aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/diagnostics/match_check/usefulness.rs
diff options
context:
space:
mode:
authorDawer <[email protected]>2021-05-11 13:18:16 +0100
committerDawer <[email protected]>2021-05-31 20:23:09 +0100
commite84efc4a4656e54a4f08b99592d5d98ac5726449 (patch)
tree7f21f05a7eb6cbef32ca9c081e19f9f0c2392567 /crates/hir_ty/src/diagnostics/match_check/usefulness.rs
parent894b4c64ffdb280a38c1ea2e9be145ca308965fd (diff)
Replace the old match checking algorithm
Diffstat (limited to 'crates/hir_ty/src/diagnostics/match_check/usefulness.rs')
-rw-r--r--crates/hir_ty/src/diagnostics/match_check/usefulness.rs1180
1 files changed, 1180 insertions, 0 deletions
diff --git a/crates/hir_ty/src/diagnostics/match_check/usefulness.rs b/crates/hir_ty/src/diagnostics/match_check/usefulness.rs
new file mode 100644
index 000000000..b01e3557c
--- /dev/null
+++ b/crates/hir_ty/src/diagnostics/match_check/usefulness.rs
@@ -0,0 +1,1180 @@
1//! Based on rust-lang/rust 1.52.0-nightly (25c15cdbe 2021-04-22)
2//! https://github.com/rust-lang/rust/blob/25c15cdbe/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
3//!
4//! -----
5//!
6//! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
7//! Specifically, given a list of patterns for a type, we can tell whether:
8//! (a) each pattern is reachable (reachability)
9//! (b) the patterns cover every possible value for the type (exhaustiveness)
10//!
11//! The algorithm implemented here is a modified version of the one described in [this
12//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
13//! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
14//! without being as rigorous.
15//!
16//!
17//! # Summary
18//!
19//! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
20//! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
21//! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
22//! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
23//! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
24//! file is to compute it efficiently.
25//!
26//! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
27//! is useful w.r.t. the patterns above it:
28//! ```rust
29//! match x {
30//! Some(_) => ...,
31//! None => ..., // reachable: `None` is matched by this but not the branch above
32//! Some(0) => ..., // unreachable: all the values this matches are already matched by
33//! // `Some(_)` above
34//! }
35//! ```
36//!
37//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
38//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
39//! are used to tell the user which values are missing.
40//! ```rust
41//! match x {
42//! Some(0) => ...,
43//! None => ...,
44//! // not exhaustive: `_` is useful because it matches `Some(1)`
45//! }
46//! ```
47//!
48//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
49//! reachability for each match branch and exhaustiveness for the whole match.
50//!
51//!
52//! # Constructors and fields
53//!
54//! Note: we will often abbreviate "constructor" as "ctor".
55//!
56//! The idea that powers everything that is done in this file is the following: a (matcheable)
57//! value is made from a constructor applied to a number of subvalues. Examples of constructors are
58//! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
59//! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
60//! pattern-matching, and this is the basis for what follows.
61//!
62//! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
63//! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
64//! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
65//! `enum`, with one variant for each number. This allows us to see any matcheable value as made up
66//! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
67//! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
68//!
69//! This idea can be extended to patterns: they are also made from constructors applied to fields.
70//! A pattern for a given type is allowed to use all the ctors for values of that type (which we
71//! call "value constructors"), but there are also pattern-only ctors. The most important one is
72//! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
73//! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
74//! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
75//! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
76//!
77//! From this deconstruction we can compute whether a given value matches a given pattern; we
78//! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
79//! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
80//! we compare their fields recursively. A few representative examples:
81//!
82//! - `matches!(v, _) := true`
83//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
84//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
85//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
86//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
87//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
88//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
89//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
90//! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
91//!
92//! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
93//!
94//! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
95//! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
96//! infinitude of constructors. There are also subtleties with visibility of fields and
97//! uninhabitedness and various other things. The constructors idea can be extended to handle most
98//! of these subtleties though; caveats are documented where relevant throughout the code.
99//!
100//! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
101//!
102//!
103//! # Specialization
104//!
105//! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
106//! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
107//! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
108//! enumerate all possible values. From the discussion above we see that we can proceed
109//! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
110//! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
111//! say from knowing only the first constructor of our candidate value.
112//!
113//! Let's take the following example:
114//! ```
115//! match x {
116//! Enum::Variant1(_) => {} // `p1`
117//! Enum::Variant2(None, 0) => {} // `p2`
118//! Enum::Variant2(Some(_), 0) => {} // `q`
119//! }
120//! ```
121//!
122//! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
123//! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
124//! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
125//! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
126//!
127//! ```
128//! match x {
129//! (None, 0) => {} // `p2'`
130//! (Some(_), 0) => {} // `q'`
131//! }
132//! ```
133//!
134//! This motivates a new step in computing usefulness, that we call _specialization_.
135//! Specialization consist of filtering a list of patterns for those that match a constructor, and
136//! then looking into the constructor's fields. This enables usefulness to be computed recursively.
137//!
138//! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
139//! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
140//! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
141//! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
142//! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
143//! happening:
144//! ```
145//! [Enum::Variant1(_)]
146//! [Enum::Variant2(None, 0)]
147//! [Enum::Variant2(Some(_), 0)]
148//! //==>> specialize with `Variant2`
149//! [None, 0]
150//! [Some(_), 0]
151//! //==>> specialize with `Some`
152//! [_, 0]
153//! //==>> specialize with `true` (say the type was `bool`)
154//! [0]
155//! //==>> specialize with `0`
156//! []
157//! ```
158//!
