aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir
diff options
context:
space:
mode:
authorSeivan Heidari <[email protected]>2019-11-28 07:19:14 +0000
committerSeivan Heidari <[email protected]>2019-11-28 07:19:14 +0000
commit18a0937585b836ec5ed054b9ae48e0156ab6d9ef (patch)
tree9de2c0267ddcc00df717f90034d0843d751a851b /crates/ra_hir
parenta7394b44c870f585eacfeb3036a33471aff49ff8 (diff)
parent484acc8a61d599662ed63a4cbda091d38a982551 (diff)
Merge branch 'master' of https://github.com/rust-analyzer/rust-analyzer into feature/themes
Diffstat (limited to 'crates/ra_hir')
-rw-r--r--crates/ra_hir/Cargo.toml19
-rw-r--r--crates/ra_hir/src/code_model.rs449
-rw-r--r--crates/ra_hir/src/code_model/src.rs12
-rw-r--r--crates/ra_hir/src/db.rs132
-rw-r--r--crates/ra_hir/src/diagnostics.rs86
-rw-r--r--crates/ra_hir/src/expr.rs146
-rw-r--r--crates/ra_hir/src/from_id.rs104
-rw-r--r--crates/ra_hir/src/from_source.rs26
-rw-r--r--crates/ra_hir/src/lib.rs11
-rw-r--r--crates/ra_hir/src/marks.rs9
-rw-r--r--crates/ra_hir/src/source_binder.rs113
-rw-r--r--crates/ra_hir/src/test_db.rs119
-rw-r--r--crates/ra_hir/src/ty.rs1092
-rw-r--r--crates/ra_hir/src/ty/autoderef.rs103
-rw-r--r--crates/ra_hir/src/ty/display.rs93
-rw-r--r--crates/ra_hir/src/ty/infer.rs748
-rw-r--r--crates/ra_hir/src/ty/infer/coerce.rs339
-rw-r--r--crates/ra_hir/src/ty/infer/expr.rs667
-rw-r--r--crates/ra_hir/src/ty/infer/pat.rs183
-rw-r--r--crates/ra_hir/src/ty/infer/path.rs258
-rw-r--r--crates/ra_hir/src/ty/infer/unify.rs164
-rw-r--r--crates/ra_hir/src/ty/lower.rs831
-rw-r--r--crates/ra_hir/src/ty/method_resolution.rs375
-rw-r--r--crates/ra_hir/src/ty/op.rs52
-rw-r--r--crates/ra_hir/src/ty/primitive.rs160
-rw-r--r--crates/ra_hir/src/ty/tests.rs4895
-rw-r--r--crates/ra_hir/src/ty/tests/coercion.rs369
-rw-r--r--crates/ra_hir/src/ty/tests/never_type.rs246
-rw-r--r--crates/ra_hir/src/ty/traits.rs326
-rw-r--r--crates/ra_hir/src/ty/traits/chalk.rs884
-rw-r--r--crates/ra_hir/src/util.rs12
31 files changed, 414 insertions, 12609 deletions
diff --git a/crates/ra_hir/Cargo.toml b/crates/ra_hir/Cargo.toml
index 42ddfecc9..e79361e7c 100644
--- a/crates/ra_hir/Cargo.toml
+++ b/crates/ra_hir/Cargo.toml
@@ -8,28 +8,11 @@ authors = ["rust-analyzer developers"]
8doctest = false 8doctest = false
9 9
10[dependencies] 10[dependencies]
11arrayvec = "0.5.1"
12log = "0.4.5" 11log = "0.4.5"
13rustc-hash = "1.0" 12rustc-hash = "1.0"
14parking_lot = "0.9.0"
15ena = "0.13"
16once_cell = "1.0.1"
17 13
18ra_syntax = { path = "../ra_syntax" } 14ra_syntax = { path = "../ra_syntax" }
19ra_arena = { path = "../ra_arena" }
20ra_cfg = { path = "../ra_cfg" }
21ra_db = { path = "../ra_db" } 15ra_db = { path = "../ra_db" }
22mbe = { path = "../ra_mbe", package = "ra_mbe" }
23tt = { path = "../ra_tt", package = "ra_tt" }
24hir_expand = { path = "../ra_hir_expand", package = "ra_hir_expand" } 16hir_expand = { path = "../ra_hir_expand", package = "ra_hir_expand" }
25hir_def = { path = "../ra_hir_def", package = "ra_hir_def" } 17hir_def = { path = "../ra_hir_def", package = "ra_hir_def" }
26test_utils = { path = "../test_utils" } 18hir_ty = { path = "../ra_hir_ty", package = "ra_hir_ty" }
27ra_prof = { path = "../ra_prof" }
28
29chalk-solve = { git = "https://github.com/rust-lang/chalk.git", rev = "a88cad7f0a69e05ba8f40b74c58a1c229c1b2478" }
30chalk-rust-ir = { git = "https://github.com/rust-lang/chalk.git", rev = "a88cad7f0a69e05ba8f40b74c58a1c229c1b2478" }
31chalk-ir = { git = "https://github.com/rust-lang/chalk.git", rev = "a88cad7f0a69e05ba8f40b74c58a1c229c1b2478" }
32lalrpop-intern = "0.15.1"
33
34[dev-dependencies]
35insta = "0.12.0"
diff --git a/crates/ra_hir/src/code_model.rs b/crates/ra_hir/src/code_model.rs
index 3f44a50c4..38d66c2a7 100644
--- a/crates/ra_hir/src/code_model.rs
+++ b/crates/ra_hir/src/code_model.rs
@@ -6,28 +6,31 @@ use std::sync::Arc;
6 6
7use hir_def::{ 7use hir_def::{
8 adt::VariantData, 8 adt::VariantData,
9 body::{Body, BodySourceMap},
9 builtin_type::BuiltinType, 10 builtin_type::BuiltinType,
10 docs::Documentation, 11 docs::Documentation,
12 expr::{BindingAnnotation, Pat, PatId},
11 per_ns::PerNs, 13 per_ns::PerNs,
12 resolver::{HasResolver, TypeNs}, 14 resolver::HasResolver,
13 type_ref::TypeRef, 15 type_ref::{Mutability, TypeRef},
14 AstItemDef, ConstId, ContainerId, EnumId, FunctionId, HasModule, ImplId, LocalEnumVariantId, 16 AdtId, AstItemDef, ConstId, ContainerId, DefWithBodyId, EnumId, FunctionId, GenericDefId,
15 LocalImportId, LocalModuleId, LocalStructFieldId, Lookup, ModuleId, StaticId, StructId, 17 HasModule, ImplId, LocalEnumVariantId, LocalImportId, LocalModuleId, LocalStructFieldId,
16 TraitId, TypeAliasId, UnionId, 18 Lookup, ModuleId, StaticId, StructId, TraitId, TypeAliasId, UnionId,
17}; 19};
18use hir_expand::{ 20use hir_expand::{
19 diagnostics::DiagnosticSink, 21 diagnostics::DiagnosticSink,
20 name::{self, AsName}, 22 name::{self, AsName},
21 AstId, MacroDefId, 23 AstId, MacroDefId,
22}; 24};
25use hir_ty::expr::ExprValidator;
23use ra_db::{CrateId, Edition, FileId, FilePosition}; 26use ra_db::{CrateId, Edition, FileId, FilePosition};
24use ra_syntax::{ast, AstNode, SyntaxNode}; 27use ra_syntax::{ast, AstNode, SyntaxNode};
25 28
26use crate::{ 29use crate::{
27 db::{DefDatabase, HirDatabase}, 30 db::{DefDatabase, HirDatabase},
28 expr::{BindingAnnotation, Body, BodySourceMap, ExprValidator, Pat, PatId}, 31 ty::display::HirFormatter,
29 ty::{InferenceResult, Namespace, TraitRef}, 32 ty::{self, InEnvironment, InferenceResult, TraitEnvironment, Ty, TyDefId, TypeCtor, TypeWalk},
30 Either, Name, Source, Ty, 33 CallableDef, Either, HirDisplay, Name, Source,
31}; 34};
32 35
33/// hir::Crate describes a single crate. It's the main interface with which 36/// hir::Crate describes a single crate. It's the main interface with which
@@ -168,15 +171,15 @@ pub use hir_def::attr::Attrs;
168 171
169impl Module { 172impl Module {
170 pub(crate) fn new(krate: Crate, crate_module_id: LocalModuleId) -> Module { 173 pub(crate) fn new(krate: Crate, crate_module_id: LocalModuleId) -> Module {
171 Module { id: ModuleId { krate: krate.crate_id, module_id: crate_module_id } } 174 Module { id: ModuleId { krate: krate.crate_id, local_id: crate_module_id } }
172 } 175 }
173 176
174 /// Name of this module. 177 /// Name of this module.
175 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 178 pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
176 let def_map = db.crate_def_map(self.id.krate); 179 let def_map = db.crate_def_map(self.id.krate);
177 let parent = def_map[self.id.module_id].parent?; 180 let parent = def_map[self.id.local_id].parent?;
178 def_map[parent].children.iter().find_map(|(name, module_id)| { 181 def_map[parent].children.iter().find_map(|(name, module_id)| {
179 if *module_id == self.id.module_id { 182 if *module_id == self.id.local_id {
180 Some(name.clone()) 183 Some(name.clone())
181 } else { 184 } else {
182 None 185 None
@@ -200,14 +203,14 @@ impl Module {
200 /// Finds a child module with the specified name. 203 /// Finds a child module with the specified name.
201 pub fn child(self, db: &impl DefDatabase, name: &Name) -> Option<Module> { 204 pub fn child(self, db: &impl DefDatabase, name: &Name) -> Option<Module> {
202 let def_map = db.crate_def_map(self.id.krate); 205 let def_map = db.crate_def_map(self.id.krate);
203 let child_id = def_map[self.id.module_id].children.get(name)?; 206 let child_id = def_map[self.id.local_id].children.get(name)?;
204 Some(self.with_module_id(*child_id)) 207 Some(self.with_module_id(*child_id))
205 } 208 }
206 209
207 /// Iterates over all child modules. 210 /// Iterates over all child modules.
