aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_def/src/expr.rs
diff options
context:
space:
mode:
authorIgor Aleksanov <[email protected]>2020-08-14 05:34:07 +0100
committerIgor Aleksanov <[email protected]>2020-08-14 05:34:07 +0100
commitc26c911ec1e6c2ad1dcb7d155a6a1d528839ad1a (patch)
tree7cff36c38234be0afb65273146d8247083a5cfeb /crates/hir_def/src/expr.rs
parent3c018bf84de5c693b5ee1c6bec0fed3b201c2060 (diff)
parentf1f73649a686dc6e6449afc35e0fa6fed00e225d (diff)
Merge branch 'master' into add-disable-diagnostics
Diffstat (limited to 'crates/hir_def/src/expr.rs')
-rw-r--r--crates/hir_def/src/expr.rs420
1 files changed, 420 insertions, 0 deletions
diff --git a/crates/hir_def/src/expr.rs b/crates/hir_def/src/expr.rs
new file mode 100644
index 000000000..c94b3a36f
--- /dev/null
+++ b/crates/hir_def/src/expr.rs
@@ -0,0 +1,420 @@
1//! This module describes hir-level representation of expressions.
2//!
3//! This representaion is:
4//!
5//! 1. Identity-based. Each expression has an `id`, so we can distinguish
6//! between different `1` in `1 + 1`.
7//! 2. Independent of syntax. Though syntactic provenance information can be
8//! attached separately via id-based side map.
9//! 3. Unresolved. Paths are stored as sequences of names, and not as defs the
10//! names refer to.
11//! 4. Desugared. There's no `if let`.
12//!
13//! See also a neighboring `body` module.
14
15use arena::{Idx, RawId};
16use hir_expand::name::Name;
17use syntax::ast::RangeOp;
18
19use crate::{
20 builtin_type::{BuiltinFloat, BuiltinInt},
21 path::{GenericArgs, Path},
22 type_ref::{Mutability, Rawness, TypeRef},
23};
24
25pub type ExprId = Idx<Expr>;
26pub(crate) fn dummy_expr_id() -> ExprId {
27 ExprId::from_raw(RawId::from(!0))
28}
29
30pub type PatId = Idx<Pat>;
31
32#[derive(Debug, Clone, Eq, PartialEq)]
33pub enum Literal {
34 String(String),
35 ByteString(Vec<u8>),
36 Char(char),
37 Bool(bool),
38 Int(u64, Option<BuiltinInt>),
39 Float(u64, Option<BuiltinFloat>), // FIXME: f64 is not Eq
40}
41
42#[derive(Debug, Clone, Eq, PartialEq)]
43pub enum Expr {
44 /// This is produced if the syntax tree does not have a required expression piece.
45 Missing,
46 Path(Path),
47 If {
48 condition: ExprId,
49 then_branch: ExprId,
50 else_branch: Option<ExprId>,
51 },
52 Block {
53 statements: Vec<Statement>,
54 tail: Option<ExprId>,
55 label: Option<Name>,
56 },
57 Loop {
58 body: ExprId,
59 label: Option<Name>,
60 },
61 While {
62 condition: ExprId,
63 body: ExprId,
64 label: Option<Name>,
65 },
66 For {
67 iterable: ExprId,
68 pat: PatId,
69 body: ExprId,
70 label: Option<Name>,
71 },
72 Call {
73 callee: ExprId,
74 args: Vec<ExprId>,
75 },
76 MethodCall {
77 receiver: ExprId,
78 method_name: Name,
79 args: Vec<ExprId>,
80 generic_args: Option<GenericArgs>,
81 },
82 Match {
83 expr: ExprId,
84 arms: Vec<MatchArm>,
85 },
86 Continue {
87 label: Option<Name>,
88 },
89 Break {
90 expr: Option<ExprId>,
91 label: Option<Name>,
92 },
93 Return {
94 expr: Option<ExprId>,
95 },
96 RecordLit {
97 path: Option<Path>,
98 fields: Vec<RecordLitField>,
99 spread: Option<ExprId>,
100 },
101 Field {
102 expr: ExprId,
103 name: Name,
104 },
105 Await {
106 expr: ExprId,
107 },
108 Try {
109 expr: ExprId,
110 },
111 TryBlock {
112 body: ExprId,
113 },
114 Cast {
115 expr: ExprId,
116 type_ref: TypeRef,
117 },
118 Ref {
119 expr: ExprId,
120 rawness: Rawness,
121 mutability: Mutability,
122 },
123 Box {
124 expr: ExprId,
125 },
126 UnaryOp {
127 expr: ExprId,