159//! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
160//! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
161//! otherwise if returns the fields of the constructor. This only returns more than one
162//! pattern-stack if `p` has a pattern-only constructor.
163//!
164//! - Specializing for the wrong constructor returns nothing
165//!
166//! `specialize(None, Some(p0)) := []`
167//!
168//! - Specializing for the correct constructor returns a single row with the fields
169//!
170//! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
171//!
172//! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
173//!
174//! - For or-patterns, we specialize each branch and concatenate the results
175//!
176//! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
177//!
178//! - We treat the other pattern constructors as if they were a large or-pattern of all the
179//! possibilities:
180//!
181//! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
182//!
183//! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
184//!
185//! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
186//!
187//! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
188//! the discussion about constructor splitting in [`super::deconstruct_pat`].
189//!
190//!
191//! We then extend this function to work with pattern-stacks as input, by acting on the first
192//! column and keeping the other columns untouched.
193//!
194//! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
195//! or-patterns in the first column are expanded before being stored in the matrix. Specialization
196//! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
197//! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
198//! [`Fields`] struct.
199//!
200//!
201//! # Computing usefulness
202//!
203//! We now have all we need to compute usefulness. The inputs to usefulness are a list of
204//! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
205//! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
206//! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
207//! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
208//!
209//! - base case: `n_columns == 0`.
210//! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
211//! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
212//!
213//! - inductive case: `n_columns > 0`.
214//! We need a way to list the constructors we want to try. We will be more clever in the next
215//! section but for now assume we list all value constructors for the type of the first column.
216//!
217//! - for each such ctor `c`:
218//!
219//! - for each `q'` returned by `specialize(c, q)`:
220//!
221//! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
222//!
223//! - for each witness found, we revert specialization by pushing the constructor `c` on top.
224//!
225//! - We return the concatenation of all the witnesses found, if any.
226//!
227//! Example:
228//! ```
229//! [Some(true)] // p_1
230//! [None] // p_2
231//! [Some(_)] // q
232//! //==>> try `None`: `specialize(None, q)` returns nothing
233//! //==>> try `Some`: `specialize(Some, q)` returns a single row
234//! [true] // p_1'
235//! [_] // q'
236//! //==>> try `true`: `specialize(true, q')` returns a single row
237//! [] // p_1''
238//! [] // q''
239//! //==>> base case; `n != 0` so `q''` is not useful.
240//! //==>> go back up a step
241//! [true] // p_1'
242//! [_] // q'
243//! //==>> try `false`: `specialize(false, q')` returns a single row
244//! [] // q''
245//! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
246//! witnesses:
247//! []
248//! //==>> undo the specialization with `false`
249//! witnesses:
250//! [false]
251//! //==>> undo the specialization with `Some`
252//! witnesses:
253//! [Some(false)]
254//! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
255//! ```
256//!
257//! This computation is done in [`is_useful`]. In practice we don't care about the list of
258//! witnesses when computing reachability; we only need to know whether any exist. We do keep the
259//! witnesses when computing exhaustiveness to report them to the user.
260//!
261//!
262//! # Making usefulness tractable: constructor splitting
263//!
264//! We're missing one last detail: which constructors do we list? Naively listing all value
265//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
266//! first obvious insight is that we only want to list constructors that are covered by the head
267//! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
268//! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
269//! group together constructors that behave the same.
270//!
271//! The details are not necessary to understand this file, so we explain them in
272//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
273
274use std::{cell::RefCell, iter::FromIterator};
275
276use hir_def::{expr::ExprId, HasModule, ModuleId};
277use la_arena::Arena;
278use once_cell::unsync::OnceCell;
279use rustc_hash::FxHashMap;
280use smallvec::{smallvec, SmallVec};
281
282use crate::{db::HirDatabase, InferenceResult, Interner, Ty};
283
284use super::{
285 deconstruct_pat::{Constructor, Fields, SplitWildcard},
286 Pat, PatId, PatKind, PatternFoldable, PatternFolder,
287};
288
289use self::{helper::PatIdExt, Usefulness::*, WitnessPreference::*};
290
291pub(crate) struct MatchCheckCtx<'a> {
292 pub(crate) module: ModuleId,
293 pub(crate) match_expr: ExprId,
294 pub(crate) infer: &'a InferenceResult,
295 pub(crate) db: &'a dyn HirDatabase,
296 /// Lowered patterns from self.body.pats plus generated by the check.
297 pub(crate) pattern_arena: &'a RefCell<PatternArena>,
298}
299
300impl<'a> MatchCheckCtx<'a> {
301 pub(super) fn is_uninhabited(&self, _ty: &Ty) -> bool {
302 // FIXME(iDawer) implement exhaustive_patterns feature. More info in:
303 // Tracking issue for RFC 1872: exhaustive_patterns feature https://github.com/rust-lang/rust/issues/51085
304 false
305 }
306
307 /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
308 pub(super) fn is_foreign_non_exhaustive_enum(&self, enum_id: hir_def::EnumId) -> bool {
309 let has_non_exhaustive_attr =
310 self.db.attrs(enum_id.into()).by_key("non_exhaustive").exists();
311 let is_local =
312 hir_def::AdtId::from(enum_id).module(self.db.upcast()).krate() == self.module.krate();
313 has_non_exhaustive_attr && !is_local
314 }
315
316 // Rust feature described as "Allows exhaustive pattern matching on types that contain uninhabited types."