208 pub fn children(self, db: &impl DefDatabase) -> impl Iterator<Item = Module> { 211 pub fn children(self, db: &impl DefDatabase) -> impl Iterator<Item = Module> {
209 let def_map = db.crate_def_map(self.id.krate); 212 let def_map = db.crate_def_map(self.id.krate);
210 let children = def_map[self.id.module_id] 213 let children = def_map[self.id.local_id]
211 .children 214 .children
212 .iter() 215 .iter()
213 .map(|(_, module_id)| self.with_module_id(*module_id)) 216 .map(|(_, module_id)| self.with_module_id(*module_id))
@@ -218,7 +221,7 @@ impl Module {
218 /// Finds a parent module. 221 /// Finds a parent module.
219 pub fn parent(self, db: &impl DefDatabase) -> Option<Module> { 222 pub fn parent(self, db: &impl DefDatabase) -> Option<Module> {
220 let def_map = db.crate_def_map(self.id.krate); 223 let def_map = db.crate_def_map(self.id.krate);
221 let parent_id = def_map[self.id.module_id].parent?; 224 let parent_id = def_map[self.id.local_id].parent?;
222 Some(self.with_module_id(parent_id)) 225 Some(self.with_module_id(parent_id))
223 } 226 }
224 227
@@ -234,7 +237,7 @@ impl Module {
234 237
235 /// Returns a `ModuleScope`: a set of items, visible in this module. 238 /// Returns a `ModuleScope`: a set of items, visible in this module.
236 pub fn scope(self, db: &impl HirDatabase) -> Vec<(Name, ScopeDef, Option<Import>)> { 239 pub fn scope(self, db: &impl HirDatabase) -> Vec<(Name, ScopeDef, Option<Import>)> {
237 db.crate_def_map(self.id.krate)[self.id.module_id] 240 db.crate_def_map(self.id.krate)[self.id.local_id]
238 .scope 241 .scope
239 .entries() 242 .entries()
240 .map(|(name, res)| { 243 .map(|(name, res)| {
@@ -244,7 +247,7 @@ impl Module {
244 } 247 }
245 248
246 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) { 249 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
247 db.crate_def_map(self.id.krate).add_diagnostics(db, self.id.module_id, sink); 250 db.crate_def_map(self.id.krate).add_diagnostics(db, self.id.local_id, sink);
248 for decl in self.declarations(db) { 251 for decl in self.declarations(db) {
249 match decl { 252 match decl {
250 crate::ModuleDef::Function(f) => f.diagnostics(db, sink), 253 crate::ModuleDef::Function(f) => f.diagnostics(db, sink),
@@ -269,12 +272,12 @@ impl Module {
269 272
270 pub fn declarations(self, db: &impl DefDatabase) -> Vec<ModuleDef> { 273 pub fn declarations(self, db: &impl DefDatabase) -> Vec<ModuleDef> {
271 let def_map = db.crate_def_map(self.id.krate); 274 let def_map = db.crate_def_map(self.id.krate);
272 def_map[self.id.module_id].scope.declarations().map(ModuleDef::from).collect() 275 def_map[self.id.local_id].scope.declarations().map(ModuleDef::from).collect()
273 } 276 }
274 277
275 pub fn impl_blocks(self, db: &impl DefDatabase) -> Vec<ImplBlock> { 278 pub fn impl_blocks(self, db: &impl DefDatabase) -> Vec<ImplBlock> {
276 let def_map = db.crate_def_map(self.id.krate); 279 let def_map = db.crate_def_map(self.id.krate);
277 def_map[self.id.module_id].impls.iter().copied().map(ImplBlock::from).collect() 280 def_map[self.id.local_id].impls.iter().copied().map(ImplBlock::from).collect()
278 } 281 }
279 282
280 fn with_module_id(self, module_id: LocalModuleId) -> Module { 283 fn with_module_id(self, module_id: LocalModuleId) -> Module {
@@ -320,14 +323,14 @@ pub struct Struct {
320 323
321impl Struct { 324impl Struct {
322 pub fn module(self, db: &impl DefDatabase) -> Module { 325 pub fn module(self, db: &impl DefDatabase) -> Module {
323 Module { id: self.id.0.module(db) } 326 Module { id: self.id.module(db) }
324 } 327 }
325 328
326 pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> { 329 pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
327 Some(self.module(db).krate()) 330 Some(self.module(db).krate())
328 } 331 }
329 332
330 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 333 pub fn name(self, db: &impl DefDatabase) -> Name {
331 db.struct_data(self.id.into()).name.clone() 334 db.struct_data(self.id.into()).name.clone()
332 } 335 }
333 336
@@ -349,12 +352,12 @@ impl Struct {
349 .map(|(id, _)| StructField { parent: self.into(), id }) 352 .map(|(id, _)| StructField { parent: self.into(), id })
350 } 353 }
351 354
352 pub fn ty(self, db: &impl HirDatabase) -> Ty { 355 pub fn ty(self, db: &impl HirDatabase) -> Type {
353 db.type_for_def(self.into(), Namespace::Types) 356 Type::from_def(db, self.id.module(db).krate, self.id)
354 } 357 }
355 358
356 pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty { 359 pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty {
357 db.type_for_def(self.into(), Namespace::Values) 360 db.value_ty(self.id.into())
358 } 361 }
359 362
360 fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> { 363 fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
@@ -368,16 +371,38 @@ pub struct Union {
368} 371}
369 372
370impl Union { 373impl Union {
371 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 374 pub fn name(self, db: &impl DefDatabase) -> Name {
372 db.struct_data(self.id.into()).name.clone() 375 db.union_data(self.id).name.clone()
373 } 376 }
374 377
375 pub fn module(self, db: &impl DefDatabase) -> Module { 378 pub fn module(self, db: &impl DefDatabase) -> Module {
376 Module { id: self.id.0.module(db) } 379 Module { id: self.id.module(db) }
377 } 380 }
378 381
379 pub fn ty(self, db: &impl HirDatabase) -> Ty { 382 pub fn ty(self, db: &impl HirDatabase) -> Type {
380 db.type_for_def(self.into(), Namespace::Types) 383 Type::from_def(db, self.id.module(db).krate, self.id)
384 }
385
386 pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
387 db.union_data(self.id)
388 .variant_data
389 .fields()
390 .iter()
391 .map(|(id, _)| StructField { parent: self.into(), id })
392 .collect()
393 }
394
395 pub fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
396 db.union_data(self.id)
397 .variant_data
398 .fields()
399 .iter()
400 .find(|(_id, data)| data.name == *name)
401 .map(|(id, _)| StructField { parent: self.into(), id })
402 }
403
404 fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
405 db.union_data(self.id).variant_data.clone()
381 } 406 }
382} 407}
383 408
@@ -395,7 +420,7 @@ impl Enum {
395 Some(self.module(db).krate()) 420 Some(self.module(db).krate())
396 } 421 }
397 422
398 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 423 pub fn name(self, db: &impl DefDatabase) -> Name {
399 db.enum_data(self.id).name.clone() 424 db.enum_data(self.id).name.clone()
400 } 425 }
401 426
@@ -408,15 +433,12 @@ impl Enum {
408 } 433 }
409 434
410 pub fn variant(self, db: &impl DefDatabase, name: &Name) -> Option<EnumVariant> { 435 pub fn variant(self, db: &impl DefDatabase, name: &Name) -> Option<EnumVariant> {
411 db.enum_data(self.id) 436 let id = db.enum_data(self.id).variant(name)?;
412 .variants 437 Some(EnumVariant { parent: self, id })
413 .iter()
414 .find(|(_id, data)| data.name.as_ref() == Some(name))
415 .map(|(id, _)| EnumVariant { parent: self, id })
416 } 438 }
417 439
418 pub fn ty(self, db: &impl HirDatabase) -> Ty { 440 pub fn ty(self, db: &impl HirDatabase) -> Type {
419 db.type_for_def(self.into(), Namespace::Types) 441 Type::from_def(db, self.id.module(db).krate, self.id)
420 } 442 }
421} 443}
422 444
@@ -434,7 +456,7 @@ impl EnumVariant {
434 self.parent 456 self.parent
435 } 457 }
436 458
437 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 459 pub fn name(self, db: &impl DefDatabase) -> Name {
438 db.enum_data(self.parent.id).variants[self.id].name.clone() 460 db.enum_data(self.parent.id).variants[self.id].name.clone()
439 } 461 }
440 462
@@ -469,12 +491,13 @@ pub enum Adt {
469impl_froms!(Adt: Struct, Union, Enum); 491impl_froms!(Adt: Struct, Union, Enum);
470 492
471impl Adt { 493impl Adt {
472 pub fn ty(self, db: &impl HirDatabase) -> Ty { 494 pub fn has_non_default_type_params(self, db: &impl HirDatabase) -> bool {
473 match self { 495 let subst = db.generic_defaults(self.into());
474 Adt::Struct(it) => it.ty(db), 496 subst.iter().any(|ty| ty == &Ty::Unknown)
475 Adt::Union(it) => it.ty(db), 497 }
476 Adt::Enum(it) => it.ty(db), 498 pub fn ty(self, db: &impl HirDatabase) -> Type {
477 } 499 let id = AdtId::from(self);
500 Type::from_def(db, id.module(db).krate, id)
478 } 501 }
479 502
480 pub fn module(self, db: &impl DefDatabase) -> Module { 503 pub fn module(self, db: &impl DefDatabase) -> Module {
@@ -493,28 +516,24 @@ impl Adt {
493#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] 516#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
494pub enum VariantDef { 517pub enum VariantDef {
495 Struct(Struct), 518 Struct(Struct),
519 Union(Union),
