| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
| |
'Unknown' int/float types actually never exist as such, they get replaced by
type variables immediately. So the whole `Uncertain<IntTy>` thing was
unnecessary and just led to a bunch of match branches that were never hit.
|
|\
| |
| |
| |
| |
| |
| |
| | |
4761: Upgrade Chalk to published version r=matklad a=flodiebold
CC @pksunkara
Co-authored-by: Florian Diebold <[email protected]>
|
| | |
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
This is working, but I'm not that happy with how the lowering works. We might
need an additional representation between `TypeRef` and `Ty` where names are
resolved and `impl Trait` bounds are separated out, but things like inference
variables don't exist and `impl Trait` is always represented the same
way.
Also note that this doesn't implement correct handling of RPIT *inside* the
function (which involves turning the `impl Trait`s into variables and creating
obligations for them). That intermediate representation might help there as
well.
|
|
|
|
|
| |
Chalk newly added TypeName::Never and Array; I implemented the conversion for
Never, but not Array since that expects a const argument.
|
| |
|
|
|
|
|
|
| |
Function pointers can be 'higher-ranked' over lifetimes, which is why they're
not an application type in Chalk, but since we don't model lifetimes it doesn't
matter for us yet.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
For references, we make sure Chalk actually gets a lifetime here.
|
|
|
|
|
| |
As always, this just makes compilation work, we don't use the newly available
functionality yet.
|
| |
|
|
|
|
| |
This should fix some of the worst performance problems.
|
|
|
|
|
|
|
| |
Basically, if we had something like `dyn Trait<T>` (where `T` is a type
parameter) in an impl we lowered that to `dyn Trait<^0.0>`, when it should be
`dyn Trait<^1.0>` because the `dyn` introduces a new binder. With one type
parameter, that's just wrong, with two, it'll lead to crashes.
|
|
|
|
| |
+ various fixes related to that.
|
| |
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
3966: Add support for bounds on associated types in trait definitions r=matklad a=flodiebold
E.g.
```rust
trait Trait {
type Item: SomeOtherTrait;
}
```
Note that these don't simply desugar to where clauses; as I understand it, where clauses have to be proved by the *user* of the trait, but these bounds are proved by the *implementor*. (Also, where clauses on associated types are unstable.)
(Another one from my recursive solver branch...)
3968: Remove format from syntax_bridge hot path r=matklad a=edwin0cheng
Although only around 1% speed up by running:
```
Measure-Command {start-process .\target\release\rust-analyzer "analysis-stats -q ." -NoNewWindow -wait}
```
Co-authored-by: Florian Diebold <[email protected]>
Co-authored-by: Edwin Cheng <[email protected]>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
E.g.
```
trait Trait {
type Item: SomeOtherTrait;
}
```
Note that these don't simply desugar to where clauses; as I understand it, where
clauses have to be proved by the *user* of the trait, but these bounds are proved
by the *implementor*. (Also, where clauses on associated types are unstable.)
|
| | | | |
| \ \ | |
|\ \| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
3964: Nicer Chalk debug logs r=matklad a=flodiebold
I'm looking at a lot of Chalk debug logs at the moment, so here's a few changes to make them slightly nicer...
3965: Implement inline associated type bounds r=matklad a=flodiebold
Like `Iterator<Item: SomeTrait>`.
This is an unstable feature, but it's used in the standard library e.g. in the definition of Flatten, so we can't get away with not implementing it :)
(This is cherry-picked from my recursive solver branch, where it works better, but I did manage to write a test that works with the current Chalk solver as well...)
3967: Handle `Self::Type` in trait definitions when referring to own associated type r=matklad a=flodiebold
It was implemented for other generic parameters for the trait, but not for `Self`.
(Last one off my recursive solver branch :smile: )
Co-authored-by: Florian Diebold <[email protected]>
|
| | | | |
|
| |/ / |
|
|/ / |
|
|/
|
|
|
| |
This speeds up inference in analysis-stats by ~30% (even more with the recursive
solver).
|
|
|
|
|
|
|
|
|
|
| |
Chalk now panics if we don't implement these methods and run with CHALK_DEBUG,
so I thought I'd try to implement them 'properly'. Sadly, it seems impossible to
do without transmuting lifetimes somewhere. The problem is that we need a `&dyn
HirDatabase` to get names etc., which we can't just put into TLS. I thought I
could just use `scoped-tls`, but that doesn't support references to unsized
types. So I put the `&dyn` into another struct and put the reference to *that*
into the TLS, but I have to transmute the lifetime to 'static for that to work.
|
|
|
|
|
| |
Fixes #3865. Basically I forgot to shift 'back' when we got `dyn Trait`s back
from Chalk, so after going through Chalk a few times, the panic happened.
|
|
|
|
|
|
|
| |
The big change here is counting binders, not
variables (https://github.com/rust-lang/chalk/pull/360). We have to adapt to the
same scheme for our `Ty::Bound`. It's mostly fine though, even makes some things
more clear.
|
| |
|
|
|
|
|
|
|
| |
It improves compile time in `--release` mode quite a bit, it doesn't
really slow things down and, conceptually, it seems closer to what we
want the physical architecture to look like (we don't want to
monomorphise EVERYTHING in a single leaf crate).
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
This aligns more with Chalk.
|
| |
|
| |
|
| |
|
| |
|
| |
|