317 pub(super) fn feature_exhaustive_patterns(&self) -> bool {
318 // TODO
319 false
320 }
321
322 pub(super) fn alloc_pat(&self, pat: Pat) -> PatId {
323 self.pattern_arena.borrow_mut().alloc(pat)
324 }
325
326 /// Get type of a pattern. Handles expanded patterns.
327 pub(super) fn type_of(&self, pat: PatId) -> Ty {
328 self.pattern_arena.borrow()[pat].ty.clone()
329 }
330}
331
332#[derive(Copy, Clone)]
333pub(super) struct PatCtxt<'a> {
334 pub(super) cx: &'a MatchCheckCtx<'a>,
335 /// Type of the current column under investigation.
336 pub(super) ty: &'a Ty,
337 /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
338 /// subpattern.
339 pub(super) is_top_level: bool,
340}
341
342pub(crate) fn expand_pattern(pat: Pat) -> Pat {
343 LiteralExpander.fold_pattern(&pat)
344}
345
346struct LiteralExpander;
347
348impl PatternFolder for LiteralExpander {
349 fn fold_pattern(&mut self, pat: &Pat) -> Pat {
350 match (pat.ty.kind(&Interner), pat.kind.as_ref()) {
351 (_, PatKind::Binding { subpattern: Some(s), .. }) => s.fold_with(self),
352 _ => pat.super_fold_with(self),
353 }
354 }
355}
356
357impl Pat {
358 fn _is_wildcard(&self) -> bool {
359 matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
360 }
361}
362
363impl PatIdExt for PatId {
364 fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool {
365 matches!(*cx.pattern_arena.borrow()[self].kind, PatKind::Or { .. })
366 }
367
368 /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
369 fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self> {
370 fn expand(pat: PatId, vec: &mut Vec<PatId>, pat_arena: &mut PatternArena) {
371 if let PatKind::Or { pats } = pat_arena[pat].kind.as_ref() {
372 let pats = pats.clone();
373 for pat in pats {
374 // FIXME(iDawer): Ugh, I want to go back to references (PatId -> &Pat)
375 let pat = pat_arena.alloc(pat.clone());
376 expand(pat, vec, pat_arena);
377 }
378 } else {
379 vec.push(pat)
380 }
381 }
382
383 let mut pat_arena = cx.pattern_arena.borrow_mut();
384 let mut pats = Vec::new();
385 expand(self, &mut pats, &mut pat_arena);
386 pats
387 }
388}
389
390/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
391/// works well.
392#[derive(Clone)]
393pub(super) struct PatStack {
394 pats: SmallVec<[PatId; 2]>,
395 /// Cache for the constructor of the head
396 head_ctor: OnceCell<Constructor>,
397}
398
399impl PatStack {
400 fn from_pattern(pat: PatId) -> Self {
401 Self::from_vec(smallvec![pat])
402 }
403
404 fn from_vec(vec: SmallVec<[PatId; 2]>) -> Self {
405 PatStack { pats: vec, head_ctor: OnceCell::new() }
406 }
407
408 fn is_empty(&self) -> bool {
409 self.pats.is_empty()
410 }
411
412 fn len(&self) -> usize {
413 self.pats.len()
414 }
415
416 fn head(&self) -> PatId {
417 self.pats[0]
418 }
419
420 #[inline]
421 fn head_ctor(&self, cx: &MatchCheckCtx<'_>) -> &Constructor {
422 self.head_ctor.get_or_init(|| Constructor::from_pat(cx, self.head()))
423 }
424
425 // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
426 // or-pattern. Panics if `self` is empty.
427 fn expand_or_pat(&self, cx: &MatchCheckCtx<'_>) -> impl Iterator<Item = PatStack> + '_ {
428 self.head().expand_or_pat(cx).into_iter().map(move |pat| {
429 let mut new_patstack = PatStack::from_pattern(pat);
430 new_patstack.pats.extend_from_slice(&self.pats[1..]);
431 new_patstack
432 })
433 }
434
435 /// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
436 ///
437 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
438 /// fields filled with wild patterns.
439 ///
440 /// This is roughly the inverse of `Constructor::apply`.
441 fn pop_head_constructor(
442 &self,
443 ctor_wild_subpatterns: &Fields,
444 cx: &MatchCheckCtx<'_>,
445 ) -> PatStack {
446 // We pop the head pattern and push the new fields extracted from the arguments of
447 // `self.head()`.
448 let mut new_fields =
449 ctor_wild_subpatterns.replace_with_pattern_arguments(self.head(), cx).into_patterns();
450 new_fields.extend_from_slice(&self.pats[1..]);
451 PatStack::from_vec(new_fields)
452 }
453}
454
455impl Default for PatStack {
456 fn default() -> Self {
457 Self::from_vec(smallvec![])
458 }
459}
460
461impl PartialEq for PatStack {
462 fn eq(&self, other: &Self) -> bool {
463 self.pats == other.pats
464 }
465}
466
467impl FromIterator<PatId> for PatStack {
468 fn from_iter<T>(iter: T) -> Self
469 where
470 T: IntoIterator<Item = PatId>,
471 {
472 Self::from_vec(iter.into_iter().collect())
473 }
474}
475
476/// A 2D matrix.
477#[derive(Clone)]
478pub(super) struct Matrix {
479 patterns: Vec<PatStack>,
480}
481
482impl Matrix {
483 fn empty() -> Self {
484 Matrix { patterns: vec![] }
485 }
486
487 /// Number of columns of this matrix. `None` is the matrix is empty.
