n\nThis generator literal will compile down to something similar to:\n\n```rust\n#![feature(arbitrary_self_types, generators, generator_trait)]\n\nuse std::ops::{Generator, GeneratorState};\nuse std::pin::Pin;\n\nfn main() {\n let ret = \"foo\";\n let mut generator = {\n enum __Generator {\n Start(&'static str),\n Yield1(&'static str),\n Done,\n }\n\n impl Generator for __Generator {\n type Yield = i32;\n type Return = &'static str;\n\n fn resume(mut self: Pin<&mut Self>, resume: ()) -> GeneratorState<i32, &'static str> {\n use std::mem;\n match mem::replace(&mut *self, __Generator::Done) {\n __Generator::Start(s) => {\n *self = __Generator::Yield1(s);\n GeneratorState::Yielded(1)\n }\n\n __Generator::Yield1(s) => {\n *self = __Generator::Done;\n GeneratorState::Complete(s)\n }\n\n __Generator::Done => {\n panic!(\"generator resumed after completion\")\n }\n }\n }\n }\n\n __Generator::Start(ret)\n };\n\n Pin::new(&mut generator).resume(());\n Pin::new(&mut generator).resume(());\n}\n```\n\nNotably here we can see that the compiler is generating a fresh type,\n`__Generator` in this case. This type has a number of states (represented here\nas an `enum`) corresponding to each of the conceptual states of the generator.\nAt the beginning we're closing over our outer variable `foo` and then that\nvariable is also live over the `yield` point, so it's stored in both states.\n\nWhen the generator starts it'll immediately yield 1, but it saves off its state\njust before it does so indicating that it has reached the yield point. Upon\nresuming again we'll execute the `return ret` which returns the `Complete`\nstate.\n\nHere we can also note that the `Done` state, if resumed, panics immediately as\nit's invalid to resume a completed generator. It's also worth noting that this\nis just a rough desugaring, not a normative specification for what the compiler\ndoes.\n" } , LintCompletion { label : "transparent_unions" , description : "# `transparent_unions`\n\nThe tracking issue for this feature is [#60405]\n\n[#60405]: https://github.com/rust-lang/rust/issues/60405\n\n----\n\nThe `transparent_unions` feature allows you mark `union`s as\n`#[repr(transparent)]`. A `union` may be `#[repr(transparent)]` in exactly the\nsame conditions in which a `struct` may be `#[repr(transparent)]` (generally,\nthis means the `union` must have exactly one non-zero-sized field). Some\nconcrete illustrations follow.\n\n```rust\n#![feature(transparent_unions)]\n\n// This union has the same representation as `f32`.\n#[repr(transparent)]\nunion SingleFieldUnion {\n field: f32,\n}\n\n// This union has the same representation as `usize`.\n#[repr(transparent)]\nunion MultiFieldUnion {\n field: usize,\n nothing: (),\n}\n```\n\nFor consistency with transparent `struct`s, `union`s must have exactly one\nnon-zero-sized field. If all fields are zero-sized, the `union` must not be\n`#[repr(transparent)]`:\n\n```rust\n#![feature(transparent_unions)]\n\n// This (non-transparent) union is already valid in stable Rust:\npub union GoodUnion {\n pub nothing: (),\n}\n\n// Error: transparent union needs exactly one non-zero-sized field, but has 0\n// #[repr(transparent)]\n// pub union BadUnion {\n// pub nothing: (),\n// }\n```\n\nThe one exception is if the `union` is generic over `T` and has a field of type\n`T`, it may be `#[repr(transparent)]` even if `T` is a zero-sized type:\n\n```rust\n#![feature(transparent_unions)]\n\n// This union has the same representation as `T`.\n#[repr(transparent)]\npub union GenericUnion<T: Copy> { // Unions with non-`Copy` fields are unstable.\n pub field: T,\n pub nothing: (),\n}\n\n// This is okay even though `()` is a zero-sized type.\npub const THIS_IS_OKAY: GenericUnion<()> = GenericUnion { field: () };\n```\n\nLike transarent `struct`s, a transparent `union` of type `U` has the same\nlayout, size, and ABI as its single non-ZST field. If it is generic over a type\n`T`, and all its fields are ZSTs except for exactly one field of type `T`, then\nit has the same layout and ABI as `T` (even if `T` is a ZST when monomorphized).\n\nLike transparent `struct`s, transparent `union`s are FFI-safe if and only if\ntheir underlying representation type is also FFI-safe.\n\nA `union` may not be eligible for the same nonnull-style optimizations that a\n`struct` or `enum` (with the same fields) are eligible for. Adding\n`#[repr(transparent)]` to `union` does not change this. To give a more concrete\nexample, it is unspecified whether `size_of::<T>()` is equal to\n`size_of::<Option<T>>()`, where `T` is a `union` (regardless of whether or not\nit is transparent). The Rust compiler is free to perform this optimization if\npossible, but is not required to, and different compiler versions may differ in\ntheir application of these optimizations.\n" } , LintCompletion { label : "plugin_registrar" , description : "# `plugin_registrar`\n\nThe tracking issue for this feature is: [#29597]\n\n[#29597]: https://github.com/rust-lang/rust/issues/29597\n\nThis feature is part of \"compiler plugins.\" It will often be used with the\n[`plugin`] and `rustc_private` features as well. For more details, see\ntheir docs.\n\n[`plugin`]: plugin.md\n\n------------------------\n" } , LintCompletion { label : "or_patterns" , description : "# `or_patterns`\n\nThe tracking issue for this feature is: [#54883]\n\n[#54883]: https://github.com/rust-lang/rust/issues/54883\n\n------------------------\n\nThe `or_pattern` language feature allows `|` to be arbitrarily nested within\na pattern, for example, `Some(A(0) | B(1 | 2))` becomes a valid pattern.\n\n## Examples\n\n```rust,ignore\n#![feature(or_patterns)]\n\npub enum Foo {\n Bar,\n Baz,\n Quux,\n}\n\npub fn example(maybe_foo: Option<Foo>) {\n match maybe_foo {\n Some(Foo::Bar | Foo::Baz) => {\n println!(\"The value contained `Bar` or `Baz`\");\n }\n Some(_) => {\n println!(\"The value did not contain `Bar` or `Baz`\");\n }\n None => {\n println!(\"The value was `None`\");\n }\n }\n}\n```\n" } , LintCompletion { label : "repr128" , description : "# `repr128`\n\nThe tracking issue for this feature is: [#56071]\n\n[#56071]: https://github.com/rust-lang/rust/issues/56071\n\n------------------------\n\nThe `repr128` feature adds support for `#[repr(u128)]` on `enum`s.\n\n```rust\n#![feature(repr128)]\n\n#[repr(u128)]\nenum Foo {\n Bar(u64),\n}\n```\n" } , LintCompletion { label : "unboxed_closures" , description : "# `unboxed_closures`\n\nThe tracking issue for this feature is [#29625]\n\nSee Also: [`fn_traits`](../library-features/fn-traits.md)\n\n[#29625]: https://github.com/rust-lang/rust/issues/29625\n\n----\n\nThe `unboxed_closures` feature allows you to write functions using the `\"rust-call\"` ABI,\nrequired for implementing the [`Fn*`] family of traits. `\"rust-call\"` functions must have \nexactly one (non self) argument, a tuple representing the argument list.\n\n[`Fn*`]: https://doc.rust-lang.org/std/ops/trait.Fn.html\n\n```rust\n#![feature(unboxed_closures)]\n\nextern \"rust-call\" fn add_args(args: (u32, u32)) -> u32 {\n args.0 + args.1\n}\n\nfn main() {}\n```\n" } , LintCompletion { label : "link_cfg" , description : "# `link_cfg`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "rustc_attrs" , description : "# `rustc_attrs`\n\nThis feature has no tracking issue, and is therefore internal to\nthe compiler, not being intended for general use.\n\nNote: `rustc_attrs` enables many rustc-internal attributes and this page\nonly discuss a few of them.\n\n------------------------\n\nThe `rustc_attrs` feature allows debugging rustc type layouts by using\n`#[rustc_layout(...)]` to debug layout at compile time (it even works\nwith `cargo check`) as an alternative to `rustc -Z print-type-sizes`\nthat is way more verbose.\n\nOptions provided by `#[rustc_layout(...)]` are `debug`, `size`, `align`,\n`abi`. Note that it only works on sized types without generics.