496 EnumVariant(EnumVariant), 520 EnumVariant(EnumVariant),
497} 521}
498impl_froms!(VariantDef: Struct, EnumVariant); 522impl_froms!(VariantDef: Struct, Union, EnumVariant);
499 523
500impl VariantDef { 524impl VariantDef {
501 pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> { 525 pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
502 match self { 526 match self {
503 VariantDef::Struct(it) => it.fields(db), 527 VariantDef::Struct(it) => it.fields(db),
528 VariantDef::Union(it) => it.fields(db),
504 VariantDef::EnumVariant(it) => it.fields(db), 529 VariantDef::EnumVariant(it) => it.fields(db),
505 } 530 }
506 } 531 }
507 532
508 pub(crate) fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
509 match self {
510 VariantDef::Struct(it) => it.field(db, name),
511 VariantDef::EnumVariant(it) => it.field(db, name),
512 }
513 }
514
515 pub fn module(self, db: &impl HirDatabase) -> Module { 533 pub fn module(self, db: &impl HirDatabase) -> Module {
516 match self { 534 match self {
517 VariantDef::Struct(it) => it.module(db), 535 VariantDef::Struct(it) => it.module(db),
536 VariantDef::Union(it) => it.module(db),
518 VariantDef::EnumVariant(it) => it.module(db), 537 VariantDef::EnumVariant(it) => it.module(db),
519 } 538 }
520 } 539 }
@@ -522,6 +541,7 @@ impl VariantDef {
522 pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> { 541 pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
523 match self { 542 match self {
524 VariantDef::Struct(it) => it.variant_data(db), 543 VariantDef::Struct(it) => it.variant_data(db),
544 VariantDef::Union(it) => it.variant_data(db),
525 VariantDef::EnumVariant(it) => it.variant_data(db), 545 VariantDef::EnumVariant(it) => it.variant_data(db),
526 } 546 }
527 } 547 }
@@ -538,14 +558,6 @@ pub enum DefWithBody {
538impl_froms!(DefWithBody: Function, Const, Static); 558impl_froms!(DefWithBody: Function, Const, Static);
539 559
540impl DefWithBody { 560impl DefWithBody {
541 pub(crate) fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
542 match self {
543 DefWithBody::Const(c) => c.krate(db),
544 DefWithBody::Function(f) => f.krate(db),
545 DefWithBody::Static(s) => s.krate(db),
546 }
547 }
548
549 pub fn module(self, db: &impl HirDatabase) -> Module { 561 pub fn module(self, db: &impl HirDatabase) -> Module {
550 match self { 562 match self {
551 DefWithBody::Const(c) => c.module(db), 563 DefWithBody::Const(c) => c.module(db),
@@ -590,11 +602,11 @@ impl Function {
590 } 602 }
591 603
592 pub fn ty(self, db: &impl HirDatabase) -> Ty { 604 pub fn ty(self, db: &impl HirDatabase) -> Ty {
593 db.type_for_def(self.into(), Namespace::Values) 605 db.value_ty(self.id.into())
594 } 606 }
595 607
596 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> { 608 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
597 db.infer(self.into()) 609 db.infer(self.id.into())
598 } 610 }
599 611
600 /// The containing impl block, if this is a method. 612 /// The containing impl block, if this is a method.
@@ -623,8 +635,8 @@ impl Function {
623 635
624 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) { 636 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
625 let infer = self.infer(db); 637 let infer = self.infer(db);
626 infer.add_diagnostics(db, self, sink); 638 infer.add_diagnostics(db, self.id, sink);
627 let mut validator = ExprValidator::new(self, infer, sink); 639 let mut validator = ExprValidator::new(self.id, infer, sink);
628 validator.validate_body(db); 640 validator.validate_body(db);
629 } 641 }
630} 642}
@@ -648,7 +660,7 @@ impl Const {
648 } 660 }
649 661
650 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> { 662 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
651 db.infer(self.into()) 663 db.infer(self.id.into())
652 } 664 }
653 665
654 /// The containing impl block, if this is a type alias. 666 /// The containing impl block, if this is a type alias.
@@ -691,7 +703,7 @@ impl Static {
691 } 703 }
692 704
693 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> { 705 pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
694 db.infer(self.into()) 706 db.infer(self.id.into())
695 } 707 }
696} 708}
697 709
@@ -705,73 +717,12 @@ impl Trait {
705 Module { id: self.id.module(db) } 717 Module { id: self.id.module(db) }
706 } 718 }
707 719
708 pub fn name(self, db: &impl DefDatabase) -> Option<Name> { 720 pub fn name(self, db: &impl DefDatabase) -> Name {
709 db.trait_data(self.id).name.clone() 721 db.trait_data(self.id).name.clone()
710 } 722 }
711 723
712 pub fn items(self, db: &impl DefDatabase) -> Vec<AssocItem> { 724 pub fn items(self, db: &impl DefDatabase) -> Vec<AssocItem> {
713 db.trait_data(self.id).items.iter().map(|it| (*it).into()).collect() 725 db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect()
714 }
715
716 fn direct_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
717 let resolver = self.id.resolver(db);
718 // returning the iterator directly doesn't easily work because of
719 // lifetime problems, but since there usually shouldn't be more than a
720 // few direct traits this should be fine (we could even use some kind of
721 // SmallVec if performance is a concern)
722 db.generic_params(self.id.into())
723 .where_predicates
724 .iter()
725 .filter_map(|pred| match &pred.type_ref {
726 TypeRef::Path(p) if p.as_ident() == Some(&name::SELF_TYPE) => pred.bound.as_path(),
727 _ => None,
728 })
729 .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path) {
730 Some(TypeNs::TraitId(t)) => Some(t),
731 _ => None,
732 })
733 .map(Trait::from)
734 .collect()
735 }
736
737 /// Returns an iterator over the whole super trait hierarchy (including the
738 /// trait itself).
739 pub fn all_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
740 // we need to take care a bit here to avoid infinite loops in case of cycles
741 // (i.e. if we have `trait A: B; trait B: A;`)
742 let mut result = vec![self];
743 let mut i = 0;
744 while i < result.len() {
745 let t = result[i];
746 // yeah this is quadratic, but trait hierarchies should be flat
747 // enough that this doesn't matter
748 for tt in t.direct_super_traits(db) {
749 if !result.contains(&tt) {
750 result.push(tt);
751 }
752 }
753 i += 1;
754 }
755 result
756 }
757
758 pub fn associated_type_by_name(self, db: &impl DefDatabase, name: &Name) -> Option<TypeAlias> {
759 let trait_data = db.trait_data(self.id);
760 let res =
761 trait_data.associated_types().map(TypeAlias::from).find(|t| &t.name(db) == name)?;
762 Some(res)
763 }
764
765 pub fn associated_type_by_name_including_super_traits(
766 self,
767 db: &impl HirDatabase,
768 name: &Name,
769 ) -> Option<TypeAlias> {
770 self.all_super_traits(db).into_iter().find_map(|t| t.associated_type_by_name(db, name))
771 }
772
773 pub fn trait_ref(self, db: &impl HirDatabase) -> TraitRef {
774 TraitRef::for_trait(db, self)
775 } 726 }
776 727
777 pub fn is_auto(self, db: &impl DefDatabase) -> bool { 728 pub fn is_auto(self, db: &impl DefDatabase) -> bool {
@@ -785,6 +736,11 @@ pub struct TypeAlias {
785} 736}
786 737
787impl TypeAlias { 738impl TypeAlias {
739 pub fn has_non_default_type_params(self, db: &impl HirDatabase) -> bool {
740 let subst = db.generic_defaults(self.id.into());
741 subst.iter().any(|ty| ty == &Ty::Unknown)
742 }
743
788 pub fn module(self, db: &impl DefDatabase) -> Module { 744 pub fn module(self, db: &impl DefDatabase) -> Module {
789 Module { id: self.id.lookup(db).module(db) } 745 Module { id: self.id.lookup(db).module(db) }
790 } 746 }
@@ -821,8 +777,8 @@ impl TypeAlias {
821 db.type_alias_data(self.id).type_ref.clone() 777 db.type_alias_data(self.id).type_ref.clone()
822 } 778 }
823 779
824 pub fn ty(self, db: &impl HirDatabase) -> Ty { 780 pub fn ty(self, db: &impl HirDatabase) -> Type {
825 db.type_for_def(self.into(), Namespace::Types) 781 Type::from_def(db, self.id.lookup(db).module(db).krate, self.id)
826 } 782 }
827 783
828 pub fn name(self, db: &impl DefDatabase) -> Name { 784 pub fn name(self, db: &impl DefDatabase) -> Name {
@@ -897,16 +853,6 @@ impl_froms!(
897 Const 853 Const
898); 854);
899 855
900impl From<AssocItem> for GenericDef {
901 fn from(item: AssocItem) -> Self {
902 match item {
903 AssocItem::Function(f) => f.into(),
904 AssocItem::Const(c) => c.into(),
905 AssocItem::TypeAlias(t) => t.into(),
906 }
907 }
908}
909
910#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] 856#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
911pub struct Local { 857pub struct Local {
912 pub(crate) parent: DefWithBody, 858 pub(crate) parent: DefWithBody,
@@ -945,9 +891,14 @@ impl Local {
945 self.parent.module(db) 891 self.parent.module(db)
946 } 892 }
947 893