488 pub(super) fn _column_count(&self) -> Option<usize> {
489 self.patterns.get(0).map(|r| r.len())
490 }
491
492 /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
493 /// expands it.
494 fn push(&mut self, row: PatStack, cx: &MatchCheckCtx<'_>) {
495 if !row.is_empty() && row.head().is_or_pat(cx) {
496 for row in row.expand_or_pat(cx) {
497 self.patterns.push(row);
498 }
499 } else {
500 self.patterns.push(row);
501 }
502 }
503
504 /// Iterate over the first component of each row
505 fn heads(&self) -> impl Iterator<Item = PatId> + '_ {
506 self.patterns.iter().map(|r| r.head())
507 }
508
509 /// Iterate over the first constructor of each row.
510 fn head_ctors<'a>(
511 &'a self,
512 cx: &'a MatchCheckCtx<'_>,
513 ) -> impl Iterator<Item = &'a Constructor> + Clone {
514 self.patterns.iter().map(move |r| r.head_ctor(cx))
515 }
516
517 /// This computes `S(constructor, self)`. See top of the file for explanations.
518 fn specialize_constructor(
519 &self,
520 pcx: PatCtxt<'_>,
521 ctor: &Constructor,
522 ctor_wild_subpatterns: &Fields,
523 ) -> Matrix {
524 let rows = self
525 .patterns
526 .iter()
527 .filter(|r| ctor.is_covered_by(pcx, r.head_ctor(pcx.cx)))
528 .map(|r| r.pop_head_constructor(ctor_wild_subpatterns, pcx.cx));
529 Matrix::from_iter(rows, pcx.cx)
530 }
531
532 fn from_iter(rows: impl IntoIterator<Item = PatStack>, cx: &MatchCheckCtx<'_>) -> Matrix {
533 let mut matrix = Matrix::empty();
534 for x in rows {
535 // Using `push` ensures we correctly expand or-patterns.
536 matrix.push(x, cx);
537 }
538 matrix
539 }
540}
541
542/// Given a pattern or a pattern-stack, this struct captures a set of its subpatterns. We use that
543/// to track reachable sub-patterns arising from or-patterns. In the absence of or-patterns this
544/// will always be either `Empty` (the whole pattern is unreachable) or `Full` (the whole pattern
545/// is reachable). When there are or-patterns, some subpatterns may be reachable while others
546/// aren't. In this case the whole pattern still counts as reachable, but we will lint the
547/// unreachable subpatterns.
548///
549/// This supports a limited set of operations, so not all possible sets of subpatterns can be
550/// represented. That's ok, we only want the ones that make sense for our usage.
551///
552/// What we're doing is illustrated by this:
553/// ```
554/// match (true, 0) {
555/// (true, 0) => {}
556/// (_, 1) => {}
557/// (true | false, 0 | 1) => {}
558/// }
559/// ```
560/// When we try the alternatives of the `true | false` or-pattern, the last `0` is reachable in the
561/// `false` alternative but not the `true`. So overall it is reachable. By contrast, the last `1`
562/// is not reachable in either alternative, so we want to signal this to the user.
563/// Therefore we take the union of sets of reachable patterns coming from different alternatives in
564/// order to figure out which subpatterns are overall reachable.
565///
566/// Invariant: we try to construct the smallest representation we can. In particular if
567/// `self.is_empty()` we ensure that `self` is `Empty`, and same with `Full`. This is not important
568/// for correctness currently.
569#[derive(Debug, Clone)]
570enum SubPatSet {
571 /// The empty set. This means the pattern is unreachable.
572 Empty,
573 /// The set containing the full pattern.
574 Full,
575 /// If the pattern is a pattern with a constructor or a pattern-stack, we store a set for each
576 /// of its subpatterns. Missing entries in the map are implicitly full, because that's the
577 /// common case.
578 Seq { subpats: FxHashMap<usize, SubPatSet> },
579 /// If the pattern is an or-pattern, we store a set for each of its alternatives. Missing
580 /// entries in the map are implicitly empty. Note: we always flatten nested or-patterns.
581 Alt {
582 subpats: FxHashMap<usize, SubPatSet>,
583 /// Counts the total number of alternatives in the pattern
584 alt_count: usize,
585 /// We keep the pattern around to retrieve spans.
586 pat: PatId,
587 },
588}
589
590impl SubPatSet {
591 fn full() -> Self {
592 SubPatSet::Full
593 }
594
595 fn empty() -> Self {
596 SubPatSet::Empty
597 }
598
599 fn is_empty(&self) -> bool {
600 match self {
601 SubPatSet::Empty => true,
602 SubPatSet::Full => false,
603 // If any subpattern in a sequence is unreachable, the whole pattern is unreachable.
604 SubPatSet::Seq { subpats } => subpats.values().any(|set| set.is_empty()),
605 // An or-pattern is reachable if any of its alternatives is.
606 SubPatSet::Alt { subpats, .. } => subpats.values().all(|set| set.is_empty()),
607 }
608 }
609
610 fn is_full(&self) -> bool {
611 match self {
612 SubPatSet::Empty => false,
613 SubPatSet::Full => true,
614 // The whole pattern is reachable only when all its alternatives are.
615 SubPatSet::Seq { subpats } => subpats.values().all(|sub_set| sub_set.is_full()),
616 // The whole or-pattern is reachable only when all its alternatives are.
617 SubPatSet::Alt { subpats, alt_count, .. } => {
618 subpats.len() == *alt_count && subpats.values().all(|set| set.is_full())
619 }
620 }
621 }
622
623 /// Union `self` with `other`, mutating `self`.