\n\n## Examples\n\n```rust,ignore\n#![feature(rustc_attrs)]\n\n#[rustc_layout(abi, size)]\npub enum X {\n Y(u8, u8, u8),\n Z(isize),\n}\n```\n\nWhen that is compiled, the compiler will error with something like\n\n```text\nerror: abi: Aggregate { sized: true }\n --> src/lib.rs:4:1\n |\n4 | / pub enum T {\n5 | | Y(u8, u8, u8),\n6 | | Z(isize),\n7 | | }\n | |_^\n\nerror: size: Size { raw: 16 }\n --> src/lib.rs:4:1\n |\n4 | / pub enum T {\n5 | | Y(u8, u8, u8),\n6 | | Z(isize),\n7 | | }\n | |_^\n\nerror: aborting due to 2 previous errors\n```\n" } , LintCompletion { label : "box_patterns" , description : "# `box_patterns`\n\nThe tracking issue for this feature is: [#29641]\n\n[#29641]: https://github.com/rust-lang/rust/issues/29641\n\nSee also [`box_syntax`](box-syntax.md)\n\n------------------------\n\nBox patterns let you match on `Box<T>`s:\n\n\n```rust\n#![feature(box_patterns)]\n\nfn main() {\n let b = Some(Box::new(5));\n match b {\n Some(box n) if n < 0 => {\n println!(\"Box contains negative number {}\", n);\n },\n Some(box n) if n >= 0 => {\n println!(\"Box contains non-negative number {}\", n);\n },\n None => {\n println!(\"No box\");\n },\n _ => unreachable!()\n }\n}\n```\n" } , LintCompletion { label : "infer_static_outlives_requirements" , description : "# `infer_static_outlives_requirements`\n\nThe tracking issue for this feature is: [#54185]\n\n[#54185]: https://github.com/rust-lang/rust/issues/54185\n\n------------------------\nThe `infer_static_outlives_requirements` feature indicates that certain\n`'static` outlives requirements can be inferred by the compiler rather than\nstating them explicitly.\n\nNote: It is an accompanying feature to `infer_outlives_requirements`,\nwhich must be enabled to infer outlives requirements.\n\nFor example, currently generic struct definitions that contain\nreferences, require where-clauses of the form T: 'static. By using\nthis feature the outlives predicates will be inferred, although\nthey may still be written explicitly.\n\n```rust,ignore (pseudo-Rust)\nstruct Foo<U> where U: 'static { // <-- currently required\n bar: Bar<U>\n}\nstruct Bar<T: 'static> {\n x: T,\n}\n```\n\n\n## Examples:\n\n```rust,ignore (pseudo-Rust)\n#![feature(infer_outlives_requirements)]\n#![feature(infer_static_outlives_requirements)]\n\n#[rustc_outlives]\n// Implicitly infer U: 'static\nstruct Foo<U> {\n bar: Bar<U>\n}\nstruct Bar<T: 'static> {\n x: T,\n}\n```\n\n" } , LintCompletion { label : "trait_alias" , description : "# `trait_alias`\n\nThe tracking issue for this feature is: [#41517]\n\n[#41517]: https://github.com/rust-lang/rust/issues/41517\n\n------------------------\n\nThe `trait_alias` feature adds support for trait aliases. These allow aliases\nto be created for one or more traits (currently just a single regular trait plus\nany number of auto-traits), and used wherever traits would normally be used as\neither bounds or trait objects.\n\n```rust\n#![feature(trait_alias)]\n\ntrait Foo = std::fmt::Debug + Send;\ntrait Bar = Foo + Sync;\n\n// Use trait alias as bound on type parameter.\nfn foo<T: Foo>(v: &T) {\n println!(\"{:?}\", v);\n}\n\npub fn main() {\n foo(&1);\n\n // Use trait alias for trait objects.\n let a: &Bar = &123;\n println!(\"{:?}\", a);\n let b = Box::new(456) as Box<dyn Foo>;\n println!(\"{:?}\", b);\n}\n```\n" } , LintCompletion { label : "const_fn" , description : "# `const_fn`\n\nThe tracking issue for this feature is: [#57563]\n\n[#57563]: https://github.com/rust-lang/rust/issues/57563\n\n------------------------\n\nThe `const_fn` feature allows marking free functions and inherent methods as\n`const`, enabling them to be called in constants contexts, with constant\narguments.\n\n## Examples\n\n```rust\n#![feature(const_fn)]\n\nconst fn double(x: i32) -> i32 {\n x * 2\n}\n\nconst FIVE: i32 = 5;\nconst TEN: i32 = double(FIVE);\n\nfn main() {\n assert_eq!(5, FIVE);\n assert_eq!(10, TEN);\n}\n```\n" } , LintCompletion { label : "doc_cfg" , description : "# `doc_cfg`\n\nThe tracking issue for this feature is: [#43781]\n\n------\n\nThe `doc_cfg` feature allows an API be documented as only available in some specific platforms.\nThis attribute has two effects:\n\n1. In the annotated item's documentation, there will be a message saying \"This is supported on\n (platform) only\".\n\n2. The item's doc-tests will only run on the specific platform.\n\nIn addition to allowing the use of the `#[doc(cfg)]` attribute, this feature enables the use of a\nspecial conditional compilation flag, `#[cfg(doc)]`, set whenever building documentation on your\ncrate.\n\nThis feature was introduced as part of PR [#43348] to allow the platform-specific parts of the\nstandard library be documented.\n\n```rust\n#![feature(doc_cfg)]\n\n#[cfg(any(windows, doc))]\n#[doc(cfg(windows))]\n/// The application's icon in the notification area (a.k.a. system tray).\n///\n/// # Examples\n///\n/// ```no_run\n/// extern crate my_awesome_ui_library;\n/// use my_awesome_ui_library::current_app;\n/// use my_awesome_ui_library::windows::notification;\n///\n/// let icon = current_app().get::<notification::Icon>();\n/// icon.show();\n/// icon.show_message(\"Hello\");\n/// ```\npub struct Icon {\n // ...\n}\n```\n\n[#43781]: https://github.com/rust-lang/rust/issues/43781\n[#43348]: https://github.com/rust-lang/rust/issues/43348\n" } , LintCompletion { label : "allocator_internals" , description : "# `allocator_internals`\n\nThis feature does not have a tracking issue, it is an unstable implementation\ndetail of the `global_allocator` feature not intended for use outside the\ncompiler.\n\n------------------------\n" } , LintCompletion { label : "doc_masked" , description : "# `doc_masked`\n\nThe tracking issue for this feature is: [#44027]\n\n-----\n\nThe `doc_masked` feature allows a crate to exclude types from a given crate from appearing in lists\nof trait implementations. The specifics of the feature are as follows:\n\n1. When rustdoc encounters an `extern crate` statement annotated with a `#[doc(masked)]` attribute,\n it marks the crate as being masked.\n\n2. When listing traits a given type implements, rustdoc ensures that traits from masked crates are\n not emitted into the documentation.\n\n3. When listing types that implement a given trait, rustdoc ensures that types from masked crates\n are not emitted into the documentation.\n\nThis feature was introduced in PR [#44026] to ensure that compiler-internal and\nimplementation-specific types and traits were not included in the standard library's documentation.\nSuch types would introduce broken links into the documentation.\n\n[#44026]: https://github.com/rust-lang/rust/pull/44026\n[#44027]: https://github.com/rust-lang/rust/pull/44027\n" } , LintCompletion { label : "no_sanitize" , description : "# `no_sanitize`\n\nThe tracking issue for this feature is: [#39699]\n\n[#39699]: https://github.com/rust-lang/rust/issues/39699\n\n------------------------\n\nThe `no_sanitize` attribute can be used to selectively disable sanitizer\ninstrumentation in an annotated function. This might be useful to: avoid\ninstrumentation overhead in a performance critical function, or avoid\ninstrumenting code that contains constructs unsupported by given sanitizer.\n\nThe precise effect of this annotation depends on particular sanitizer in use.\nFor example, with `no_sanitize(thread)`, the thread sanitizer will no longer\ninstrument non-atomic store / load operations, but it will instrument atomic\noperations to avoid reporting false positives and provide meaning full stack\ntraces.\n\n## Examples\n\n``` rust\n#![feature(no_sanitize)]\n\n#[no_sanitize(address)]\nfn foo() {\n // ...\n}\n```\n" } , LintCompletion { label : "intrinsics" , description : "# `intrinsics`\n\nThe tracking issue for this feature is: None.\n\nIntrinsics are never intended to be stable directly, but intrinsics are often\nexported in some sort of stable manner. Prefer using the stable interfaces to\nthe intrinsic directly when you can.\n\n------------------------\n\n\nThese are imported as if they were FFI functions, with the special\n`rust-intrinsic` ABI. For example, if one was in a freestanding\ncontext, but wished to be able to `transmute` between types, and\nperform efficient pointer arithmetic, one would import those functions\nvia a declaration like\n\n```rust\n#![feature(intrinsics)]\n# fn main() {}\n\nextern \"rust-intrinsic\" {\n fn transmute<T, U>(x: T) -> U;\n\n fn offset<T>(dst: *const T, offset: isize) -> *const T;\n}\n```\n\nAs with any other FFI functions, these are always `unsafe` to call.