948 pub fn ty(self, db: &impl HirDatabase) -> Ty { 894 pub fn ty(self, db: &impl HirDatabase) -> Type {
949 let infer = db.infer(self.parent); 895 let def = DefWithBodyId::from(self.parent);
950 infer[self.pat_id].clone() 896 let infer = db.infer(def);
897 let ty = infer[self.pat_id].clone();
898 let resolver = def.resolver(db);
899 let krate = def.module(db).krate;
900 let environment = TraitEnvironment::lower(db, &resolver);
901 Type { krate, ty: InEnvironment { value: ty, environment } }
951 } 902 }
952 903
953 pub fn source(self, db: &impl HirDatabase) -> Source<Either<ast::BindPat, ast::SelfParam>> { 904 pub fn source(self, db: &impl HirDatabase) -> Source<Either<ast::BindPat, ast::SelfParam>> {
@@ -960,7 +911,7 @@ impl Local {
960 911
961#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] 912#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
962pub struct GenericParam { 913pub struct GenericParam {
963 pub(crate) parent: GenericDef, 914 pub(crate) parent: GenericDefId,
964 pub(crate) idx: u32, 915 pub(crate) idx: u32,
965} 916}
966 917
@@ -970,6 +921,15 @@ pub struct ImplBlock {
970} 921}
971 922
972impl ImplBlock { 923impl ImplBlock {
924 pub fn all_in_crate(db: &impl HirDatabase, krate: Crate) -> Vec<ImplBlock> {
925 let impls = db.impls_in_crate(krate.crate_id);
926 impls.all_impls().map(Self::from).collect()
927 }
928 pub fn for_trait(db: &impl HirDatabase, krate: Crate, trait_: Trait) -> Vec<ImplBlock> {
929 let impls = db.impls_in_crate(krate.crate_id);
930 impls.lookup_impl_blocks_for_trait(trait_.id).map(Self::from).collect()
931 }
932
973 pub fn target_trait(&self, db: &impl DefDatabase) -> Option<TypeRef> { 933 pub fn target_trait(&self, db: &impl DefDatabase) -> Option<TypeRef> {
974 db.impl_data(self.id).target_trait.clone() 934 db.impl_data(self.id).target_trait.clone()
975 } 935 }
@@ -978,13 +938,12 @@ impl ImplBlock {
978 db.impl_data(self.id).target_type.clone() 938 db.impl_data(self.id).target_type.clone()
979 } 939 }
980 940
981 pub fn target_ty(&self, db: &impl HirDatabase) -> Ty { 941 pub fn target_ty(&self, db: &impl HirDatabase) -> Type {
982 Ty::from_hir(db, &self.id.resolver(db), &self.target_type(db)) 942 let impl_data = db.impl_data(self.id);
983 } 943 let resolver = self.id.resolver(db);
984 944 let environment = TraitEnvironment::lower(db, &resolver);
985 pub fn target_trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> { 945 let ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
986 let target_ty = self.target_ty(db); 946 Type { krate: self.id.module(db).krate, ty: InEnvironment { value: ty, environment } }
987 TraitRef::from_hir(db, &self.id.resolver(db), &self.target_trait(db)?, Some(target_ty))
988 } 947 }
989 948
990 pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> { 949 pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> {
@@ -1004,6 +963,194 @@ impl ImplBlock {
1004 } 963 }
1005} 964}
1006 965
966#[derive(Clone, PartialEq, Eq, Debug)]
967pub struct Type {
968 pub(crate) krate: CrateId,
969 pub(crate) ty: InEnvironment<Ty>,
970}
971
972impl Type {
973 fn from_def(
974 db: &impl HirDatabase,
975 krate: CrateId,
976 def: impl HasResolver + Into<TyDefId>,
977 ) -> Type {
978 let resolver = def.resolver(db);
979 let environment = TraitEnvironment::lower(db, &resolver);
980 let ty = db.ty(def.into());
981 Type { krate, ty: InEnvironment { value: ty, environment } }
982 }
983
984 pub fn is_bool(&self) -> bool {
985 match &self.ty.value {
986 Ty::Apply(a_ty) => match a_ty.ctor {
987 TypeCtor::Bool => true,
988 _ => false,
989 },
990 _ => false,
991 }
992 }
993
994 pub fn is_mutable_reference(&self) -> bool {
995 match &self.ty.value {
996 Ty::Apply(a_ty) => match a_ty.ctor {
997 TypeCtor::Ref(Mutability::Mut) => true,
998 _ => false,
999 },
1000 _ => false,
1001 }
1002 }
1003
1004 pub fn is_unknown(&self) -> bool {
1005 match &self.ty.value {
1006 Ty::Unknown => true,
1007 _ => false,
1008 }
1009 }
1010
1011 // FIXME: this method is broken, as it doesn't take closures into account.
1012 pub fn as_callable(&self) -> Option<CallableDef> {
1013 Some(self.ty.value.as_callable()?.0)
1014 }
1015
1016 pub fn contains_unknown(&self) -> bool {
1017 return go(&self.ty.value);
1018
1019 fn go(ty: &Ty) -> bool {
1020 match ty {
1021 Ty::Unknown => true,
1022 Ty::Apply(a_ty) => a_ty.parameters.iter().any(go),
1023 _ => false,
1024 }
1025 }
1026 }
1027
1028 pub fn fields(&self, db: &impl HirDatabase) -> Vec<(StructField, Type)> {
1029 if let Ty::Apply(a_ty) = &self.ty.value {
1030 match a_ty.ctor {
1031 ty::TypeCtor::Adt(AdtId::StructId(s)) => {
1032 let var_def = s.into();
1033 return db
1034 .field_types(var_def)
1035 .iter()
1036 .map(|(local_id, ty)| {
1037 let def = StructField { parent: var_def.into(), id: local_id };
1038 let ty = ty.clone().subst(&a_ty.parameters);
1039 (def, self.derived(ty))
1040 })
1041 .collect();
1042 }
1043 _ => {}
1044 }
1045 };
1046 Vec::new()
1047 }
1048
1049 pub fn tuple_fields(&self, _db: &impl HirDatabase) -> Vec<Type> {
1050 let mut res = Vec::new();
1051 if let Ty::Apply(a_ty) = &self.ty.value {
1052 match a_ty.ctor {
1053 ty::TypeCtor::Tuple { .. } => {
1054 for ty in a_ty.parameters.iter() {
1055 let ty = ty.clone().subst(&a_ty.parameters);
1056 res.push(self.derived(ty));
1057 }
1058 }
1059 _ => {}
1060 }
1061 };
1062 res
1063 }
1064
1065 pub fn variant_fields(
1066 &self,
1067 db: &impl HirDatabase,
1068 def: VariantDef,
1069 ) -> Vec<(StructField, Type)> {
1070 // FIXME: check that ty and def match
1071 match &self.ty.value {
1072 Ty::Apply(a_ty) => def
1073 .fields(db)
1074 .into_iter()
1075 .map(|it| (it, self.derived(it.ty(db).subst(&a_ty.parameters))))
1076 .collect(),
1077 _ => Vec::new(),
1078 }
1079 }
1080
1081 pub fn autoderef<'a>(&'a self, db: &'a impl HirDatabase) -> impl Iterator<Item = Type> + 'a {
1082 // There should be no inference vars in types passed here
1083 // FIXME check that?
1084 let canonical = crate::ty::Canonical { value: self.ty.value.clone(), num_vars: 0 };
1085 let environment = self.ty.environment.clone();
1086 let ty = InEnvironment { value: canonical, environment: environment.clone() };
1087 ty::autoderef(db, Some(self.krate), ty)
1088 .map(|canonical| canonical.value)
1089 .map(move |ty| self.derived(ty))
1090 }
1091
1092 // This would be nicer if it just returned an iterator, but that runs into
1093 // lifetime problems, because we need to borrow temp `CrateImplBlocks`.
1094 pub fn iterate_impl_items<T>(
1095 self,
1096 db: &impl HirDatabase,
1097 krate: Crate,
1098 mut callback: impl FnMut(AssocItem) -> Option<T>,
1099 ) -> Option<T> {
1100 for krate in self.ty.value.def_crates(db, krate.crate_id)? {
1101 let impls = db.impls_in_crate(krate);
1102
1103 for impl_block in impls.lookup_impl_blocks(&self.ty.value) {
1104 for &item in db.impl_data(impl_block).items.iter() {
1105 if let Some(result) = callback(item.into()) {
1106 return Some(result);
1107 }
1108 }
1109 }
1110 }
1111 None
1112 }
1113
1114 // FIXME: remove
1115 pub fn into_ty(self) -> Ty {
1116 self.ty.value
1117 }
1118
1119 pub fn as_adt(&self) -> Option<Adt> {
1120 let (adt, _subst) = self.ty.value.as_adt()?;
1121 Some(adt.into())
1122 }
1123
1124 // FIXME: provide required accessors such that it becomes implementable from outside.
1125 pub fn is_equal_for_find_impls(&self, other: &Type) -> bool {
1126 match (&self.ty.value, &other.ty.value) {
1127 (Ty::Apply(a_original_ty), Ty::Apply(ty::ApplicationTy { ctor, parameters })) => {
1128 match ctor {
1129 TypeCtor::Ref(..) => match parameters.as_single() {
1130 Ty::Apply(a_ty) => a_original_ty.ctor == a_ty.ctor,
1131 _ => false,
1132 },
1133 _ => a_original_ty.ctor == *ctor,
1134 }
1135 }
1136 _ => false,
1137 }
1138 }
1139
1140 fn derived(&self, ty: Ty) -> Type {
1141 Type {
1142 krate: self.krate,
1143 ty: InEnvironment { value: ty, environment: self.ty.environment.clone() },
1144 }
1145 }
1146}
1147
1148impl HirDisplay for Type {
1149 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> std::fmt::Result {
1150 self.ty.value.hir_fmt(f)
1151 }
1152}
1153
1007/// For IDE only 1154/// For IDE only
1008pub enum ScopeDef { 1155pub enum ScopeDef {
1009 ModuleDef(ModuleDef), 1156 ModuleDef(ModuleDef),
diff --git a/crates/ra_hir/src/code_model/src.rs b/crates/ra_hir/src/code_model/src.rs
index a4e317c20..bf3ee0834 100644
--- a/crates/ra_hir/src/code_model/src.rs
+++ b/crates/ra_hir/src/code_model/src.rs
@@ -22,7 +22,7 @@ impl Module {
22 /// Returns a node which defines this module. That is, a file or a `mod foo {}` with items. 22 /// Returns a node which defines this module. That is, a file or a `mod foo {}` with items.