624 fn union(&mut self, other: Self) {
625 use SubPatSet::*;
626 // Union with full stays full; union with empty changes nothing.
627 if self.is_full() || other.is_empty() {
628 return;
629 } else if self.is_empty() {
630 *self = other;
631 return;
632 } else if other.is_full() {
633 *self = Full;
634 return;
635 }
636
637 match (&mut *self, other) {
638 (Seq { subpats: s_set }, Seq { subpats: mut o_set }) => {
639 s_set.retain(|i, s_sub_set| {
640 // Missing entries count as full.
641 let o_sub_set = o_set.remove(&i).unwrap_or(Full);
642 s_sub_set.union(o_sub_set);
643 // We drop full entries.
644 !s_sub_set.is_full()
645 });
646 // Everything left in `o_set` is missing from `s_set`, i.e. counts as full. Since
647 // unioning with full returns full, we can drop those entries.
648 }
649 (Alt { subpats: s_set, .. }, Alt { subpats: mut o_set, .. }) => {
650 s_set.retain(|i, s_sub_set| {
651 // Missing entries count as empty.
652 let o_sub_set = o_set.remove(&i).unwrap_or(Empty);
653 s_sub_set.union(o_sub_set);
654 // We drop empty entries.
655 !s_sub_set.is_empty()
656 });
657 // Everything left in `o_set` is missing from `s_set`, i.e. counts as empty. Since
658 // unioning with empty changes nothing, we can take those entries as is.
659 s_set.extend(o_set);
660 }
661 _ => panic!("bug"),
662 }
663
664 if self.is_full() {
665 *self = Full;
666 }
667 }
668
669 /// Returns a list of the unreachable subpatterns. If `self` is empty (i.e. the
670 /// whole pattern is unreachable) we return `None`.
671 fn list_unreachable_subpatterns(&self, cx: &MatchCheckCtx<'_>) -> Option<Vec<PatId>> {
672 /// Panics if `set.is_empty()`.
673 fn fill_subpats(
674 set: &SubPatSet,
675 unreachable_pats: &mut Vec<PatId>,
676 cx: &MatchCheckCtx<'_>,
677 ) {
678 match set {
679 SubPatSet::Empty => panic!("bug"),
680 SubPatSet::Full => {}
681 SubPatSet::Seq { subpats } => {
682 for (_, sub_set) in subpats {
683 fill_subpats(sub_set, unreachable_pats, cx);
684 }
685 }
686 SubPatSet::Alt { subpats, pat, alt_count, .. } => {
687 let expanded = pat.expand_or_pat(cx);
688 for i in 0..*alt_count {
689 let sub_set = subpats.get(&i).unwrap_or(&SubPatSet::Empty);
690 if sub_set.is_empty() {
691 // Found a unreachable subpattern.
692 unreachable_pats.push(expanded[i]);
693 } else {
694 fill_subpats(sub_set, unreachable_pats, cx);
695 }
696 }
697 }
698 }
699 }
700
701 if self.is_empty() {
702 return None;
703 }
704 if self.is_full() {
705 // No subpatterns are unreachable.
706 return Some(Vec::new());
707 }
708 let mut unreachable_pats = Vec::new();
709 fill_subpats(self, &mut unreachable_pats, cx);
710 Some(unreachable_pats)
711 }
712
713 /// When `self` refers to a patstack that was obtained from specialization, after running
714 /// `unspecialize` it will refer to the original patstack before specialization.
715 fn unspecialize(self, arity: usize) -> Self {
716 use SubPatSet::*;
717 match self {
718 Full => Full,
719 Empty => Empty,
720 Seq { subpats } => {
721 // We gather the first `arity` subpatterns together and shift the remaining ones.
722 let mut new_subpats = FxHashMap::default();
723 let mut new_subpats_first_col = FxHashMap::default();
724 for (i, sub_set) in subpats {
725 if i < arity {
726 // The first `arity` indices are now part of the pattern in the first
727 // column.
728 new_subpats_first_col.insert(i, sub_set);
729 } else {
730 // Indices after `arity` are simply shifted
731 new_subpats.insert(i - arity + 1, sub_set);
732 }
733 }
734 // If `new_subpats_first_col` has no entries it counts as full, so we can omit it.
735 if !new_subpats_first_col.is_empty() {
736 new_subpats.insert(0, Seq { subpats: new_subpats_first_col });
737 }
738 Seq { subpats: new_subpats }
739 }
740 Alt { .. } => panic!("bug"),
741 }
742 }
743
744 /// When `self` refers to a patstack that was obtained from splitting an or-pattern, after
745 /// running `unspecialize` it will refer to the original patstack before splitting.
746 ///
747 /// For example:
748 /// ```
749 /// match Some(true) {
750 /// Some(true) => {}
751 /// None | Some(true | false) => {}
752 /// }
753 /// ```
754 /// Here `None` would return the full set and `Some(true | false)` would return the set
755 /// containing `false`. After `unsplit_or_pat`, we want the set to contain `None` and `false`.
756 /// This is what this function does.
757 fn unsplit_or_pat(mut self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
758 use SubPatSet::*;
759 if self.is_empty() {
760 return Empty;
761 }
762
763 // Subpatterns coming from inside the or-pattern alternative itself, e.g. in `None | Some(0
764 // | 1)`.