\n\n" } , LintCompletion { label : "external_doc" , description : "# `external_doc`\n\nThe tracking issue for this feature is: [#44732]\n\nThe `external_doc` feature allows the use of the `include` parameter to the `#[doc]` attribute, to\ninclude external files in documentation. Use the attribute in place of, or in addition to, regular\ndoc comments and `#[doc]` attributes, and `rustdoc` will load the given file when it renders\ndocumentation for your crate.\n\nWith the following files in the same directory:\n\n`external-doc.md`:\n\n```markdown\n# My Awesome Type\n\nThis is the documentation for this spectacular type.\n```\n\n`lib.rs`:\n\n```no_run (needs-external-files)\n#![feature(external_doc)]\n\n#[doc(include = \"external-doc.md\")]\npub struct MyAwesomeType;\n```\n\n`rustdoc` will load the file `external-doc.md` and use it as the documentation for the `MyAwesomeType`\nstruct.\n\nWhen locating files, `rustdoc` will base paths in the `src/` directory, as if they were alongside the\n`lib.rs` for your crate. So if you want a `docs/` folder to live alongside the `src/` directory,\nstart your paths with `../docs/` for `rustdoc` to properly find the file.\n\nThis feature was proposed in [RFC #1990] and initially implemented in PR [#44781].\n\n[#44732]: https://github.com/rust-lang/rust/issues/44732\n[RFC #1990]: https://github.com/rust-lang/rfcs/pull/1990\n[#44781]: https://github.com/rust-lang/rust/pull/44781\n" } , LintCompletion { label : "inline_const" , description : "# `inline_const`\n\nThe tracking issue for this feature is: [#76001]\n\n------\n\nThis feature allows you to use inline constant expressions. For example, you can\nturn this code:\n\n```rust\n# fn add_one(x: i32) -> i32 { x + 1 }\nconst MY_COMPUTATION: i32 = 1 + 2 * 3 / 4;\n\nfn main() {\n let x = add_one(MY_COMPUTATION);\n}\n```\n\ninto this code:\n\n```rust\n#![feature(inline_const)]\n\n# fn add_one(x: i32) -> i32 { x + 1 }\nfn main() {\n let x = add_one(const { 1 + 2 * 3 / 4 });\n}\n```\n\nYou can also use inline constant expressions in patterns:\n\n```rust\n#![feature(inline_const)]\n\nconst fn one() -> i32 { 1 }\n\nlet some_int = 3;\nmatch some_int {\n const { 1 + 2 } => println!(\"Matched 1 + 2\"),\n const { one() } => println!(\"Matched const fn returning 1\"),\n _ => println!(\"Didn't match anything :(\"),\n}\n```\n\n[#76001]: https://github.com/rust-lang/rust/issues/76001\n" } , LintCompletion { label : "abi_thiscall" , description : "# `abi_thiscall`\n\nThe tracking issue for this feature is: [#42202]\n\n[#42202]: https://github.com/rust-lang/rust/issues/42202\n\n------------------------\n\nThe MSVC ABI on x86 Windows uses the `thiscall` calling convention for C++\ninstance methods by default; it is identical to the usual (C) calling\nconvention on x86 Windows except that the first parameter of the method,\nthe `this` pointer, is passed in the ECX register.\n" } , LintCompletion { label : "plugin" , description : "# `plugin`\n\nThe tracking issue for this feature is: [#29597]\n\n[#29597]: https://github.com/rust-lang/rust/issues/29597\n\n\nThis feature is part of \"compiler plugins.\" It will often be used with the\n[`plugin_registrar`] and `rustc_private` features.\n\n[`plugin_registrar`]: plugin-registrar.md\n\n------------------------\n\n`rustc` can load compiler plugins, which are user-provided libraries that\nextend the compiler's behavior with new lint checks, etc.\n\nA plugin is a dynamic library crate with a designated *registrar* function that\nregisters extensions with `rustc`. Other crates can load these extensions using\nthe crate attribute `#![plugin(...)]`. See the\n`rustc_driver::plugin` documentation for more about the\nmechanics of defining and loading a plugin.\n\nIn the vast majority of cases, a plugin should *only* be used through\n`#![plugin]` and not through an `extern crate` item. Linking a plugin would\npull in all of librustc_ast and librustc as dependencies of your crate. This is\ngenerally unwanted unless you are building another plugin.\n\nThe usual practice is to put compiler plugins in their own crate, separate from\nany `macro_rules!` macros or ordinary Rust code meant to be used by consumers\nof a library.\n\n# Lint plugins\n\nPlugins can extend [Rust's lint\ninfrastructure](../../reference/attributes/diagnostics.md#lint-check-attributes) with\nadditional checks for code style, safety, etc. Now let's write a plugin\n[`lint-plugin-test.rs`](https://github.com/rust-lang/rust/blob/master/src/test/ui-fulldeps/auxiliary/lint-plugin-test.rs)\nthat warns about any item named `lintme`.\n\n```rust,ignore\n#![feature(plugin_registrar)]\n#![feature(box_syntax, rustc_private)]\n\nextern crate rustc_ast;\n\n// Load rustc as a plugin to get macros\nextern crate rustc_driver;\n#[macro_use]\nextern crate rustc_lint;\n#[macro_use]\nextern crate rustc_session;\n\nuse rustc_driver::plugin::Registry;\nuse rustc_lint::{EarlyContext, EarlyLintPass, LintArray, LintContext, LintPass};\nuse rustc_ast::ast;\ndeclare_lint!(TEST_LINT, Warn, \"Warn about items named 'lintme'\");\n\ndeclare_lint_pass!(Pass => [TEST_LINT]);\n\nimpl EarlyLintPass for Pass {\n fn check_item(&mut self, cx: &EarlyContext, it: &ast::Item) {\n if it.ident.name.as_str() == \"lintme\" {\n cx.lint(TEST_LINT, |lint| {\n lint.build(\"item is named 'lintme'\").set_span(it.span).emit()\n });\n }\n }\n}\n\n#[plugin_registrar]\npub fn plugin_registrar(reg: &mut Registry) {\n reg.lint_store.register_lints(&[&TEST_LINT]);\n reg.lint_store.register_early_pass(|| box Pass);\n}\n```\n\nThen code like\n\n```rust,ignore\n#![feature(plugin)]\n#![plugin(lint_plugin_test)]\n\nfn lintme() { }\n```\n\nwill produce a compiler warning:\n\n```txt\nfoo.rs:4:1: 4:16 warning: item is named 'lintme', #[warn(test_lint)] on by default\nfoo.rs:4 fn lintme() { }\n ^~~~~~~~~~~~~~~\n```\n\nThe components of a lint plugin are:\n\n* one or more `declare_lint!` invocations, which define static `Lint` structs;\n\n* a struct holding any state needed by the lint pass (here, none);\n\n* a `LintPass`\n implementation defining how to check each syntax element. A single\n `LintPass` may call `span_lint` for several different `Lint`s, but should\n register them all through the `get_lints` method.\n\nLint passes are syntax traversals, but they run at a late stage of compilation\nwhere type information is available. `rustc`'s [built-in\nlints](https://github.com/rust-lang/rust/blob/master/src/librustc_session/lint/builtin.rs)\nmostly use the same infrastructure as lint plugins, and provide examples of how\nto access type information.\n\nLints defined by plugins are controlled by the usual [attributes and compiler\nflags](../../reference/attributes/diagnostics.md#lint-check-attributes), e.g.\n`#[allow(test_lint)]` or `-A test-lint`. These identifiers are derived from the\nfirst argument to `declare_lint!`, with appropriate case and punctuation\nconversion.\n\nYou can run `rustc -W help foo.rs` to see a list of lints known to `rustc`,\nincluding those provided by plugins loaded by `foo.rs`.\n" } , LintCompletion { label : "optin_builtin_traits" , description : "# `optin_builtin_traits`\n\nThe tracking issue for this feature is [#13231] \n\n[#13231]: https://github.com/rust-lang/rust/issues/13231\n\n----\n\nThe `optin_builtin_traits` feature gate allows you to define auto traits.\n\nAuto traits, like [`Send`] or [`Sync`] in the standard library, are marker traits\nthat are automatically implemented for every type, unless the type, or a type it contains, \nhas explicitly opted out via a negative impl. (Negative impls are separately controlled\nby the `negative_impls` feature.)