128 op: UnaryOp,
129 },
130 BinaryOp {
131 lhs: ExprId,
132 rhs: ExprId,
133 op: Option<BinaryOp>,
134 },
135 Range {
136 lhs: Option<ExprId>,
137 rhs: Option<ExprId>,
138 range_type: RangeOp,
139 },
140 Index {
141 base: ExprId,
142 index: ExprId,
143 },
144 Lambda {
145 args: Vec<PatId>,
146 arg_types: Vec<Option<TypeRef>>,
147 ret_type: Option<TypeRef>,
148 body: ExprId,
149 },
150 Tuple {
151 exprs: Vec<ExprId>,
152 },
153 Unsafe {
154 body: ExprId,
155 },
156 Array(Array),
157 Literal(Literal),
158}
159
160#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
161pub enum BinaryOp {
162 LogicOp(LogicOp),
163 ArithOp(ArithOp),
164 CmpOp(CmpOp),
165 Assignment { op: Option<ArithOp> },
166}
167
168#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
169pub enum LogicOp {
170 And,
171 Or,
172}
173
174#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
175pub enum CmpOp {
176 Eq { negated: bool },
177 Ord { ordering: Ordering, strict: bool },
178}
179
180#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
181pub enum Ordering {
182 Less,
183 Greater,
184}
185
186#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
187pub enum ArithOp {
188 Add,
189 Mul,
190 Sub,
191 Div,
192 Rem,
193 Shl,
194 Shr,
195 BitXor,
196 BitOr,
197 BitAnd,
198}
199
200pub use syntax::ast::PrefixOp as UnaryOp;
201#[derive(Debug, Clone, Eq, PartialEq)]
202pub enum Array {
203 ElementList(Vec<ExprId>),
204 Repeat { initializer: ExprId, repeat: ExprId },
205}
206
207#[derive(Debug, Clone, Eq, PartialEq)]
208pub struct MatchArm {
209 pub pat: PatId,
210 pub guard: Option<ExprId>,
211 pub expr: ExprId,
212}
213
214#[derive(Debug, Clone, Eq, PartialEq)]
215pub struct RecordLitField {
216 pub name: Name,
217 pub expr: ExprId,
218}
219
220#[derive(Debug, Clone, Eq, PartialEq)]
221pub enum Statement {
222 Let { pat: PatId, type_ref: Option<TypeRef>, initializer: Option<ExprId> },
223 Expr(ExprId),
224}
225
226impl Expr {
227 pub fn walk_child_exprs(&self, mut f: impl FnMut(ExprId)) {
228 match self {
229 Expr::Missing => {}
230 Expr::Path(_) => {}
231 Expr::If { condition, then_branch, else_branch } => {
232 f(*condition);
233 f(*then_branch);
234 if let Some(else_branch) = else_branch {
235 f(*else_branch);
236 }
237 }
238 Expr::Block { statements, tail, .. } => {
239 for stmt in statements {
240 match stmt {
241 Statement::Let { initializer, .. } => {
242 if let Some(expr) = initializer {
243 f(*expr);
244 }
245 }
246 Statement::Expr(e) => f(*e),
247 }
248 }
249 if let Some(expr) = tail {
250 f(*expr);
251 }
252 }
253 Expr::TryBlock { body } | Expr::Unsafe { body } => f(*body),
254 Expr::Loop { body, .. } => f(*body),
255 Expr::While { condition, body, .. } => {
256 f(*condition);
257 f(*body);
258 }
259 Expr::For { iterable, body, .. } => {
260 f(*iterable);
261 f(*body);
262 }
263 Expr::Call { callee, args } => {
264 f(*callee);
265 for arg in args {
266 f(*arg);
267 }
268 }
269 Expr::MethodCall { receiver, args, .. } => {
270 f(*receiver);
271 for arg in args {
272 f(*arg);
273 }
274 }
275 Expr::Match { expr, arms } => {
276 f(*expr);
277 for arm in arms {
278 f(arm.expr);
279 }
280 }
281 Expr::Continue { .. } => {}
282 Expr::Break { expr, .. } | Expr::Return { expr } => {
283 if let Some(expr) = expr {
284 f(*expr);
285 }
286 }
287 Expr::RecordLit { fields, spread, .. } => {
288 for field in fields {
289 f(field.expr);
290 }
291 if let Some(expr) = spread {
292 f(*expr);
293 }
294 }
295 Expr::Lambda { body, .. } => {