765 let set_first_col = match &mut self {
766 Full => Full,
767 Seq { subpats } => subpats.remove(&0).unwrap_or(Full),
768 Empty => unreachable!(),
769 Alt { .. } => panic!("bug"), // `self` is a patstack
770 };
771 let mut subpats_first_col = FxHashMap::default();
772 subpats_first_col.insert(alt_id, set_first_col);
773 let set_first_col = Alt { subpats: subpats_first_col, pat, alt_count };
774
775 let mut subpats = match self {
776 Full => FxHashMap::default(),
777 Seq { subpats } => subpats,
778 Empty => unreachable!(),
779 Alt { .. } => panic!("bug"), // `self` is a patstack
780 };
781 subpats.insert(0, set_first_col);
782 Seq { subpats }
783 }
784}
785
786/// This carries the results of computing usefulness, as described at the top of the file. When
787/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
788/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
789/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
790/// witnesses of non-exhaustiveness when there are any.
791/// Which variant to use is dictated by `WitnessPreference`.
792#[derive(Clone, Debug)]
793enum Usefulness {
794 /// Carries a set of subpatterns that have been found to be reachable. If empty, this indicates
795 /// the whole pattern is unreachable. If not, this indicates that the pattern is reachable but
796 /// that some sub-patterns may be unreachable (due to or-patterns). In the absence of
797 /// or-patterns this will always be either `Empty` (the whole pattern is unreachable) or `Full`
798 /// (the whole pattern is reachable).
799 NoWitnesses(SubPatSet),
800 /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
801 /// pattern is unreachable.
802 WithWitnesses(Vec<Witness>),
803}
804
805impl Usefulness {
806 fn new_useful(preference: WitnessPreference) -> Self {
807 match preference {
808 ConstructWitness => WithWitnesses(vec![Witness(vec![])]),
809 LeaveOutWitness => NoWitnesses(SubPatSet::full()),
810 }
811 }
812 fn new_not_useful(preference: WitnessPreference) -> Self {
813 match preference {
814 ConstructWitness => WithWitnesses(vec![]),
815 LeaveOutWitness => NoWitnesses(SubPatSet::empty()),
816 }
817 }
818
819 /// Combine usefulnesses from two branches. This is an associative operation.
820 fn extend(&mut self, other: Self) {
821 match (&mut *self, other) {
822 (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
823 (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
824 (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
825 (NoWitnesses(s), NoWitnesses(o)) => s.union(o),
826 _ => unreachable!(),
827 }
828 }
829
830 /// When trying several branches and each returns a `Usefulness`, we need to combine the
831 /// results together.
832 fn merge(pref: WitnessPreference, usefulnesses: impl Iterator<Item = Self>) -> Self {
833 let mut ret = Self::new_not_useful(pref);
834 for u in usefulnesses {
835 ret.extend(u);
836 if let NoWitnesses(subpats) = &ret {
837 if subpats.is_full() {
838 // Once we reach the full set, more unions won't change the result.
839 return ret;
840 }
841 }
842 }
843 ret
844 }
845
846 /// After calculating the usefulness for a branch of an or-pattern, call this to make this
847 /// usefulness mergeable with those from the other branches.
848 fn unsplit_or_pat(self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
849 match self {
850 NoWitnesses(subpats) => NoWitnesses(subpats.unsplit_or_pat(alt_id, alt_count, pat)),
851 WithWitnesses(_) => panic!("bug"),
852 }
853 }
854
855 /// After calculating usefulness after a specialization, call this to recontruct a usefulness
856 /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
857 /// with the results of specializing with the other constructors.
858 fn apply_constructor(
859 self,
860 pcx: PatCtxt<'_>,
861 matrix: &Matrix,
862 ctor: &Constructor,
863 ctor_wild_subpatterns: &Fields,
864 ) -> Self {
865 match self {
866 WithWitnesses(witnesses) if witnesses.is_empty() => WithWitnesses(witnesses),
867 WithWitnesses(witnesses) => {
868 let new_witnesses = if matches!(ctor, Constructor::Missing) {
869 let mut split_wildcard = SplitWildcard::new(pcx);
870 split_wildcard.split(pcx, matrix.head_ctors(pcx.cx));
871 // Construct for each missing constructor a "wild" version of this
872 // constructor, that matches everything that can be built with
873 // it. For example, if `ctor` is a `Constructor::Variant` for
874 // `Option::Some`, we get the pattern `Some(_)`.
875 let new_patterns: Vec<_> = split_wildcard
876 .iter_missing(pcx)
877 .map(|missing_ctor| {
878 Fields::wildcards(pcx, missing_ctor).apply(pcx, missing_ctor)
879 })
880 .collect();
881 witnesses
882 .into_iter()
883 .flat_map(|witness| {
884 new_patterns.iter().map(move |pat| {
885 let mut witness = witness.clone();
886 witness.0.push(pat.clone());
887 witness
888 })
889 })
890 .collect()
891 } else {
892 witnesses
893 .into_iter()
894 .map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns))
895 .collect()
896 };
897 WithWitnesses(new_witnesses)
898 }
899 NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor_wild_subpatterns.len())),
900 }
901 }
902}
903
904#[derive(Copy, Clone, Debug)]
905enum WitnessPreference {
906 ConstructWitness,
907 LeaveOutWitness,
908}
909
910/// A witness of non-exhaustiveness for error reporting, represented
911/// as a list of patterns (in reverse order of construction) with
912/// wildcards inside to represent elements that can take any inhabitant
913/// of the type as a value.
914///
915/// A witness against a list of patterns should have the same types
916/// and length as the pattern matched against. Because Rust `match`
917/// is always against a single pattern, at the end the witness will
918/// have length 1, but in the middle of the algorithm, it can contain
919/// multiple patterns.