\n\n[`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html\n[`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html\n\n```rust,ignore\nimpl !Trait for Type\n```\n\nExample:\n\n```rust\n#![feature(negative_impls)]\n#![feature(optin_builtin_traits)]\n\nauto trait Valid {}\n\nstruct True;\nstruct False;\n\nimpl !Valid for False {}\n\nstruct MaybeValid<T>(T);\n\nfn must_be_valid<T: Valid>(_t: T) { }\n\nfn main() {\n // works\n must_be_valid( MaybeValid(True) );\n \n // compiler error - trait bound not satisfied\n // must_be_valid( MaybeValid(False) );\n}\n```\n\n## Automatic trait implementations\n\nWhen a type is declared as an `auto trait`, we will automatically\ncreate impls for every struct/enum/union, unless an explicit impl is\nprovided. These automatic impls contain a where clause for each field\nof the form `T: AutoTrait`, where `T` is the type of the field and\n`AutoTrait` is the auto trait in question. As an example, consider the\nstruct `List` and the auto trait `Send`:\n\n```rust\nstruct List<T> {\n data: T,\n next: Option<Box<List<T>>>,\n}\n```\n\nPresuming that there is no explicit impl of `Send` for `List`, the\ncompiler will supply an automatic impl of the form:\n\n```rust\nstruct List<T> {\n data: T,\n next: Option<Box<List<T>>>,\n}\n\nunsafe impl<T> Send for List<T>\nwhere\n T: Send, // from the field `data`\n Option<Box<List<T>>>: Send, // from the field `next`\n{ }\n```\n\nExplicit impls may be either positive or negative. They take the form:\n\n```rust,ignore\nimpl<...> AutoTrait for StructName<..> { }\nimpl<...> !AutoTrait for StructName<..> { }\n```\n\n## Coinduction: Auto traits permit cyclic matching\n\nUnlike ordinary trait matching, auto traits are **coinductive**. This\nmeans, in short, that cycles which occur in trait matching are\nconsidered ok. As an example, consider the recursive struct `List`\nintroduced in the previous section. In attempting to determine whether\n`List: Send`, we would wind up in a cycle: to apply the impl, we must\nshow that `Option<Box<List>>: Send`, which will in turn require\n`Box<List>: Send` and then finally `List: Send` again. Under ordinary\ntrait matching, this cycle would be an error, but for an auto trait it\nis considered a successful match.\n\n## Items\n\nAuto traits cannot have any trait items, such as methods or associated types. This ensures that we can generate default implementations.\n\n## Supertraits\n\nAuto traits cannot have supertraits. This is for soundness reasons, as the interaction of coinduction with implied bounds is difficult to reconcile.\n\n" } , LintCompletion { label : "impl_trait_in_bindings" , description : "# `impl_trait_in_bindings`\n\nThe tracking issue for this feature is: [#63065]\n\n[#63065]: https://github.com/rust-lang/rust/issues/63065\n\n------------------------\n\nThe `impl_trait_in_bindings` feature gate lets you use `impl Trait` syntax in\n`let`, `static`, and `const` bindings.\n\nA simple example is:\n\n```rust\n#![feature(impl_trait_in_bindings)]\n\nuse std::fmt::Debug;\n\nfn main() {\n let a: impl Debug + Clone = 42;\n let b = a.clone();\n println!(\"{:?}\", b); // prints `42`\n}\n```\n\nNote however that because the types of `a` and `b` are opaque in the above\nexample, calling inherent methods or methods outside of the specified traits\n(e.g., `a.abs()` or `b.abs()`) is not allowed, and yields an error.\n" } , LintCompletion { label : "abi_ptx" , description : "# `abi_ptx`\n\nThe tracking issue for this feature is: [#38788]\n\n[#38788]: https://github.com/rust-lang/rust/issues/38788\n\n------------------------\n\nWhen emitting PTX code, all vanilla Rust functions (`fn`) get translated to\n\"device\" functions. These functions are *not* callable from the host via the\nCUDA API so a crate with only device functions is not too useful!\n\nOTOH, \"global\" functions *can* be called by the host; you can think of them\nas the real public API of your crate. To produce a global function use the\n`\"ptx-kernel\"` ABI.\n\n<!-- NOTE(ignore) this example is specific to the nvptx targets -->\n\n``` rust,ignore\n#![feature(abi_ptx)]\n#![no_std]\n\npub unsafe extern \"ptx-kernel\" fn global_function() {\n device_function();\n}\n\npub fn device_function() {\n // ..\n}\n```\n\n``` text\n$ xargo rustc --target nvptx64-nvidia-cuda --release -- --emit=asm\n\n$ cat $(find -name '*.s')\n//\n// Generated by LLVM NVPTX Back-End\n//\n\n.version 3.2\n.target sm_20\n.address_size 64\n\n // .globl _ZN6kernel15global_function17h46111ebe6516b382E\n\n.visible .entry _ZN6kernel15global_function17h46111ebe6516b382E()\n{\n\n\n ret;\n}\n\n // .globl _ZN6kernel15device_function17hd6a0e4993bbf3f78E\n.visible .func _ZN6kernel15device_function17hd6a0e4993bbf3f78E()\n{\n\n\n ret;\n}\n```\n" } , LintCompletion { label : "dec2flt" , description : "# `dec2flt`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "int_error_internals" , description : "# `int_error_internals`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "llvm_asm" , description : "# `llvm_asm`\n\nThe tracking issue for this feature is: [#70173]\n\n[#70173]: https://github.com/rust-lang/rust/issues/70173\n\n------------------------\n\nFor extremely low-level manipulations and performance reasons, one\nmight wish to control the CPU directly. Rust supports using inline\nassembly to do this via the `llvm_asm!` macro.\n\n```rust,ignore\nllvm_asm!(assembly template\n : output operands\n : input operands\n : clobbers\n : options\n );\n```\n\nAny use of `llvm_asm` is feature gated (requires `#![feature(llvm_asm)]` on the\ncrate to allow) and of course requires an `unsafe` block.\n\n> **Note**: the examples here are given in x86/x86-64 assembly, but\n> all platforms are supported.\n\n## Assembly template\n\nThe `assembly template` is the only required parameter and must be a\nliteral string (i.e. `\"\"`)\n\n```rust\n#![feature(llvm_asm)]\n\n#[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\nfn foo() {\n unsafe {\n llvm_asm!(\"NOP\");\n }\n}\n\n// Other platforms:\n#[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\nfn foo() { /* ... */ }\n\nfn main() {\n // ...\n foo();\n // ...\n}\n```\n\n(The `feature(llvm_asm)` and `#[cfg]`s are omitted from now on.)\n\nOutput operands, input operands, clobbers and options are all optional\nbut you must add the right number of `:` if you skip them:\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n# fn main() { unsafe {\nllvm_asm!(\"xor %eax, %eax\"\n :\n :\n : \"eax\"\n );\n# } }\n# #[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\n# fn main() {}\n```\n\nWhitespace also doesn't matter:\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n# fn main() { unsafe {\nllvm_asm!(\"xor %eax, %eax\" ::: \"eax\");\n# } }\n# #[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\n# fn main() {}\n```\n\n## Operands\n\nInput and output operands follow the same format: `:\n\"constraints1\"(expr1), \"constraints2\"(expr2), ...\"`. Output operand\nexpressions must be mutable place, or not yet assigned:\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\nfn add(a: i32, b: i32) -> i32 {\n let c: i32;\n unsafe {\n llvm_asm!(\"add $2, $0\"\n : \"=r\"(c)\n : \"0\"(a), \"r\"(b)\n );\n }\n c\n}\n# #[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\n# fn add(a: i32, b: i32) -> i32 { a + b }\n\nfn main() {\n assert_eq!(add(3, 14159), 14162)\n}\n```\n\nIf you would like to use real operands in this position, however,\nyou are required to put curly braces `{}` around the register that\nyou want, and you are required to put the specific size of the\noperand. This is useful for very low level programming, where\nwhich register you use is important:\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n# unsafe fn read_byte_in(port: u16) -> u8 {\nlet result: u8;\nllvm_asm!(\"in %dx, %al\" : \"={al}\"(result) : \"{dx}\"(port));\nresult\n# }\n```\n\n## Clobbers\n\nSome instructions modify registers which might otherwise have held\ndifferent values so we use the clobbers list to indicate to the\ncompiler not to assume any values loaded into those registers will\nstay valid.\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n# fn main() { unsafe {\n// Put the value 0x200 in eax:\nllvm_asm!(\"mov $$0x200, %eax\" : /* no outputs */ : /* no inputs */ : \"eax\");\n# } }\n# #[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\n# fn main() {}\n```\n\nInput and output registers need not be listed since that information\nis already communicated by the given constraints. Otherwise, any other\nregisters used either implicitly or explicitly should be listed.\n\nIf the assembly changes the condition code register `cc` should be\nspecified as one of the clobbers. Similarly, if the assembly modifies\nmemory, `memory` should also be specified.