| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
1446: Initial Visual Studio Code unit tests r=matklad a=etaoins
As promised in #1439 this is an initial attempt at unit testing the VSCode extension. There are two separate parts to this: getting the test framework working and unit testing the code in #1439.
The test framework nearly intact from the VSCode extension generator. The main thing missing was `test/index.ts` which acts as an entry point for Mocha. This was simply copied back in. I also needed to open the test VSCode instance inside a workspace as our file URI generation depends on a workspace being open.
There are two ways to run the test framework:
1. Opening the extension's source in VSCode, pressing F5 and selecting the "Extensions Test" debug target.
2. Closing all copies of VSCode and running `npm test`. This is started from the command line but actually opens a temporary VSCode window to host the tests.
This doesn't attempt to wire this up to CI. That requires running a headless X11 server which is a bit daunting. I'll assess the difficulty of that in a follow-up branch. This PR is at least helpful for local development without having to induce errors on a Rust project.
For the actual tests this uses snapshots of `rustc` output from [a real Rust project](https://github.com/etaoins/arret) captured from the command line. Except for extracting the
`message` object and reformatting they're copied verbatim into fixture JSON files.
Only four different types of diagnostics are tested but they represent the main combinations of code actions and related information possible. They can be considered the happy path tests; as we encounter corner-cases we can introduce new tests fixtures.
Co-authored-by: Ryan Cumming <[email protected]>
|
| | | | |
|
|/ / /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
As promised in #1439 this is an initial attempt at unit testing the
VSCode extension. There are two separate parts to this: getting the test
framework working and unit testing the code in #1439.
The test framework nearly intact from the VSCode extension generator.
The main thing missing was `test/index.ts` which acts as an entry point
for Mocha. This was simply copied back in. I also needed to open the
test VSCode instance inside a workspace as our file URI generation
depends on a workspace being open.
There are two ways to run the test framework:
1. Opening the extension's source in VSCode, pressing F5 and selecting
the "Extensions Test" debug target.
2. Closing all copies of VSCode and running `npm test`. This is started
from the command line but actually opens a temporary VSCode window to
host the tests.
This doesn't attempt to wire this up to CI. That requires running a
headless X11 server which is a bit daunting. I'll assess the difficulty
of that in a follow-up branch. This PR is at least helpful for local
development without having to induce errors on a Rust project.
For the actual tests this uses snapshots of `rustc` output from a real
Rust project captured from the command line. Except for extracting the
`message` object and reformatting they're copied verbatim into fixture
JSON files.
Only four different types of diagnostics are tested but they represent
the main combinations of code actions and related information possible.
They can be considered the happy path tests; as we encounter
corner-cases we can introduce new tests fixtures.
|
|\ \ \
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | | |
1444: move ra_prof dep where it belongs r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/ / |
|
|\ \
| |/
|/|
| |
| |
| |
| |
| | |
1442: add cpuprofile to ra_prof r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/
|
|
|
|
|
|
|
| |
Now, one can use `let _p = ra_prof::cpu_profiler()` to capture profile
of a block of code.
This is not an out of the box experience, as that relies on gperfools
See the docs on https://github.com/AtheMathmo/cpuprofiler for more!
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
1432: Make fill_match_arm work with trivial arm r=matklad a=ironyman
Addresses this issue https://github.com/rust-analyzer/rust-analyzer/issues/1399
One minor issue I noticed is that complete_postfix creates an arm like this
```
match E::X {
<|>_ => {},
}
```
but fill_match_arms creates arms like this
```
E::X => (),
```
Co-authored-by: ironyman <[email protected]>
Co-authored-by: Changyu Li <[email protected]>
|
| | |
|
| | |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1439: Rich mapping of cargo watch output r=matklad a=etaoins
Currently we depend on the ASCII rendering string that `rustc` provides to populate Visual Studio Code's diagnostic. This has a number of shortcomings:
1. It's not a very good use of space in the error list
2. We can't jump to secondary spans (e.g. where a called function is defined)
3. We can't use Code Actions aka Quick Fix
This moves all of the low-level parsing and mapping to a `rust_diagnostics.ts`. This uses some heuristics to map Rust diagnostics to VsCode:
1. As before, the Rust diagnostic message and primary span is used for the root diagnostic. However, we now just use the message instead of the rendered version.
2. Every secondary span is converted to "related information". This shows as child in the error list and can be jumped to.
3. Every child diagnostic is categorised in to three buckets:
1. If they have no span they're treated as another line of the root messages
2. If they have replacement text they're treated as a Code Action
3. If they have a span but no replacement text they're treated as related information (same as secondary spans).
Co-authored-by: Ryan Cumming <[email protected]>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The first cut was a bit rough with the blanket `unused_*` rule. This
trigger for things like `unused_mut` where the code is used but it's
suboptimal. It's misleading to grey out the code in those cases.