23 pub fn definition_source(self, db: &impl DefDatabase) -> Source<ModuleSource> { 23 pub fn definition_source(self, db: &impl DefDatabase) -> Source<ModuleSource> {
24 let def_map = db.crate_def_map(self.id.krate); 24 let def_map = db.crate_def_map(self.id.krate);
25 let src = def_map[self.id.module_id].definition_source(db); 25 let src = def_map[self.id.local_id].definition_source(db);
26 src.map(|it| match it { 26 src.map(|it| match it {
27 Either::A(it) => ModuleSource::SourceFile(it), 27 Either::A(it) => ModuleSource::SourceFile(it),
28 Either::B(it) => ModuleSource::Module(it), 28 Either::B(it) => ModuleSource::Module(it),
@@ -33,7 +33,7 @@ impl Module {
33 /// `None` for the crate root. 33 /// `None` for the crate root.
34 pub fn declaration_source(self, db: &impl DefDatabase) -> Option<Source<ast::Module>> { 34 pub fn declaration_source(self, db: &impl DefDatabase) -> Option<Source<ast::Module>> {
35 let def_map = db.crate_def_map(self.id.krate); 35 let def_map = db.crate_def_map(self.id.krate);
36 def_map[self.id.module_id].declaration_source(db) 36 def_map[self.id.local_id].declaration_source(db)
37 } 37 }
38} 38}
39 39
@@ -51,13 +51,13 @@ impl HasSource for StructField {
51impl HasSource for Struct { 51impl HasSource for Struct {
52 type Ast = ast::StructDef; 52 type Ast = ast::StructDef;
53 fn source(self, db: &impl DefDatabase) -> Source<ast::StructDef> { 53 fn source(self, db: &impl DefDatabase) -> Source<ast::StructDef> {
54 self.id.0.source(db) 54 self.id.source(db)
55 } 55 }
56} 56}
57impl HasSource for Union { 57impl HasSource for Union {
58 type Ast = ast::StructDef; 58 type Ast = ast::UnionDef;
59 fn source(self, db: &impl DefDatabase) -> Source<ast::StructDef> { 59 fn source(self, db: &impl DefDatabase) -> Source<ast::UnionDef> {
60 self.id.0.source(db) 60 self.id.source(db)
61 } 61 }
62} 62}
63impl HasSource for Enum { 63impl HasSource for Enum {
diff --git a/crates/ra_hir/src/db.rs b/crates/ra_hir/src/db.rs
index 5084bbacf..bfae3660b 100644
--- a/crates/ra_hir/src/db.rs
+++ b/crates/ra_hir/src/db.rs
@@ -1,130 +1,22 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2 2
3use std::sync::Arc; 3pub use hir_def::db::{
4 4 BodyQuery, BodyWithSourceMapQuery, ConstDataQuery, CrateDefMapQuery, CrateLangItemsQuery,
5use ra_arena::map::ArenaMap; 5 DefDatabase, DefDatabaseStorage, DocumentationQuery, EnumDataQuery, ExprScopesQuery,
6use ra_db::salsa; 6 FunctionDataQuery, GenericParamsQuery, ImplDataQuery, InternDatabase, InternDatabaseStorage,
7 7 LangItemQuery, ModuleLangItemsQuery, RawItemsQuery, RawItemsWithSourceMapQuery,
8use crate::{ 8 StaticDataQuery, StructDataQuery, TraitDataQuery, TypeAliasDataQuery,
9 ty::{
10 method_resolution::CrateImplBlocks,
11 traits::{AssocTyValue, Impl},
12 CallableDef, FnSig, GenericPredicate, InferenceResult, Namespace, Substs, Ty, TypableDef,
13 TypeCtor,
14 },
15 Crate, DefWithBody, GenericDef, ImplBlock, Trait,
16};
17
18pub use hir_def::{
19 db::{
20 BodyQuery, BodyWithSourceMapQuery, ConstDataQuery, CrateDefMapQuery, CrateLangItemsQuery,
21 DefDatabase, DefDatabaseStorage, DocumentationQuery, EnumDataQuery, ExprScopesQuery,
22 FunctionDataQuery, GenericParamsQuery, ImplDataQuery, InternDatabase,
23 InternDatabaseStorage, LangItemQuery, ModuleLangItemsQuery, RawItemsQuery,
24 RawItemsWithSourceMapQuery, StaticDataQuery, StructDataQuery, TraitDataQuery,
25 TypeAliasDataQuery,
26 },
27 LocalStructFieldId, VariantId,
28}; 9};
29pub use hir_expand::db::{ 10pub use hir_expand::db::{
30 AstDatabase, AstDatabaseStorage, AstIdMapQuery, MacroArgQuery, MacroDefQuery, MacroExpandQuery, 11 AstDatabase, AstDatabaseStorage, AstIdMapQuery, MacroArgQuery, MacroDefQuery, MacroExpandQuery,
31 ParseMacroQuery, 12 ParseMacroQuery,
32}; 13};
33 14pub use hir_ty::db::{
34#[salsa::query_group(HirDatabaseStorage)] 15 AssociatedTyDataQuery, CallableItemSignatureQuery, FieldTypesQuery, GenericDefaultsQuery,
35#[salsa::requires(salsa::Database)] 16 GenericPredicatesQuery, HirDatabase, HirDatabaseStorage, ImplDatumQuery, ImplsForTraitQuery,
36pub trait HirDatabase: DefDatabase { 17 ImplsInCrateQuery, InferQuery, StructDatumQuery, TraitDatumQuery, TraitSolveQuery, TyQuery,
37 #[salsa::invoke(crate::ty::infer_query)] 18 ValueTyQuery,
38 fn infer(&self, def: DefWithBody) -> Arc<InferenceResult>; 19};
39
40 #[salsa::invoke(crate::ty::type_for_def)]
41 fn type_for_def(&self, def: TypableDef, ns: Namespace) -> Ty;
42
43 #[salsa::invoke(crate::ty::field_types_query)]
44 fn field_types(&self, var: VariantId) -> Arc<ArenaMap<LocalStructFieldId, Ty>>;
45
46 #[salsa::invoke(crate::ty::callable_item_sig)]
47 fn callable_item_signature(&self, def: CallableDef) -> FnSig;
48
49 #[salsa::invoke(crate::ty::generic_predicates_for_param_query)]
50 fn generic_predicates_for_param(
51 &self,
52 def: GenericDef,
53 param_idx: u32,
54 ) -> Arc<[GenericPredicate]>;
55
56 #[salsa::invoke(crate::ty::generic_predicates_query)]
57 fn generic_predicates(&self, def: GenericDef) -> Arc<[GenericPredicate]>;
58
59 #[salsa::invoke(crate::ty::generic_defaults_query)]
60 fn generic_defaults(&self, def: GenericDef) -> Substs;
61
62 #[salsa::invoke(crate::ty::method_resolution::CrateImplBlocks::impls_in_crate_query)]
63 fn impls_in_crate(&self, krate: Crate) -> Arc<CrateImplBlocks>;
64
65 #[salsa::invoke(crate::ty::traits::impls_for_trait_query)]
66 fn impls_for_trait(&self, krate: Crate, trait_: Trait) -> Arc<[ImplBlock]>;
67
68 /// This provides the Chalk trait solver instance. Because Chalk always
69 /// works from a specific crate, this query is keyed on the crate; and
70 /// because Chalk does its own internal caching, the solver is wrapped in a
71 /// Mutex and the query does an untracked read internally, to make sure the
72 /// cached state is thrown away when input facts change.