\n\n## Options\n\nThe last section, `options` is specific to Rust. The format is comma\nseparated literal strings (i.e. `:\"foo\", \"bar\", \"baz\"`). It's used to\nspecify some extra info about the inline assembly:\n\nCurrent valid options are:\n\n1. `volatile` - specifying this is analogous to\n `__asm__ __volatile__ (...)` in gcc/clang.\n2. `alignstack` - certain instructions expect the stack to be\n aligned a certain way (i.e. SSE) and specifying this indicates to\n the compiler to insert its usual stack alignment code\n3. `intel` - use intel syntax instead of the default AT&T.\n\n```rust\n# #![feature(llvm_asm)]\n# #[cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n# fn main() {\nlet result: i32;\nunsafe {\n llvm_asm!(\"mov eax, 2\" : \"={eax}\"(result) : : : \"intel\")\n}\nprintln!(\"eax is currently {}\", result);\n# }\n# #[cfg(not(any(target_arch = \"x86\", target_arch = \"x86_64\")))]\n# fn main() {}\n```\n\n## More Information\n\nThe current implementation of the `llvm_asm!` macro is a direct binding to [LLVM's\ninline assembler expressions][llvm-docs], so be sure to check out [their\ndocumentation as well][llvm-docs] for more information about clobbers,\nconstraints, etc.\n\n[llvm-docs]: http://llvm.org/docs/LangRef.html#inline-assembler-expressions\n\nIf you need more power and don't mind losing some of the niceties of\n`llvm_asm!`, check out [global_asm](global-asm.md).\n" } , LintCompletion { label : "default_free_fn" , description : "# `default_free_fn`\n\nThe tracking issue for this feature is: [#73014]\n\n[#73014]: https://github.com/rust-lang/rust/issues/73014\n\n------------------------\n\nAdds a free `default()` function to the `std::default` module. This function\njust forwards to [`Default::default()`], but may remove repetition of the word\n\"default\" from the call site.\n\n[`Default::default()`]: https://doc.rust-lang.org/nightly/std/default/trait.Default.html#tymethod.default\n\nHere is an example:\n\n```rust\n#![feature(default_free_fn)]\nuse std::default::default;\n\n#[derive(Default)]\nstruct AppConfig {\n foo: FooConfig,\n bar: BarConfig,\n}\n\n#[derive(Default)]\nstruct FooConfig {\n foo: i32,\n}\n\n#[derive(Default)]\nstruct BarConfig {\n bar: f32,\n baz: u8,\n}\n\nfn main() {\n let options = AppConfig {\n foo: default(),\n bar: BarConfig {\n bar: 10.1,\n ..default()\n },\n };\n}\n```\n" } , LintCompletion { label : "libstd_thread_internals" , description : "# `libstd_thread_internals`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "char_error_internals" , description : "# `char_error_internals`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "windows_handle" , description : "# `windows_handle`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "global_asm" , description : "# `global_asm`\n\nThe tracking issue for this feature is: [#35119]\n\n[#35119]: https://github.com/rust-lang/rust/issues/35119\n\n------------------------\n\nThe `global_asm!` macro allows the programmer to write arbitrary\nassembly outside the scope of a function body, passing it through\n`rustc` and `llvm` to the assembler. The macro is a no-frills\ninterface to LLVM's concept of [module-level inline assembly]. That is,\nall caveats applicable to LLVM's module-level inline assembly apply\nto `global_asm!`.\n\n[module-level inline assembly]: http://llvm.org/docs/LangRef.html#module-level-inline-assembly\n\n`global_asm!` fills a role not currently satisfied by either `asm!`\nor `#[naked]` functions. The programmer has _all_ features of the\nassembler at their disposal. The linker will expect to resolve any\nsymbols defined in the inline assembly, modulo any symbols marked as\nexternal. It also means syntax for directives and assembly follow the\nconventions of the assembler in your toolchain.\n\nA simple usage looks like this:\n\n```rust,ignore\n# #![feature(global_asm)]\n# you also need relevant target_arch cfgs\nglobal_asm!(include_str!(\"something_neato.s\"));\n```\n\nAnd a more complicated usage looks like this:\n\n```rust,ignore\n# #![feature(global_asm)]\n# #![cfg(any(target_arch = \"x86\", target_arch = \"x86_64\"))]\n\npub mod sally {\n global_asm!(r#\"\n .global foo\n foo:\n jmp baz\n \"#);\n\n #[no_mangle]\n pub unsafe extern \"C\" fn baz() {}\n}\n\n// the symbols `foo` and `bar` are global, no matter where\n// `global_asm!` was used.\nextern \"C\" {\n fn foo();\n fn bar();\n}\n\npub mod harry {\n global_asm!(r#\"\n .global bar\n bar:\n jmp quux\n \"#);\n\n #[no_mangle]\n pub unsafe extern \"C\" fn quux() {}\n}\n```\n\nYou may use `global_asm!` multiple times, anywhere in your crate, in\nwhatever way suits you. The effect is as if you concatenated all\nusages and placed the larger, single usage in the crate root.\n\n------------------------\n\nIf you don't need quite as much power and flexibility as\n`global_asm!` provides, and you don't mind restricting your inline\nassembly to `fn` bodies only, you might try the\n[asm](asm.md) feature instead.\n" } , LintCompletion { label : "windows_c" , description : "# `windows_c`\n\nThis feature is internal to the Rust compiler and is not intended for general use.\n\n------------------------\n" } , LintCompletion { label : "asm" , description : "# `asm`\n\nThe tracking issue for this feature is: [#72016]\n\n[#72016]: https://github.com/rust-lang/rust/issues/72016\n\n------------------------\n\nFor extremely low-level manipulations and performance reasons, one\nmight wish to control the CPU directly. Rust supports using inline\nassembly to do this via the `asm!` macro.\n\n# Guide-level explanation\n[guide-level-explanation]: #guide-level-explanation\n\nRust provides support for inline assembly via the `asm!` macro.\nIt can be used to embed handwritten assembly in the assembly output generated by the compiler.\nGenerally this should not be necessary, but might be where the required performance or timing\ncannot be otherwise achieved. Accessing low level hardware primitives, e.g. in kernel code, may also demand this functionality.\n\n> **Note**: the examples here are given in x86/x86-64 assembly, but other architectures are also supported.\n\nInline assembly is currently supported on the following architectures:\n- x86 and x86-64\n- ARM\n- AArch64\n- RISC-V\n- NVPTX\n- Hexagon\n- MIPS32r2 and MIPS64r2\n\n## Basic usage\n\nLet us start with the simplest possible example:\n\n```rust,allow_fail\n# #![feature(asm)]\nunsafe {\n asm!(\"nop\");\n}\n```\n\nThis will insert a NOP (no operation) instruction into the assembly generated by the compiler.\nNote that all `asm!` invocations have to be inside an `unsafe` block, as they could insert\narbitrary instructions and break various invariants. The instructions to be inserted are listed\nin the first argument of the `asm!` macro as a string literal.\n\n## Inputs and outputs\n\nNow inserting an instruction that does nothing is rather boring. Let us do something that\nactually acts on data:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet x: u64;\nunsafe {\n asm!(\"mov {}, 5\", out(reg) x);\n}\nassert_eq!(x, 5);\n```\n\nThis will write the value `5` into the `u64` variable `x`.\nYou can see that the string literal we use to specify instructions is actually a template string.\nIt is governed by the same rules as Rust [format strings][format-syntax].\nThe arguments that are inserted into the template however look a bit different then you may\nbe familiar with. First we need to specify if the variable is an input or an output of the\ninline assembly. In this case it is an output. We declared this by writing `out`.\nWe also need to specify in what kind of register the assembly expects the variable.\nIn this case we put it in an arbitrary general purpose register by specifying `reg`.\nThe compiler will choose an appropriate register to insert into\nthe template and will read the variable from there after the inline assembly finishes executing.\n\nLet us see another example that also uses an input:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet i: u64 = 3;\nlet o: u64;\nunsafe {\n asm!(\n \"mov {0}, {1}\",\n \"add {0}, {number}\",\n out(reg) o,\n in(reg) i,\n number = const 5,\n );\n}\nassert_eq!(o, 8);\n```\n\nThis will add `5` to the input in variable `i` and write the result to variable `o`.\nThe particular way this assembly does this is first copying the value from `i` to the output,\nand then adding `5` to it.