920///
921/// For example, if we are constructing a witness for the match against
922///
923/// ```
924/// struct Pair(Option<(u32, u32)>, bool);
925///
926/// match (p: Pair) {
927/// Pair(None, _) => {}
928/// Pair(_, false) => {}
929/// }
930/// ```
931///
932/// We'll perform the following steps:
933/// 1. Start with an empty witness
934/// `Witness(vec![])`
935/// 2. Push a witness `true` against the `false`
936/// `Witness(vec![true])`
937/// 3. Push a witness `Some(_)` against the `None`
938/// `Witness(vec![true, Some(_)])`
939/// 4. Apply the `Pair` constructor to the witnesses
940/// `Witness(vec![Pair(Some(_), true)])`
941///
942/// The final `Pair(Some(_), true)` is then the resulting witness.
943#[derive(Clone, Debug)]
944pub(crate) struct Witness(Vec<Pat>);
945
946impl Witness {
947 /// Asserts that the witness contains a single pattern, and returns it.
948 fn single_pattern(self) -> Pat {
949 assert_eq!(self.0.len(), 1);
950 self.0.into_iter().next().unwrap()
951 }
952
953 /// Constructs a partial witness for a pattern given a list of
954 /// patterns expanded by the specialization step.
955 ///
956 /// When a pattern P is discovered to be useful, this function is used bottom-up
957 /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
958 /// of values, V, where each value in that set is not covered by any previously
959 /// used patterns and is covered by the pattern P'. Examples:
960 ///
961 /// left_ty: tuple of 3 elements
962 /// pats: [10, 20, _] => (10, 20, _)
963 ///
964 /// left_ty: struct X { a: (bool, &'static str), b: usize}
965 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
966 fn apply_constructor(
967 mut self,
968 pcx: PatCtxt<'_>,
969 ctor: &Constructor,
970 ctor_wild_subpatterns: &Fields,
971 ) -> Self {
972 let pat = {
973 let len = self.0.len();
974 let arity = ctor_wild_subpatterns.len();
975 let pats = self.0.drain((len - arity)..).rev();
976 ctor_wild_subpatterns.replace_fields(pcx.cx, pats).apply(pcx, ctor)
977 };
978
979 self.0.push(pat);
980
981 self
982 }
983}
984
985/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
986/// The algorithm from the paper has been modified to correctly handle empty
987/// types. The changes are:
988/// (0) We don't exit early if the pattern matrix has zero rows. We just
989/// continue to recurse over columns.
990/// (1) all_constructors will only return constructors that are statically
991/// possible. E.g., it will only return `Ok` for `Result<T, !>`.
992///
993/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
994/// to a set of such vectors `m` - this is defined as there being a set of
995/// inputs that will match `v` but not any of the sets in `m`.
996///
997/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
998///
999/// This is used both for reachability checking (if a pattern isn't useful in
1000/// relation to preceding patterns, it is not reachable) and exhaustiveness
1001/// checking (if a wildcard pattern is useful in relation to a matrix, the
1002/// matrix isn't exhaustive).
1003///
1004/// `is_under_guard` is used to inform if the pattern has a guard. If it
1005/// has one it must not be inserted into the matrix. This shouldn't be
1006/// relied on for soundness.
1007fn is_useful(
1008 cx: &MatchCheckCtx<'_>,
1009 matrix: &Matrix,
1010 v: &PatStack,
1011 witness_preference: WitnessPreference,
1012 is_under_guard: bool,
1013 is_top_level: bool,
1014) -> Usefulness {
1015 let Matrix { patterns: rows, .. } = matrix;
1016
1017 // The base case. We are pattern-matching on () and the return value is
1018 // based on whether our matrix has a row or not.
1019 // NOTE: This could potentially be optimized by checking rows.is_empty()
1020 // first and then, if v is non-empty, the return value is based on whether
1021 // the type of the tuple we're checking is inhabited or not.
1022 if v.is_empty() {
1023 let ret = if rows.is_empty() {
1024 Usefulness::new_useful(witness_preference)
1025 } else {
1026 Usefulness::new_not_useful(witness_preference)
1027 };
1028 return ret;
1029 }
1030
1031 assert!(rows.iter().all(|r| r.len() == v.len()));
1032
1033 // FIXME(Nadrieril): Hack to work around type normalization issues (see rust-lang/rust#72476).
1034 let ty = matrix.heads().next().map_or(cx.type_of(v.head()), |r| cx.type_of(r));
1035 let pcx = PatCtxt { cx, ty: &ty, is_top_level };
1036
1037 // If the first pattern is an or-pattern, expand it.
1038 let ret = if v.head().is_or_pat(cx) {
1039 //expanding or-pattern
1040 let v_head = v.head();
1041 let vs: Vec<_> = v.expand_or_pat(cx).collect();
1042 let alt_count = vs.len();
1043 // We try each or-pattern branch in turn.
1044 let mut matrix = matrix.clone();
1045 let usefulnesses = vs.into_iter().enumerate().map(|(i, v)| {
1046 let usefulness = is_useful(cx, &matrix, &v, witness_preference, is_under_guard, false);
1047 // If pattern has a guard don't add it to the matrix.
1048 if !is_under_guard {
1049 // We push the already-seen patterns into the matrix in order to detect redundant
1050 // branches like `Some(_) | Some(0)`.