73 #[salsa::invoke(crate::ty::traits::trait_solver_query)]
74 fn trait_solver(&self, krate: Crate) -> crate::ty::traits::TraitSolver;
75
76 // Interned IDs for Chalk integration
77 #[salsa::interned]
78 fn intern_type_ctor(&self, type_ctor: TypeCtor) -> crate::ty::TypeCtorId;
79 #[salsa::interned]
80 fn intern_chalk_impl(&self, impl_: Impl) -> crate::ty::traits::GlobalImplId;
81 #[salsa::interned]
82 fn intern_assoc_ty_value(
83 &self,
84 assoc_ty_value: AssocTyValue,
85 ) -> crate::ty::traits::AssocTyValueId;
86
87 #[salsa::invoke(crate::ty::traits::chalk::associated_ty_data_query)]
88 fn associated_ty_data(
89 &self,
90 id: chalk_ir::TypeId,
91 ) -> Arc<chalk_rust_ir::AssociatedTyDatum<chalk_ir::family::ChalkIr>>;
92
93 #[salsa::invoke(crate::ty::traits::chalk::trait_datum_query)]
94 fn trait_datum(
95 &self,
96 krate: Crate,
97 trait_id: chalk_ir::TraitId,
98 ) -> Arc<chalk_rust_ir::TraitDatum<chalk_ir::family::ChalkIr>>;
99
100 #[salsa::invoke(crate::ty::traits::chalk::struct_datum_query)]
101 fn struct_datum(
102 &self,
103 krate: Crate,
104 struct_id: chalk_ir::StructId,
105 ) -> Arc<chalk_rust_ir::StructDatum<chalk_ir::family::ChalkIr>>;
106
107 #[salsa::invoke(crate::ty::traits::chalk::impl_datum_query)]
108 fn impl_datum(
109 &self,
110 krate: Crate,
111 impl_id: chalk_ir::ImplId,
112 ) -> Arc<chalk_rust_ir::ImplDatum<chalk_ir::family::ChalkIr>>;
113
114 #[salsa::invoke(crate::ty::traits::chalk::associated_ty_value_query)]
115 fn associated_ty_value(
116 &self,
117 krate: Crate,
118 id: chalk_rust_ir::AssociatedTyValueId,
119 ) -> Arc<chalk_rust_ir::AssociatedTyValue<chalk_ir::family::ChalkIr>>;
120
121 #[salsa::invoke(crate::ty::traits::trait_solve_query)]
122 fn trait_solve(
123 &self,
124 krate: Crate,
125 goal: crate::ty::Canonical<crate::ty::InEnvironment<crate::ty::Obligation>>,
126 ) -> Option<crate::ty::traits::Solution>;
127}
128 20
129#[test] 21#[test]
130fn hir_database_is_object_safe() { 22fn hir_database_is_object_safe() {
diff --git a/crates/ra_hir/src/diagnostics.rs b/crates/ra_hir/src/diagnostics.rs
index dafacba70..a9040ea3d 100644
--- a/crates/ra_hir/src/diagnostics.rs
+++ b/crates/ra_hir/src/diagnostics.rs
@@ -1,88 +1,4 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2
3use std::any::Any;
4
5use hir_expand::HirFileId;
6use ra_syntax::{ast, AstNode, AstPtr, SyntaxNodePtr};
7
8use crate::{db::AstDatabase, Name, Source};
9
10pub use hir_def::diagnostics::UnresolvedModule; 2pub use hir_def::diagnostics::UnresolvedModule;
11pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink}; 3pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink};
12 4pub use hir_ty::diagnostics::{MissingFields, MissingOkInTailExpr, NoSuchField};
13#[derive(Debug)]
14pub struct NoSuchField {
15 pub file: HirFileId,
16 pub field: AstPtr<ast::RecordField>,
17}
18
19impl Diagnostic for NoSuchField {
20 fn message(&self) -> String {
21 "no such field".to_string()
22 }
23
24 fn source(&self) -> Source<SyntaxNodePtr> {
25 Source { file_id: self.file, value: self.field.into() }
26 }
27
28 fn as_any(&self) -> &(dyn Any + Send + 'static) {
29 self
30 }
31}
32
33#[derive(Debug)]
34pub struct MissingFields {
35 pub file: HirFileId,
36 pub field_list: AstPtr<ast::RecordFieldList>,
37 pub missed_fields: Vec<Name>,
38}
39
40impl Diagnostic for MissingFields {
41 fn message(&self) -> String {
42 "fill structure fields".to_string()
43 }
44 fn source(&self) -> Source<SyntaxNodePtr> {
45 Source { file_id: self.file, value: self.field_list.into() }
46 }
47 fn as_any(&self) -> &(dyn Any + Send + 'static) {
48 self
49 }
50}
51
52impl AstDiagnostic for MissingFields {
53 type AST = ast::RecordFieldList;
54
55 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
56 let root = db.parse_or_expand(self.source().file_id).unwrap();
57 let node = self.source().value.to_node(&root);
58 ast::RecordFieldList::cast(node).unwrap()
59 }
60}
61
62#[derive(Debug)]
63pub struct MissingOkInTailExpr {
64 pub file: HirFileId,
65 pub expr: AstPtr<ast::Expr>,
66}
67
68impl Diagnostic for MissingOkInTailExpr {
69 fn message(&self) -> String {
70 "wrap return expression in Ok".to_string()
71 }
72 fn source(&self) -> Source<SyntaxNodePtr> {
73 Source { file_id: self.file, value: self.expr.into() }
74 }
75 fn as_any(&self) -> &(dyn Any + Send + 'static) {
76 self
77 }
78}
79
80impl AstDiagnostic for MissingOkInTailExpr {
81 type AST = ast::Expr;
82
83 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
84 let root = db.parse_or_expand(self.file).unwrap();
85 let node = self.source().value.to_node(&root);
86 ast::Expr::cast(node).unwrap()
87 }
88}
diff --git a/crates/ra_hir/src/expr.rs b/crates/ra_hir/src/expr.rs
deleted file mode 100644
index 43fedde7a..000000000
--- a/crates/ra_hir/src/expr.rs
+++ /dev/null
@@ -1,146 +0,0 @@
1//! FIXME: write short doc here
2
3use std::sync::Arc;
4
5use hir_def::{path::known, resolver::HasResolver};
6use hir_expand::diagnostics::DiagnosticSink;
7use ra_syntax::ast;
8use ra_syntax::AstPtr;
9use rustc_hash::FxHashSet;
10
11use crate::{
12 db::HirDatabase,
13 diagnostics::{MissingFields, MissingOkInTailExpr},
14 ty::{ApplicationTy, InferenceResult, Ty, TypeCtor},
15 Adt, Function, Name, Path,
16};
17
18pub use hir_def::{
19 body::{
20 scope::{ExprScopes, ScopeEntry, ScopeId},
21 Body, BodySourceMap, ExprPtr, ExprSource, PatPtr, PatSource,
22 },
23 expr::{
24 ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
25 MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp,
26 },
27};
28
29pub(crate) struct ExprValidator<'a, 'b: 'a> {
30 func: Function,
31 infer: Arc<InferenceResult>,
32 sink: &'a mut DiagnosticSink<'b>,
33}
34
35impl<'a, 'b> ExprValidator<'a, 'b> {
36 pub(crate) fn new(
37 func: Function,
38 infer: Arc<InferenceResult>,
39 sink: &'a mut DiagnosticSink<'b>,
40 ) -> ExprValidator<'a, 'b> {
41 ExprValidator { func, infer, sink }
42 }
43
44 pub(crate) fn validate_body(&mut self, db: &impl HirDatabase) {
45 let body = self.func.body(db);
46
47 for e in body.exprs.iter() {
48 if let (id, Expr::RecordLit { path, fields, spread }) = e {
49 self.validate_record_literal(id, path, fields, *spread, db);
50 }
51 }
52
53 let body_expr = &body[body.body_expr];
54 if let Expr::Block { statements: _, tail: Some(t) } = body_expr {
55 self.validate_results_in_tail_expr(body.body_expr, *t, db);
56 }
57 }
58
59 fn validate_record_literal(
60 &mut self,
61 id: ExprId,
62 _path: &Option<Path>,
63 fields: &[RecordLitField],
64 spread: Option<ExprId>,
65 db: &impl HirDatabase,
66 ) {
67 if spread.is_some() {
68 return;
69 }
70
71 let struct_def = match self.infer[id].as_adt() {
72 Some((Adt::Struct(s), _)) => s,
73 _ => return,
74 };
75
76 let lit_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect();
77 let missed_fields: Vec<Name> = struct_def
78 .fields(db)
79 .iter()
80 .filter_map(|f| {
81 let name = f.name(db);
82 if lit_fields.contains(&name) {
83 None
84 } else {
85 Some(name)
86 }
87 })
88 .collect();
89 if missed_fields.is_empty() {
90 return;
91 }
92 let source_map = self.func.body_source_map(db);
93
94 if let Some(source_ptr) = source_map.expr_syntax(id) {
95 if let Some(expr) = source_ptr.value.a() {
96 let root = source_ptr.file_syntax(db);
97 if let ast::Expr::RecordLit(record_lit) = expr.to_node(&root) {
98 if let Some(field_list) = record_lit.record_field_list() {
99 self.sink.push(MissingFields {
100 file: source_ptr.file_id,
101 field_list: AstPtr::new(&field_list),
102 missed_fields,
103 })
104 }
105 }
106 }
107 }
108 }
109
110 fn validate_results_in_tail_expr(
111 &mut self,
112 body_id: ExprId,
113 id: ExprId,
114 db: &impl HirDatabase,
115 ) {
116 // the mismatch will be on the whole block currently
117 let mismatch = match self.infer.type_mismatch_for_expr(body_id) {
118 Some(m) => m,
119 None => return,
120 };
121
122 let std_result_path = known::std_result_result();
123
124 let resolver = self.func.id.resolver(db);
125 let std_result_enum = match resolver.resolve_known_enum(db, &std_result_path) {
126 Some(it) => it,
127 _ => return,
128 };
129
130 let std_result_ctor = TypeCtor::Adt(Adt::Enum(std_result_enum.into()));
131 let params = match &mismatch.expected {
132 Ty::Apply(ApplicationTy { ctor, parameters }) if ctor == &std_result_ctor => parameters,
133 _ => return,
134 };
135
136 if params.len() == 2 && &params[0] == &mismatch.actual {
137 let source_map = self.func.body_source_map(db);
138
139 if let Some(source_ptr) = source_map.expr_syntax(id) {
140 if let Some(expr) = source_ptr.value.a() {
141 self.sink.push(MissingOkInTailExpr { file: source_ptr.file_id, expr });
142 }
143 }
144 }
145 }
146}
diff --git a/crates/ra_hir/src/from_id.rs b/crates/ra_hir/src/from_id.rs
index 529ac8251..e96a18d12 100644
--- a/crates/ra_hir/src/from_id.rs
+++ b/crates/ra_hir/src/from_id.rs
@@ -4,14 +4,13 @@
4//! are splitting the hir. 4//! are splitting the hir.