\n\nThe example shows a few things:\n\nFirst, we can see that `asm!` allows multiple template string arguments; each\none is treated as a separate line of assembly code, as if they were all joined\ntogether with newlines between them. This makes it easy to format assembly\ncode.\n\nSecond, we can see that inputs are declared by writing `in` instead of `out`.\n\nThird, one of our operands has a type we haven't seen yet, `const`.\nThis tells the compiler to expand this argument to value directly inside the assembly template.\nThis is only possible for constants and literals.\n\nFourth, we can see that we can specify an argument number, or name as in any format string.\nFor inline assembly templates this is particularly useful as arguments are often used more than once.\nFor more complex inline assembly using this facility is generally recommended, as it improves\nreadability, and allows reordering instructions without changing the argument order.\n\nWe can further refine the above example to avoid the `mov` instruction:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet mut x: u64 = 3;\nunsafe {\n asm!(\"add {0}, {number}\", inout(reg) x, number = const 5);\n}\nassert_eq!(x, 8);\n```\n\nWe can see that `inout` is used to specify an argument that is both input and output.\nThis is different from specifying an input and output separately in that it is guaranteed to assign both to the same register.\n\nIt is also possible to specify different variables for the input and output parts of an `inout` operand:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet x: u64 = 3;\nlet y: u64;\nunsafe {\n asm!(\"add {0}, {number}\", inout(reg) x => y, number = const 5);\n}\nassert_eq!(y, 8);\n```\n\n## Late output operands\n\nThe Rust compiler is conservative with its allocation of operands. It is assumed that an `out`\ncan be written at any time, and can therefore not share its location with any other argument.\nHowever, to guarantee optimal performance it is important to use as few registers as possible,\nso they won't have to be saved and reloaded around the inline assembly block.\nTo achieve this Rust provides a `lateout` specifier. This can be used on any output that is\nwritten only after all inputs have been consumed.\nThere is also a `inlateout` variant of this specifier.\n\nHere is an example where `inlateout` *cannot* be used:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet mut a: u64 = 4;\nlet b: u64 = 4;\nlet c: u64 = 4;\nunsafe {\n asm!(\n \"add {0}, {1}\",\n \"add {0}, {2}\",\n inout(reg) a,\n in(reg) b,\n in(reg) c,\n );\n}\nassert_eq!(a, 12);\n```\n\nHere the compiler is free to allocate the same register for inputs `b` and `c` since it knows they have the same value. However it must allocate a separate register for `a` since it uses `inout` and not `inlateout`. If `inlateout` was used, then `a` and `c` could be allocated to the same register, in which case the first instruction to overwrite the value of `c` and cause the assembly code to produce the wrong result.\n\nHowever the following example can use `inlateout` since the output is only modified after all input registers have been read:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet mut a: u64 = 4;\nlet b: u64 = 4;\nunsafe {\n asm!(\"add {0}, {1}\", inlateout(reg) a, in(reg) b);\n}\nassert_eq!(a, 8);\n```\n\nAs you can see, this assembly fragment will still work correctly if `a` and `b` are assigned to the same register.\n\n## Explicit register operands\n\nSome instructions require that the operands be in a specific register.\nTherefore, Rust inline assembly provides some more specific constraint specifiers.\nWhile `reg` is generally available on any architecture, these are highly architecture specific. E.g. for x86 the general purpose registers `eax`, `ebx`, `ecx`, `edx`, `ebp`, `esi`, and `edi`\namong others can be addressed by their name.\n\n```rust,allow_fail,no_run\n# #![feature(asm)]\nlet cmd = 0xd1;\nunsafe {\n asm!(\"out 0x64, eax\", in(\"eax\") cmd);\n}\n```\n\nIn this example we call the `out` instruction to output the content of the `cmd` variable\nto port `0x64`. Since the `out` instruction only accepts `eax` (and its sub registers) as operand\nwe had to use the `eax` constraint specifier.\n\nNote that unlike other operand types, explicit register operands cannot be used in the template string: you can't use `{}` and should write the register name directly instead. Also, they must appear at the end of the operand list after all other operand types.\n\nConsider this example which uses the x86 `mul` instruction:\n\n```rust,allow_fail\n# #![feature(asm)]\nfn mul(a: u64, b: u64) -> u128 {\n let lo: u64;\n let hi: u64;\n\n unsafe {\n asm!(\n // The x86 mul instruction takes rax as an implicit input and writes\n // the 128-bit result of the multiplication to rax:rdx.\n \"mul {}\",\n in(reg) a,\n inlateout(\"rax\") b => lo,\n lateout(\"rdx\") hi\n );\n }\n\n ((hi as u128) << 64) + lo as u128\n}\n```\n\nThis uses the `mul` instruction to multiply two 64-bit inputs with a 128-bit result.\nThe only explicit operand is a register, that we fill from the variable `a`.\nThe second operand is implicit, and must be the `rax` register, which we fill from the variable `b`.\nThe lower 64 bits of the result are stored in `rax` from which we fill the variable `lo`.\nThe higher 64 bits are stored in `rdx` from which we fill the variable `hi`.\n\n## Clobbered registers\n\nIn many cases inline assembly will modify state that is not needed as an output.\nUsually this is either because we have to use a scratch register in the assembly,\nor instructions modify state that we don't need to further examine.\nThis state is generally referred to as being \"clobbered\".\nWe need to tell the compiler about this since it may need to save and restore this state\naround the inline assembly block.\n\n```rust,allow_fail\n# #![feature(asm)]\nlet ebx: u32;\nlet ecx: u32;\n\nunsafe {\n asm!(\n \"cpuid\",\n // EAX 4 selects the \"Deterministic Cache Parameters\" CPUID leaf\n inout(\"eax\") 4 => _,\n // ECX 0 selects the L0 cache information.\n inout(\"ecx\") 0 => ecx,\n lateout(\"ebx\") ebx,\n lateout(\"edx\") _,\n );\n}\n\nprintln!(\n \"L1 Cache: {}\",\n ((ebx >> 22) + 1) * (((ebx >> 12) & 0x3ff) + 1) * ((ebx & 0xfff) + 1) * (ecx + 1)\n);\n```\n\nIn the example above we use the `cpuid` instruction to get the L1 cache size.\nThis instruction writes to `eax`, `ebx`, `ecx`, and `edx`, but for the cache size we only care about the contents of `ebx` and `ecx`.\n\nHowever we still need to tell the compiler that `eax` and `edx` have been modified so that it can save any values that were in these registers before the asm. This is done by declaring these as outputs but with `_` instead of a variable name, which indicates that the output value is to be discarded.\n\nThis can also be used with a general register class (e.g. `reg`) to obtain a scratch register for use inside the asm code:\n\n```rust,allow_fail\n# #![feature(asm)]\n// Multiply x by 6 using shifts and adds\nlet mut x: u64 = 4;\nunsafe {\n asm!(\n \"mov {tmp}, {x}\",\n \"shl {tmp}, 1\",\n \"shl {x}, 2\",\n \"add {x}, {tmp}\",\n x = inout(reg) x,\n tmp = out(reg) _,\n );\n}\nassert_eq!(x, 4 * 6);\n```\n\n## Symbol operands\n\nA special operand type, `sym`, allows you to use the symbol name of a `fn` or `static` in inline assembly code.\nThis allows you to call a function or access a global variable without needing to keep its address in a register.\n\n```rust,allow_fail\n# #![feature(asm)]\nextern \"C\" fn foo(arg: i32) {\n println!(\"arg = {}\", arg);\n}\n\nfn call_foo(arg: i32) {\n unsafe {\n asm!(\n \"call {}\",\n sym foo,\n // 1st argument in rdi, which is caller-saved\n inout(\"rdi\") arg => _,\n // All caller-saved registers must be marked as clobberred\n out(\"rax\") _, out(\"rcx\") _, out(\"rdx\") _, out(\"rsi\") _,\n out(\"r8\") _, out(\"r9\") _, out(\"r10\") _, out(\"r11\") _,\n out(\"xmm0\") _, out(\"xmm1\") _, out(\"xmm2\") _, out(\"xmm3\") _,\n out(\"xmm4\") _, out(\"xmm5\") _, out(\"xmm6\") _, out(\"xmm7\") _,\n out(\"xmm8\") _, out(\"xmm9\") _, out(\"xmm10\") _, out(\"xmm11\") _,\n out(\"xmm12\") _, out(\"xmm13\") _, out(\"xmm14\") _, out(\"xmm15\") _,\n )\n }\n}\n```\n\nNote that the `fn` or `static` item does not need to be public or `#[no_mangle]`:\nthe compiler will automatically insert the appropriate mangled symbol name into the assembly code.