1051 matrix.push(v, cx);
1052 }
1053 usefulness.unsplit_or_pat(i, alt_count, v_head)
1054 });
1055 Usefulness::merge(witness_preference, usefulnesses)
1056 } else {
1057 let v_ctor = v.head_ctor(cx);
1058 // if let Constructor::IntRange(ctor_range) = v_ctor {
1059 // // Lint on likely incorrect range patterns (#63987)
1060 // ctor_range.lint_overlapping_range_endpoints(
1061 // pcx,
1062 // matrix.head_ctors_and_spans(cx),
1063 // matrix.column_count().unwrap_or(0),
1064 // hir_id,
1065 // )
1066 // }
1067
1068 // We split the head constructor of `v`.
1069 let split_ctors = v_ctor.split(pcx, matrix.head_ctors(cx));
1070 // For each constructor, we compute whether there's a value that starts with it that would
1071 // witness the usefulness of `v`.
1072 let start_matrix = matrix;
1073 let usefulnesses = split_ctors.into_iter().map(|ctor| {
1074 // debug!("specialize({:?})", ctor);
1075 // We cache the result of `Fields::wildcards` because it is used a lot.
1076 let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
1077 let spec_matrix =
1078 start_matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
1079 let v = v.pop_head_constructor(&ctor_wild_subpatterns, cx);
1080 let usefulness =
1081 is_useful(cx, &spec_matrix, &v, witness_preference, is_under_guard, false);
1082 usefulness.apply_constructor(pcx, start_matrix, &ctor, &ctor_wild_subpatterns)
1083 });
1084 Usefulness::merge(witness_preference, usefulnesses)
1085 };
1086
1087 ret
1088}
1089
1090/// The arm of a match expression.
1091#[derive(Clone, Copy)]
1092pub(crate) struct MatchArm {
1093 pub(crate) pat: PatId,
1094 pub(crate) has_guard: bool,
1095}
1096
1097/// Indicates whether or not a given arm is reachable.
1098#[derive(Clone, Debug)]
1099pub(crate) enum Reachability {
1100 /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
1101 /// found to be unreachable despite the overall arm being reachable. Used only in the presence
1102 /// of or-patterns, otherwise it stays empty.
1103 Reachable(Vec<PatId>),
1104 /// The arm is unreachable.
1105 Unreachable,
1106}
1107
1108/// The output of checking a match for exhaustiveness and arm reachability.
1109pub(crate) struct UsefulnessReport {
1110 /// For each arm of the input, whether that arm is reachable after the arms above it.
1111 pub(crate) _arm_usefulness: Vec<(MatchArm, Reachability)>,
1112 /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
1113 /// exhaustiveness.
1114 pub(crate) non_exhaustiveness_witnesses: Vec<Pat>,
1115}
1116
1117/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
1118/// of its arms are reachable.
1119///
1120/// Note: the input patterns must have been lowered through
1121/// `check_match::MatchVisitor::lower_pattern`.
1122pub(crate) fn compute_match_usefulness(
1123 cx: &MatchCheckCtx<'_>,
1124 arms: &[MatchArm],
1125) -> UsefulnessReport {
1126 let mut matrix = Matrix::empty();
1127 let arm_usefulness: Vec<_> = arms
1128 .iter()
1129 .copied()
1130 .map(|arm| {
1131 let v = PatStack::from_pattern(arm.pat);
1132 let usefulness = is_useful(cx, &matrix, &v, LeaveOutWitness, arm.has_guard, true);
1133 if !arm.has_guard {
1134 matrix.push(v, cx);
1135 }
1136 let reachability = match usefulness {
1137 NoWitnesses(subpats) if subpats.is_empty() => Reachability::Unreachable,
1138 NoWitnesses(subpats) => {
1139 Reachability::Reachable(subpats.list_unreachable_subpatterns(cx).unwrap())
1140 }
1141 WithWitnesses(..) => panic!("bug"),
1142 };
1143 (arm, reachability)
1144 })
1145 .collect();
1146
1147 let wild_pattern =
1148 cx.pattern_arena.borrow_mut().alloc(Pat::wildcard_from_ty(&cx.infer[cx.match_expr]));
1149 let v = PatStack::from_pattern(wild_pattern);
1150 let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, false, true);
1151 let non_exhaustiveness_witnesses = match usefulness {
1152 WithWitnesses(pats) => pats.into_iter().map(Witness::single_pattern).collect(),
1153 NoWitnesses(_) => panic!("bug"),
1154 };
1155 UsefulnessReport { _arm_usefulness: arm_usefulness, non_exhaustiveness_witnesses }
1156}
1157
1158pub(crate) type PatternArena = Arena<Pat>;
1159
1160mod helper {
1161 use super::MatchCheckCtx;
1162
1163 pub(super) trait PatIdExt: Sized {
1164 // fn is_wildcard(self, cx: &MatchCheckCtx<'_>) -> bool;
1165 fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool;
1166 fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self>;
1167 }
1168
1169 // Copy-pasted from rust/compiler/rustc_data_structures/src/captures.rs
1170 /// "Signaling" trait used in impl trait to tag lifetimes that you may
1171 /// need to capture but don't really need for other reasons.
1172 /// Basically a workaround; see [this comment] for details.
1173 ///
1174 /// [this comment]: https://github.com/rust-lang/rust/issues/34511#issuecomment-373423999
1175 // FIXME(eddyb) false positive, the lifetime parameter is "phantom" but needed.
1176 #[allow(unused_lifetimes)]
1177 pub(crate) trait Captures<'a> {}
1178
1179 impl<'a, T: ?Sized> Captures<'a> for T {}
1180}