296 f(*body);
297 }
298 Expr::BinaryOp { lhs, rhs, .. } => {
299 f(*lhs);
300 f(*rhs);
301 }
302 Expr::Range { lhs, rhs, .. } => {
303 if let Some(lhs) = rhs {
304 f(*lhs);
305 }
306 if let Some(rhs) = lhs {
307 f(*rhs);
308 }
309 }
310 Expr::Index { base, index } => {
311 f(*base);
312 f(*index);
313 }
314 Expr::Field { expr, .. }
315 | Expr::Await { expr }
316 | Expr::Try { expr }
317 | Expr::Cast { expr, .. }
318 | Expr::Ref { expr, .. }
319 | Expr::UnaryOp { expr, .. }
320 | Expr::Box { expr } => {
321 f(*expr);
322 }
323 Expr::Tuple { exprs } => {
324 for expr in exprs {
325 f(*expr);
326 }
327 }
328 Expr::Array(a) => match a {
329 Array::ElementList(exprs) => {
330 for expr in exprs {
331 f(*expr);
332 }
333 }
334 Array::Repeat { initializer, repeat } => {
335 f(*initializer);
336 f(*repeat)
337 }
338 },
339 Expr::Literal(_) => {}
340 }
341 }
342}
343
344/// Explicit binding annotations given in the HIR for a binding. Note
345/// that this is not the final binding *mode* that we infer after type
346/// inference.
347#[derive(Clone, PartialEq, Eq, Debug, Copy)]
348pub enum BindingAnnotation {
349 /// No binding annotation given: this means that the final binding mode
350 /// will depend on whether we have skipped through a `&` reference
351 /// when matching. For example, the `x` in `Some(x)` will have binding
352 /// mode `None`; if you do `let Some(x) = &Some(22)`, it will
353 /// ultimately be inferred to be by-reference.
354 Unannotated,
355
356 /// Annotated with `mut x` -- could be either ref or not, similar to `None`.
357 Mutable,
358
359 /// Annotated as `ref`, like `ref x`
360 Ref,
361
362 /// Annotated as `ref mut x`.
363 RefMut,
364}
365
366impl BindingAnnotation {
367 pub fn new(is_mutable: bool, is_ref: bool) -> Self {
368 match (is_mutable, is_ref) {
369 (true, true) => BindingAnnotation::RefMut,
370 (false, true) => BindingAnnotation::Ref,
371 (true, false) => BindingAnnotation::Mutable,
372 (false, false) => BindingAnnotation::Unannotated,
373 }
374 }
375}
376
377#[derive(Debug, Clone, Eq, PartialEq)]
378pub struct RecordFieldPat {
379 pub name: Name,
380 pub pat: PatId,
381}
382
383/// Close relative to rustc's hir::PatKind
384#[derive(Debug, Clone, Eq, PartialEq)]
385pub enum Pat {
386 Missing,
387 Wild,
388 Tuple { args: Vec<PatId>, ellipsis: Option<usize> },
389 Or(Vec<PatId>),
390 Record { path: Option<Path>, args: Vec<RecordFieldPat>, ellipsis: bool },
391 Range { start: ExprId, end: ExprId },
392 Slice { prefix: Vec<PatId>, slice: Option<PatId>, suffix: Vec<PatId> },
393 Path(Path),
394 Lit(ExprId),
395 Bind { mode: BindingAnnotation, name: Name, subpat: Option<PatId> },
396 TupleStruct { path: Option<Path>, args: Vec<PatId>, ellipsis: Option<usize> },
397 Ref { pat: PatId, mutability: Mutability },
398}
399
400impl Pat {
401 pub fn walk_child_pats(&self, mut f: impl FnMut(PatId)) {
402 match self {
403 Pat::Range { .. } | Pat::Lit(..) | Pat::Path(..) | Pat::Wild | Pat::Missing => {}
404 Pat::Bind { subpat, .. } => {
405 subpat.iter().copied().for_each(f);
406 }
407 Pat::Or(args) | Pat::Tuple { args, .. } | Pat::TupleStruct { args, .. } => {
408 args.iter().copied().for_each(f);
409 }
410 Pat::Ref { pat, .. } => f(*pat),
411 Pat::Slice { prefix, slice, suffix } => {
412 let total_iter = prefix.iter().chain(slice.iter()).chain(suffix.iter());
413 total_iter.copied().for_each(f);
414 }
415 Pat::Record { args, .. } => {
416 args.iter().map(|f| f.pat).for_each(f);
417 }
418 }
419 }
420}