\n\n## Register template modifiers\n\nIn some cases, fine control is needed over the way a register name is formatted when inserted into the template string. This is needed when an architecture's assembly language has several names for the same register, each typically being a \"view\" over a subset of the register (e.g. the low 32 bits of a 64-bit register).\n\nBy default the compiler will always choose the name that refers to the full register size (e.g. `rax` on x86-64, `eax` on x86, etc).\n\nThis default can be overriden by using modifiers on the template string operands, just like you would with format strings:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet mut x: u16 = 0xab;\n\nunsafe {\n asm!(\"mov {0:h}, {0:l}\", inout(reg_abcd) x);\n}\n\nassert_eq!(x, 0xabab);\n```\n\nIn this example, we use the `reg_abcd` register class to restrict the register allocator to the 4 legacy x86 register (`ax`, `bx`, `cx`, `dx`) of which the first two bytes can be addressed independently.\n\nLet us assume that the register allocator has chosen to allocate `x` in the `ax` register.\nThe `h` modifier will emit the register name for the high byte of that register and the `l` modifier will emit the register name for the low byte. The asm code will therefore be expanded as `mov ah, al` which copies the low byte of the value into the high byte.\n\nIf you use a smaller data type (e.g. `u16`) with an operand and forget the use template modifiers, the compiler will emit a warning and suggest the correct modifier to use.\n\n## Memory address operands\n\nSometimes assembly instructions require operands passed via memory addresses/memory locations.\nYou have to manually use the memory address syntax specified by the respectively architectures.\nFor example, in x86/x86_64 and intel assembly syntax, you should wrap inputs/outputs in `[]`\nto indicate they are memory operands:\n\n```rust,allow_fail\n# #![feature(asm, llvm_asm)]\n# fn load_fpu_control_word(control: u16) {\nunsafe {\n asm!(\"fldcw [{}]\", in(reg) &control, options(nostack));\n\n // Previously this would have been written with the deprecated `llvm_asm!` like this\n llvm_asm!(\"fldcw $0\" :: \"m\" (control) :: \"volatile\");\n}\n# }\n```\n\n## Options\n\nBy default, an inline assembly block is treated the same way as an external FFI function call with a custom calling convention: it may read/write memory, have observable side effects, etc. However in many cases, it is desirable to give the compiler more information about what the assembly code is actually doing so that it can optimize better.\n\nLet's take our previous example of an `add` instruction:\n\n```rust,allow_fail\n# #![feature(asm)]\nlet mut a: u64 = 4;\nlet b: u64 = 4;\nunsafe {\n asm!(\n \"add {0}, {1}\",\n inlateout(reg) a, in(reg) b,\n options(pure, nomem, nostack),\n );\n}\nassert_eq!(a, 8);\n```\n\nOptions can be provided as an optional final argument to the `asm!` macro. We specified three options here:\n- `pure` means that the asm code has no observable side effects and that its output depends only on its inputs. This allows the compiler optimizer to call the inline asm fewer times or even eliminate it entirely.\n- `nomem` means that the asm code does not read or write to memory. By default the compiler will assume that inline assembly can read or write any memory address that is accessible to it (e.g. through a pointer passed as an operand, or a global).\n- `nostack` means that the asm code does not push any data onto the stack. This allows the compiler to use optimizations such as the stack red zone on x86-64 to avoid stack pointer adjustments.\n\nThese allow the compiler to better optimize code using `asm!`, for example by eliminating pure `asm!` blocks whose outputs are not needed.\n\nSee the reference for the full list of available options and their effects.\n\n# Reference-level explanation\n[reference-level-explanation]: #reference-level-explanation\n\nInline assembler is implemented as an unsafe macro `asm!()`.\nThe first argument to this macro is a template string literal used to build the final assembly.\nThe following arguments specify input and output operands.\nWhen required, options are specified as the final argument.\n\nThe following ABNF specifies the general syntax:\n\n```ignore\ndir_spec := \"in\" / \"out\" / \"lateout\" / \"inout\" / \"inlateout\"\nreg_spec := <register class> / \"<explicit register>\"\noperand_expr := expr / \"_\" / expr \"=>\" expr / expr \"=>\" \"_\"\nreg_operand := dir_spec \"(\" reg_spec \")\" operand_expr\noperand := reg_operand / \"const\" const_expr / \"sym\" path\noption := \"pure\" / \"nomem\" / \"readonly\" / \"preserves_flags\" / \"noreturn\" / \"nostack\" / \"att_syntax\"\noptions := \"options(\" option *[\",\" option] [\",\"] \")\"\nasm := \"asm!(\" format_string *(\",\" format_string) *(\",\" [ident \"=\"] operand) [\",\" options] [\",\"] \")\"\n```\n\nThe macro will initially be supported only on ARM, AArch64, Hexagon, x86, x86-64 and RISC-V targets. Support for more targets may be added in the future. The compiler will emit an error if `asm!` is used on an unsupported target.\n\n[format-syntax]: https://doc.rust-lang.org/std/fmt/#syntax\n\n## Template string arguments\n\nThe assembler template uses the same syntax as [format strings][format-syntax] (i.e. placeholders are specified by curly braces). The corresponding arguments are accessed in order, by index, or by name. However, implicit named arguments (introduced by [RFC #2795][rfc-2795]) are not supported.\n\nAn `asm!` invocation may have one or more template string arguments; an `asm!` with multiple template string arguments is treated as if all the strings were concatenated with a `\\n` between them. The expected usage is for each template string argument to correspond to a line of assembly code. All template string arguments must appear before any other arguments.\n\nAs with format strings, named arguments must appear after positional arguments. Explicit register operands must appear at the end of the operand list, after named arguments if any.\n\nExplicit register operands cannot be used by placeholders in the template string. All other named and positional operands must appear at least once in the template string, otherwise a compiler error is generated.\n\nThe exact assembly code syntax is target-specific and opaque to the compiler except for the way operands are substituted into the template string to form the code passed to the assembler.\n\nThe 5 targets specified in this RFC (x86, ARM, AArch64, RISC-V, Hexagon) all use the assembly code syntax of the GNU assembler (GAS). On x86, the `.intel_syntax noprefix` mode of GAS is used by default. On ARM, the `.syntax unified` mode is used. These targets impose an additional restriction on the assembly code: any assembler state (e.g. the current section which can be changed with `.section`) must be restored to its original value at the end of the asm string. Assembly code that does not conform to the GAS syntax will result in assembler-specific behavior.\n\n[rfc-2795]: https://github.com/rust-lang/rfcs/pull/2795\n\n## Operand type\n\nSeveral types of operands are supported:\n\n* `in(<reg>) <expr>`\n - `<reg>` can refer to a register class or an explicit register. The allocated register name is substituted into the asm template string.\n - The allocated register will contain the value of `<expr>` at the start of the asm code.\n - The allocated register must contain the same value at the end of the asm code (except if a `lateout` is allocated to the same register).\n* `out(<reg>) <expr>`\n - `<reg>` can refer to a register class or an explicit register. The allocated register name is substituted into the asm template string.\n - The allocated register will contain an undefined value at the start of the asm code.\n - `<expr>` must be a (possibly uninitialized) place expression, to which the contents of the allocated register is written to at the end of the asm code.