5 5
6use hir_def::{ 6use hir_def::{
7 AdtId, AssocItemId, AttrDefId, ConstId, DefWithBodyId, EnumId, EnumVariantId, FunctionId, 7 AdtId, AssocItemId, AttrDefId, DefWithBodyId, EnumVariantId, GenericDefId, ModuleDefId,
8 GenericDefId, ModuleDefId, StaticId, StructFieldId, StructId, TypeAliasId, UnionId, VariantId, 8 StructFieldId, VariantId,
9}; 9};
10 10
11use crate::{ 11use crate::{
12 ty::{CallableDef, TypableDef}, 12 Adt, AssocItem, AttrDef, Crate, DefWithBody, EnumVariant, GenericDef, ModuleDef, StructField,
13 Adt, AssocItem, AttrDef, Const, Crate, DefWithBody, EnumVariant, Function, GenericDef, 13 VariantDef,
14 ModuleDef, Static, StructField, TypeAlias, VariantDef,
15}; 14};
16 15
17impl From<ra_db::CrateId> for Crate { 16impl From<ra_db::CrateId> for Crate {
@@ -138,72 +137,6 @@ impl From<GenericDef> for GenericDefId {
138 } 137 }
139} 138}
140 139
141impl From<GenericDefId> for GenericDef {
142 fn from(def: GenericDefId) -> Self {
143 match def {
144 GenericDefId::FunctionId(it) => GenericDef::Function(it.into()),
145 GenericDefId::AdtId(it) => GenericDef::Adt(it.into()),
146 GenericDefId::TraitId(it) => GenericDef::Trait(it.into()),
147 GenericDefId::TypeAliasId(it) => GenericDef::TypeAlias(it.into()),
148 GenericDefId::ImplId(it) => GenericDef::ImplBlock(it.into()),
149 GenericDefId::EnumVariantId(it) => GenericDef::EnumVariant(it.into()),
150 GenericDefId::ConstId(it) => GenericDef::Const(it.into()),
151 }
152 }
153}
154
155impl From<AdtId> for TypableDef {
156 fn from(id: AdtId) -> Self {
157 Adt::from(id).into()
158 }
159}
160
161impl From<StructId> for TypableDef {
162 fn from(id: StructId) -> Self {
163 AdtId::StructId(id).into()
164 }
165}
166
167impl From<UnionId> for TypableDef {
168 fn from(id: UnionId) -> Self {
169 AdtId::UnionId(id).into()
170 }
171}
172
173impl From<EnumId> for TypableDef {
174 fn from(id: EnumId) -> Self {
175 AdtId::EnumId(id).into()
176 }
177}
178
179impl From<EnumVariantId> for TypableDef {
180 fn from(id: EnumVariantId) -> Self {
181 EnumVariant::from(id).into()
182 }
183}
184
185impl From<TypeAliasId> for TypableDef {
186 fn from(id: TypeAliasId) -> Self {
187 TypeAlias::from(id).into()
188 }
189}
190
191impl From<FunctionId> for TypableDef {
192 fn from(id: FunctionId) -> Self {
193 Function::from(id).into()
194 }
195}
196impl From<ConstId> for TypableDef {
197 fn from(id: ConstId) -> Self {
198 Const::from(id).into()
199 }
200}
201impl From<StaticId> for TypableDef {
202 fn from(id: StaticId) -> Self {
203 Static::from(id).into()
204 }
205}
206
207impl From<Adt> for GenericDefId { 140impl From<Adt> for GenericDefId {
208 fn from(id: Adt) -> Self { 141 fn from(id: Adt) -> Self {
209 match id { 142 match id {
@@ -214,14 +147,12 @@ impl From<Adt> for GenericDefId {
214 } 147 }
215} 148}
216 149
217impl From<CallableDef> for GenericDefId { 150impl From<VariantId> for VariantDef {
218 fn from(def: CallableDef) -> Self { 151 fn from(def: VariantId) -> Self {
219 match def { 152 match def {
220 CallableDef::Function(it) => it.id.into(), 153 VariantId::StructId(it) => VariantDef::Struct(it.into()),
221 CallableDef::Struct(it) => it.id.into(), 154 VariantId::EnumVariantId(it) => VariantDef::EnumVariant(it.into()),
222 CallableDef::EnumVariant(it) => { 155 VariantId::UnionId(it) => VariantDef::Union(it.into()),
223 EnumVariantId { parent: it.parent.id, local_id: it.id }.into()
224 }
225 } 156 }
226 } 157 }
227} 158}
@@ -231,6 +162,7 @@ impl From<VariantDef> for VariantId {
231 match def { 162 match def {
232 VariantDef::Struct(it) => VariantId::StructId(it.id), 163 VariantDef::Struct(it) => VariantId::StructId(it.id),
233 VariantDef::EnumVariant(it) => VariantId::EnumVariantId(it.into()), 164 VariantDef::EnumVariant(it) => VariantId::EnumVariantId(it.into()),
165 VariantDef::Union(it) => VariantId::UnionId(it.id),
234 } 166 }
235 } 167 }
236} 168}
@@ -241,6 +173,12 @@ impl From<StructField> for StructFieldId {
241 } 173 }
242} 174}
243 175
176impl From<StructFieldId> for StructField {
177 fn from(def: StructFieldId) -> Self {
178 StructField { parent: def.parent.into(), id: def.local_id }
179 }
180}
181
244impl From<AttrDef> for AttrDefId { 182impl From<AttrDef> for AttrDefId {
245 fn from(def: AttrDef) -> Self { 183 fn from(def: AttrDef) -> Self {
246 match def { 184 match def {
@@ -257,3 +195,13 @@ impl From<AttrDef> for AttrDefId {
257 } 195 }
258 } 196 }
259} 197}
198
199impl From<AssocItem> for GenericDefId {
200 fn from(item: AssocItem) -> Self {
201 match item {
202 AssocItem::Function(f) => f.id.into(),
203 AssocItem::Const(c) => c.id.into(),
204 AssocItem::TypeAlias(t) => t.id.into(),
205 }
206 }
207}
diff --git a/crates/ra_hir/src/from_source.rs b/crates/ra_hir/src/from_source.rs
index 1e7c22774..9f7c22b21 100644
--- a/crates/ra_hir/src/from_source.rs
+++ b/crates/ra_hir/src/from_source.rs
@@ -1,6 +1,6 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2 2
3use hir_def::{AstItemDef, LocationCtx, ModuleId, StructId, StructOrUnionId, UnionId}; 3use hir_def::{AstItemDef, LocationCtx, ModuleId};
4use hir_expand::{name::AsName, AstId, MacroDefId, MacroDefKind}; 4use hir_expand::{name::AsName, AstId, MacroDefId, MacroDefKind};
5use ra_syntax::{ 5use ra_syntax::{
6 ast::{self, AstNode, NameOwner}, 6 ast::{self, AstNode, NameOwner},
@@ -19,19 +19,18 @@ pub trait FromSource: Sized {
19 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self>; 19 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self>;
20} 20}
21 21
22// FIXIME: these two impls are wrong, `ast::StructDef` might produce either a struct or a union
23impl FromSource for Struct { 22impl FromSource for Struct {
24 type Ast = ast::StructDef; 23 type Ast = ast::StructDef;
25 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self> { 24 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self> {
26 let id: StructOrUnionId = from_source(db, src)?; 25 let id = from_source(db, src)?;
27 Some(Struct { id: StructId(id) }) 26 Some(Struct { id })
28 } 27 }
29} 28}
30impl FromSource for Union { 29impl FromSource for Union {
31 type Ast = ast::StructDef; 30 type Ast = ast::UnionDef;
32 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self> { 31 fn from_source(db: &(impl DefDatabase + AstDatabase), src: Source<Self::Ast>) -> Option<Self> {
33 let id: StructOrUnionId = from_source(db, src)?; 32 let id = from_source(db, src)?;
34 Some(Union { id: UnionId(id) }) 33 Some(Union { id })
35 } 34 }
36} 35}
37impl FromSource for Enum { 36impl FromSource for Enum {
@@ -263,13 +262,12 @@ impl Module {
263 262
264 let original_file = src.file_id.original_file(db); 263 let original_file = src.file_id.original_file(db);
265 264
266 let (krate, module_id) = 265 let (krate, local_id) = db.relevant_crates(original_file).iter().find_map(|&crate_id| {
267 db.relevant_crates(original_file).iter().find_map(|&crate_id| { 266 let crate_def_map = db.crate_def_map(crate_id);
268 let crate_def_map = db.crate_def_map(crate_id); 267 let local_id = crate_def_map.modules_for_file(original_file).next()?;
269 let local_module_id = crate_def_map.modules_for_file(original_file).next()?; 268 Some((crate_id, local_id))
270 Some((crate_id, local_module_id)) 269 })?;
271 })?; 270 Some(Module { id: ModuleId { krate, local_id } })
272 Some(Module { id: ModuleId { krate, module_id } })
273 } 271 }
274} 272}
275 273
diff --git a/crates/ra_hir/src/lib.rs b/crates/ra_hir/src/lib.rs
index 843ce6a88..3c12c61f0 100644
--- a/crates/ra_hir/src/lib.rs
+++ b/crates/ra_hir/src/lib.rs
@@ -32,28 +32,20 @@ pub mod db;
32pub mod source_binder; 32pub mod source_binder;
33 33
34mod ty; 34mod ty;
35mod expr;
36pub mod diagnostics; 35pub mod diagnostics;
37mod util;
38 36
39mod from_id; 37mod from_id;
40mod code_model; 38mod code_model;
41 39
42pub mod from_source; 40pub mod from_source;
43 41
44#[cfg(test)]
45mod test_db;
46#[cfg(test)]
47mod marks;
48
49pub use crate::{ 42pub use crate::{
50 code_model::{ 43 code_model::{
51 src::HasSource, Adt, AssocItem, AttrDef, Const, Container, Crate, CrateDependency, 44 src::HasSource, Adt, AssocItem, AttrDef, Const, Container, Crate, CrateDependency,
52 DefWithBody, Docs, Enum, EnumVariant, FieldSource, Function, GenericDef, GenericParam, 45 DefWithBody, Docs, Enum, EnumVariant, FieldSource, Function, GenericDef, GenericParam,