Instead, use an explicit list of things known to be dead code.
|
| | |
| | |
| | |
| | |
| | | |
This happened to work because we always produce a single edit but this
is obviously dubious.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently we depend on the ASCII rendering string that `rustc` provides
to populate Visual Studio Code's diagnostic. This has a number of
shortcomings:
1. It's not a very good use of space in the error list
2. We can't jump to secondary spans (e.g. where a called function is
defined)
3. We can't use Code Actions aka Quick Fix
This moves all of the low-level parsing and mapping to a
`rust_diagnostics.ts`. This uses some heuristics to map Rust diagnostics
to VsCode:
1. As before, the Rust diagnostic message and primary span is used for
the root diagnostic. However, we now just use the message instead of
the rendered version.
2. Every secondary span is converted to "related information". This
shows as child in the error list and can be jumped to.
3. Every child diagnostic is categorised in to three buckets:
1. If they have no span they're treated as another line of the root
messages
2. If they have replacement text they're treated as a Code Action
3. If they have a span but no replacement text they're treated as
related information (same as secondary spans).
|
|\ \ \
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | | |
1436: Method resolution for slices r=sinkuu a=sinkuu
`impl<T> [T]` is separately defined in `core` and `alloc`, so I changed `def_crate` function in `method_resolution.rs` to return multiple crates.
Co-authored-by: Shotaro Yamada <[email protected]>
|
| | | |
|
|/ / |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1434: Introduce cargo-watch.check-command option for Code extension r=matklad a=alekseysidorov
By this option you can replace `check` command in `cargo watch` by the something else like `clippy`.
Co-authored-by: Aleksei Sidorov <[email protected]>
Co-authored-by: Aleksey Sidorov <[email protected]>
|
| | | |
|
| | |
| | |
| | | |
Co-Authored-By: Aleksey Kladov <[email protected]>
|
| | | |
|
| |/ |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1429: Add box postfix completion r=matklad a=kanru
Co-authored-by: Kan-Ru Chen <[email protected]>
|
| |/ |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1415: fix: specialization r=matklad a=csmoe
Closes #1402
r? @matklad
Co-authored-by: csmoe <[email protected]>
|
| | |
| | |
| | |
| | | |
Change-Id: Ic5d2767e8781568d76d4d0013cd6081e95ae8a95
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | | |
1433: Add SourceRoot::is_library, in preparation for salsa's durability r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/ / |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1421: Bump cargo_metadata, ena, flexi_logger r=matklad a=kjeremy
Co-authored-by: kjeremy <[email protected]>
|
|/ / |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1420: don' collect macros r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/ / |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1419: Add firewall query to lang items r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
| | |
| | |
| | |
| | |
| | | |
With an intermediate query, changing one module won't cause reparsing
of all modules
|
|\ \ \
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | |
| | | |
1414: fix: box_syntax/pattern r=matklad a=csmoe
Closes #1412
r? @matklad
Co-authored-by: csmoe <[email protected]>
|
| | |
| | |
| | |
| | | |
Change-Id: I45a856d74fb616d3bce33050f9e69d327186bd59
|
| | |
| | |
| | |
| | | |
Change-Id: I6e20e0163fa545de37226c1561b3b7103615626c
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
1418: rename XSignature -> XData r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
| |/ / |
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | | |
1417: :arrow_up: ra_vfs r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/ / |
|
|\ \
| |/
|/|
| |
| |
| |
| |
| | |
1413: More details on how to set up coc r=matklad a=mark-i-m
I spent ~1 hour trying to figure this out. It's all pretty simple stuff, but very annoying...
Co-authored-by: Who? Me?! <[email protected]>
|
|/ |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
1409: The Fall down of failures r=matklad a=mominul
:grin:
Replaced all the uses of `failure` crate with `std::error::Error`.
Closes #1400
Depends on rust-analyzer/teraron#1
Co-authored-by: Muhammad Mominul Huque <[email protected]>
|
| | |
|
| | |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1411: add analysis-bench to benchmark incremental analysis r=matklad a=matklad
Co-authored-by: Aleksey Kladov <[email protected]>
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Can be used like this:
```
$ cargo run --release -p ra_cli -- \
analysis-bench ../chalk/ \
--complete ../chalk/chalk-engine/src/logic.rs:94:0
loading: 225.970093ms
from scratch: 8.492373325s
no change: 445.265µs
trivial change: 95.631242ms
```
Or like this:
```
$ cargo run --release -p ra_cli -- \
analysis-bench ../chalk/ \
--highlight ../chalk/chalk-engine/src/logic.rs
loading: 209.873484ms
from scratch: 9.504916942s
no change: 7.731119ms
trivial change: 124.984039ms
```
"from scratch" includes initial analysis of the relevant bits of the
project
"no change" just asks the same question for the second time. It
measures overhead on assembling the answer outside of salsa.
"trivial change" doesn't do an actual salsa change, it just advances
the revision. This test how fast is salsa at validating things.
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
1408: Associated type basics & Deref support r=matklad a=flodiebold
This adds the necessary Chalk integration to handle associated types and uses it to implement support for `Deref` in the `*` operator and autoderef; so e.g. dot completions through an `Arc` work now.
It doesn't yet implement resolution of associated types in paths, though. Also, there's a big FIXME about handling variables in the solution we get from Chalk correctly.
Co-authored-by: Florian Diebold <[email protected]>
|
| | | |
|