\n - An underscore (`_`) may be specified instead of an expression, which will cause the contents of the register to be discarded at the end of the asm code (effectively acting as a clobber).\n* `lateout(<reg>) <expr>`\n - Identical to `out` except that the register allocator can reuse a register allocated to an `in`.\n - You should only write to the register after all inputs are read, otherwise you may clobber an input.\n* `inout(<reg>) <expr>`\n - `<reg>` can refer to a register class or an explicit register. The allocated register name is substituted into the asm template string.\n - The allocated register will contain the value of `<expr>` at the start of the asm code.\n - `<expr>` must be a mutable initialized place expression, to which the contents of the allocated register is written to at the end of the asm code.\n* `inout(<reg>) <in expr> => <out expr>`\n - Same as `inout` except that the initial value of the register is taken from the value of `<in expr>`.\n - `<out expr>` must be a (possibly uninitialized) place expression, to which the contents of the allocated register is written to at the end of the asm code.\n - An underscore (`_`) may be specified instead of an expression for `<out expr>`, which will cause the contents of the register to be discarded at the end of the asm code (effectively acting as a clobber).\n - `<in expr>` and `<out expr>` may have different types.\n* `inlateout(<reg>) <expr>` / `inlateout(<reg>) <in expr> => <out expr>`\n - Identical to `inout` except that the register allocator can reuse a register allocated to an `in` (this can happen if the compiler knows the `in` has the same initial value as the `inlateout`).\n - You should only write to the register after all inputs are read, otherwise you may clobber an input.\n* `const <expr>`\n - `<expr>` must be an integer or floating-point constant expression.\n - The value of the expression is formatted as a string and substituted directly into the asm template string.\n* `sym <path>`\n - `<path>` must refer to a `fn` or `static`.\n - A mangled symbol name referring to the item is substituted into the asm template string.\n - The substituted string does not include any modifiers (e.g. GOT, PLT, relocations, etc).\n - `<path>` is allowed to point to a `#[thread_local]` static, in which case the asm code can combine the symbol with relocations (e.g. `@plt`, `@TPOFF`) to read from thread-local data.\n\nOperand expressions are evaluated from left to right, just like function call arguments. After the `asm!` has executed, outputs are written to in left to right order. This is significant if two outputs point to the same place: that place will contain the value of the rightmost output.\n\n## Register operands\n\nInput and output operands can be specified either as an explicit register or as a register class from which the register allocator can select a register. Explicit registers are specified as string literals (e.g. `\"eax\"`) while register classes are specified as identifiers (e.g. `reg`). Using string literals for register names enables support for architectures that use special characters in register names, such as MIPS (`$0`, `$1`, etc).\n\nNote that explicit registers treat register aliases (e.g. `r14` vs `lr` on ARM) and smaller views of a register (e.g. `eax` vs `rax`) as equivalent to the base register. It is a compile-time error to use the same explicit register for two input operands or two output operands. Additionally, it is also a compile-time error to use overlapping registers (e.g. ARM VFP) in input operands or in output operands.\n\nOnly the following types are allowed as operands for inline assembly:\n- Integers (signed and unsigned)\n- Floating-point numbers\n- Pointers (thin only)\n- Function pointers\n- SIMD vectors (structs defined with `#[repr(simd)]` and which implement `Copy`). This includes architecture-specific vector types defined in `std::arch` such as `__m128` (x86) or `int8x16_t` (ARM).\n\nHere is the list of currently supported register classes:\n\n| Architecture | Register class | Registers | LLVM constraint code |\n| ------------ | -------------- | --------- | -------------------- |\n| x86 | `reg` | `ax`, `bx`, `cx`, `dx`, `si`, `di`, `r[8-15]` (x86-64 only) | `r` |\n| x86 | `reg_abcd` | `ax`, `bx`, `cx`, `dx` | `Q` |\n| x86-32 | `reg_byte` | `al`, `bl`, `cl`, `dl`, `ah`, `bh`, `ch`, `dh` | `q` |\n| x86-64 | `reg_byte` | `al`, `bl`, `cl`, `dl`, `sil`, `dil`, `r[8-15]b`, `ah`\\*, `bh`\\*, `ch`\\*, `dh`\\* | `q` |\n| x86 | `xmm_reg` | `xmm[0-7]` (x86) `xmm[0-15]` (x86-64) | `x` |\n| x86 | `ymm_reg` | `ymm[0-7]` (x86) `ymm[0-15]` (x86-64) | `x` |\n| x86 | `zmm_reg` | `zmm[0-7]` (x86) `zmm[0-31]` (x86-64) | `v` |\n| x86 | `kreg` | `k[1-7]` | `Yk` |\n| AArch64 | `reg` | `x[0-28]`, `x30` | `r` |\n| AArch64 | `vreg` | `v[0-31]` | `w` |\n| AArch64 | `vreg_low16` | `v[0-15]` | `x` |\n| ARM | `reg` | `r[0-5]` `r7`\\*, `r[8-10]`, `r11`\\*, `r12`, `r14` | `r` |\n| ARM (Thumb) | `reg_thumb` | `r[0-r7]` | `l` |\n| ARM (ARM) | `reg_thumb` | `r[0-r10]`, `r12`, `r14` | `l` |\n| ARM | `sreg` | `s[0-31]` | `t` |\n| ARM | `sreg_low16` | `s[0-15]` | `x` |\n| ARM | `dreg` | `d[0-31]` | `w` |\n| ARM | `dreg_low16` | `d[0-15]` | `t` |\n| ARM | `dreg_low8` | `d[0-8]` | `x` |\n| ARM | `qreg` | `q[0-15]` | `w` |\n| ARM | `qreg_low8` | `q[0-7]` | `t` |\n| ARM | `qreg_low4` | `q[0-3]` | `x` |\n| MIPS | `reg` | `$[2-25]` | `r` |\n| MIPS | `freg` | `$f[0-31]` | `f` |\n| NVPTX | `reg16` | None\\* | `h` |\n| NVPTX | `reg32` | None\\* | `r` |\n| NVPTX | `reg64` | None\\* | `l` |\n| RISC-V | `reg` | `x1`, `x[5-7]`, `x[9-15]`, `x[16-31]` (non-RV32E) | `r` |\n| RISC-V | `freg` | `f[0-31]` | `f` |\n| Hexagon | `reg` | `r[0-28]` | `r` |\n\n> **Note**: On x86 we treat `reg_byte` differently from `reg` because the compiler can allocate `al` and `ah` separately whereas `reg` reserves the whole register.\n>\n> Note #2: On x86-64 the high byte registers (e.g. `ah`) are only available when used as an explicit register. Specifying the `reg_byte` register class for an operand will always allocate a low byte register.\n>\n> Note #3: NVPTX doesn't have a fixed register set, so named registers are not supported.\n>\n> Note #4: On ARM the frame pointer is either `r7` or `r11` depending on the platform.\n\nAdditional register classes may be added in the future based on demand (e.g. MMX, x87, etc).\n\nEach register class has constraints on which value types they can be used with. This is necessary because the way a value is loaded into a register depends on its type. For example, on big-endian systems, loading a `i32x4` and a `i8x16` into a SIMD register may result in different register contents even if the byte-wise memory representation of both values is identical. The availability of supported types for a particular register class may depend on what target features are currently enabled.\n\n| Architecture | Register class | Target feature | Allowed types |\n| ------------ | -------------- | -------------- | ------------- |\n| x86-32 | `reg` | None | `i16`, `i32`, `f32` |\n| x86-64 | `reg` | None | `i16`, `i32`, `f32`, `i64`, `f64` |\n| x86 | `reg_byte` | None | `i8` |\n| x86 | `xmm_reg` | `sse` | `i32`, `f32`, `i64`, `f64`, <br> `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |\n| x86 | `ymm_reg` | `avx` | `i32`, `f32`, `i64`, `f64`, <br> `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` <br> `i8x32`, `i16x16`, `i32x8`, `i64x4`, `f32x8`, `f64x4` |\n| x86 | `zmm_reg` | `avx512f` | `i32`, `f32`, `i64`, `f64`, <br> `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` <br> `i8x32`, `i16x16`, `i32x8`, `i64x4`, `f32x8`, `f64x4` <br> `i8x64`, `i16x32`, `i32x16`, `i64x8`, `f32x16`, `f64x8` |\n| x86 | `kreg` | `axv512f` | `i8`, `i16` |\n| x86 | `kreg` | `axv512bw` | `i32`, `i64` |\n| AArch64 | `reg` | None | `i8`, `i16`, `i32`, `f32`, `i64`, `f64` |\n| AArch64 | `vreg` | `fp` | `i8`, `i16`, `i32`, `f32`, `i64`, `f64`, <br> `i8x8`, `i16x4`, `i32x2`, `i64x1`, `f32x2`, `f64x1`, <br> `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |\n| ARM | `reg` | None | `i8`, `i16`, `i32`, `f32` |\n| ARM | `sreg` | `vfp2` | `i32`, `f32` |\n| ARM | `dreg` | `vfp2` | `i64`, `f64`, `i8x8`, `i16x4`, `i32x2`, `i64x1`, `f32x2` |\n| ARM | `qreg` | `neon` | `i8x16`, `i16x8`