53 HasAttrs, ImplBlock, Import, Local, MacroDef, Module, ModuleDef, ModuleSource, ScopeDef, 46 HasAttrs, ImplBlock, Import, Local, MacroDef, Module, ModuleDef, ModuleSource, ScopeDef,
54 Static, Struct, StructField, Trait, TypeAlias, Union, VariantDef, 47 Static, Struct, StructField, Trait, Type, TypeAlias, Union, VariantDef,
55 }, 48 },
56 expr::ExprScopes,
57 from_source::FromSource, 49 from_source::FromSource,
58 source_binder::{PathResolution, ScopeEntryWithSyntax, SourceAnalyzer}, 50 source_binder::{PathResolution, ScopeEntryWithSyntax, SourceAnalyzer},
59 ty::{ 51 ty::{
@@ -64,6 +56,7 @@ pub use crate::{
64}; 56};
65 57
66pub use hir_def::{ 58pub use hir_def::{
59 body::scope::ExprScopes,
67 builtin_type::BuiltinType, 60 builtin_type::BuiltinType,
68 docs::Documentation, 61 docs::Documentation,
69 path::{Path, PathKind}, 62 path::{Path, PathKind},
diff --git a/crates/ra_hir/src/marks.rs b/crates/ra_hir/src/marks.rs
deleted file mode 100644
index 0f754eb9c..000000000
--- a/crates/ra_hir/src/marks.rs
+++ /dev/null
@@ -1,9 +0,0 @@
1//! See test_utils/src/marks.rs
2
3test_utils::marks!(
4 type_var_cycles_resolve_completely
5 type_var_cycles_resolve_as_possible
6 type_var_resolves_to_int_var
7 match_ergonomics_ref
8 coerce_merge_fail_fallback
9);
diff --git a/crates/ra_hir/src/source_binder.rs b/crates/ra_hir/src/source_binder.rs
index 31390bb7f..76c493f1a 100644
--- a/crates/ra_hir/src/source_binder.rs
+++ b/crates/ra_hir/src/source_binder.rs
@@ -8,13 +8,17 @@
8use std::sync::Arc; 8use std::sync::Arc;
9 9
10use hir_def::{ 10use hir_def::{
11 body::{
12 scope::{ExprScopes, ScopeId},
13 BodySourceMap,
14 },
11 expr::{ExprId, PatId}, 15 expr::{ExprId, PatId},
12 path::known, 16 path::known,
13 resolver::{self, resolver_for_scope, HasResolver, Resolver, TypeNs, ValueNs}, 17 resolver::{self, resolver_for_scope, HasResolver, Resolver, TypeNs, ValueNs},
14 DefWithBodyId, 18 AssocItemId, DefWithBodyId,
15}; 19};
16use hir_expand::{ 20use hir_expand::{
17 name::AsName, AstId, HirFileId, MacroCallId, MacroCallLoc, MacroFileKind, Source, 21 hygiene::Hygiene, name::AsName, AstId, HirFileId, MacroCallId, MacroFileKind, Source,
18}; 22};
19use ra_syntax::{ 23use ra_syntax::{
20 ast::{self, AstNode}, 24 ast::{self, AstNode},
@@ -25,10 +29,12 @@ use ra_syntax::{
25 29
26use crate::{ 30use crate::{
27 db::HirDatabase, 31 db::HirDatabase,
28 expr::{BodySourceMap, ExprScopes, ScopeId}, 32 ty::{
29 ty::method_resolution::{self, implements_trait}, 33 method_resolution::{self, implements_trait},
34 InEnvironment, TraitEnvironment, Ty,
35 },
30 Adt, AssocItem, Const, DefWithBody, Either, Enum, EnumVariant, FromSource, Function, 36 Adt, AssocItem, Const, DefWithBody, Either, Enum, EnumVariant, FromSource, Function,
31 GenericParam, Local, MacroDef, Name, Path, ScopeDef, Static, Struct, Trait, Ty, TypeAlias, 37 GenericParam, Local, MacroDef, Name, Path, ScopeDef, Static, Struct, Trait, Type, TypeAlias,
32}; 38};
33 39
34fn try_get_resolver_for_node(db: &impl HirDatabase, node: Source<&SyntaxNode>) -> Option<Resolver> { 40fn try_get_resolver_for_node(db: &impl HirDatabase, node: Source<&SyntaxNode>) -> Option<Resolver> {
@@ -88,7 +94,7 @@ pub struct SourceAnalyzer {
88 body_owner: Option<DefWithBody>, 94 body_owner: Option<DefWithBody>,
89 body_source_map: Option<Arc<BodySourceMap>>, 95 body_source_map: Option<Arc<BodySourceMap>>,
90 infer: Option<Arc<crate::ty::InferenceResult>>, 96 infer: Option<Arc<crate::ty::InferenceResult>>,
91 scopes: Option<Arc<crate::expr::ExprScopes>>, 97 scopes: Option<Arc<ExprScopes>>,
92} 98}
93 99
94#[derive(Debug, Clone, PartialEq, Eq)] 100#[derive(Debug, Clone, PartialEq, Eq)]
@@ -165,7 +171,7 @@ impl SourceAnalyzer {
165 resolver, 171 resolver,
166 body_owner: Some(def), 172 body_owner: Some(def),
167 body_source_map: Some(source_map), 173 body_source_map: Some(source_map),
168 infer: Some(db.infer(def)), 174 infer: Some(db.infer(def.into())),
169 scopes: Some(scopes), 175 scopes: Some(scopes),
170 file_id: node.file_id, 176 file_id: node.file_id,
171 } 177 }
@@ -195,48 +201,52 @@ impl SourceAnalyzer {
195 self.body_source_map.as_ref()?.node_pat(src) 201 self.body_source_map.as_ref()?.node_pat(src)
196 } 202 }
197 203
198 pub fn type_of(&self, _db: &impl HirDatabase, expr: &ast::Expr) -> Option<crate::Ty> { 204 pub fn type_of(&self, db: &impl HirDatabase, expr: &ast::Expr) -> Option<Type> {
199 let expr_id = self.expr_id(expr)?; 205 let expr_id = self.expr_id(expr)?;
200 Some(self.infer.as_ref()?[expr_id].clone()) 206 let ty = self.infer.as_ref()?[expr_id].clone();
207 let environment = TraitEnvironment::lower(db, &self.resolver);
208 Some(Type { krate: self.resolver.krate()?, ty: InEnvironment { value: ty, environment } })
201 } 209 }
202 210
203 pub fn type_of_pat(&self, _db: &impl HirDatabase, pat: &ast::Pat) -> Option<crate::Ty> { 211 pub fn type_of_pat(&self, db: &impl HirDatabase, pat: &ast::Pat) -> Option<Type> {
204 let pat_id = self.pat_id(pat)?; 212 let pat_id = self.pat_id(pat)?;
205 Some(self.infer.as_ref()?[pat_id].clone()) 213 let ty = self.infer.as_ref()?[pat_id].clone();
214 let environment = TraitEnvironment::lower(db, &self.resolver);
215 Some(Type { krate: self.resolver.krate()?, ty: InEnvironment { value: ty, environment } })
206 } 216 }
207 217
208 pub fn resolve_method_call(&self, call: &ast::MethodCallExpr) -> Option<Function> { 218 pub fn resolve_method_call(&self, call: &ast::MethodCallExpr) -> Option<Function> {
209 let expr_id = self.expr_id(&call.clone().into())?; 219 let expr_id = self.expr_id(&call.clone().into())?;
210 self.infer.as_ref()?.method_resolution(expr_id) 220 self.infer.as_ref()?.method_resolution(expr_id).map(Function::from)
211 } 221 }
212 222
213 pub fn resolve_field(&self, field: &ast::FieldExpr) -> Option<crate::StructField> { 223 pub fn resolve_field(&self, field: &ast::FieldExpr) -> Option<crate::StructField> {
214 let expr_id = self.expr_id(&field.clone().into())?; 224 let expr_id = self.expr_id(&field.clone().into())?;
215 self.infer.as_ref()?.field_resolution(expr_id) 225 self.infer.as_ref()?.field_resolution(expr_id).map(|it| it.into())
216 } 226 }
217 227
218 pub fn resolve_record_field(&self, field: &ast::RecordField) -> Option<crate::StructField> { 228 pub fn resolve_record_field(&self, field: &ast::RecordField) -> Option<crate::StructField> {
219 let expr_id = self.expr_id(&field.expr()?)?; 229 let expr_id = self.expr_id(&field.expr()?)?;
220 self.infer.as_ref()?.record_field_resolution(expr_id) 230 self.infer.as_ref()?.record_field_resolution(expr_id).map(|it| it.into())
221 } 231 }
222 232
223 pub fn resolve_record_literal(&self, record_lit: &ast::RecordLit) -> Option<crate::VariantDef> { 233 pub fn resolve_record_literal(&self, record_lit: &ast::RecordLit) -> Option<crate::VariantDef> {
224 let expr_id = self.expr_id(&record_lit.clone().into())?; 234 let expr_id = self.expr_id(&record_lit.clone().into())?;
225 self.infer.as_ref()?.variant_resolution_for_expr(expr_id) 235 self.infer.as_ref()?.variant_resolution_for_expr(expr_id).map(|it| it.into())
226 } 236 }
227 237
228 pub fn resolve_record_pattern(&self, record_pat: &ast::RecordPat) -> Option<crate::VariantDef> { 238 pub fn resolve_record_pattern(&self, record_pat: &ast::RecordPat) -> Option<crate::VariantDef> {
229 let pat_id = self.pat_id(&record_pat.clone().into())?; 239 let pat_id = self.pat_id(&record_pat.clone().into())?;
230 self.infer.as_ref()?.variant_resolution_for_pat(pat_id) 240 self.infer.as_ref()?.variant_resolution_for_pat(pat_id).map(|it| it.into())
231 } 241 }
232 242
233 pub fn resolve_macro_call( 243 pub fn resolve_macro_call(
234 &self, 244 &self,
235 db: &impl HirDatabase, 245 db: &impl HirDatabase,
236 macro_call: &ast::MacroCall, 246 macro_call: Source<&ast::MacroCall>,
237 ) -> Option<MacroDef> { 247 ) -> Option<MacroDef> {
238 // This must be a normal source file rather than macro file. 248 let hygiene = Hygiene::new(db, macro_call.file_id);
239 let path = macro_call.path().and_then(Path::from_ast)?; 249 let path = macro_call.value.path().and_then(|ast| Path::from_src(ast, &hygiene))?;
240 self.resolver.resolve_path_as_macro(db, &path).map(|it| it.into()) 250 self.resolver.resolve_path_as_macro(db, &path).map(|it| it.into())
241 } 251 }
242 252
@@ -248,7 +258,7 @@ impl SourceAnalyzer {
248 let types = self.resolver.resolve_path_in_type_ns_fully(db, &path).map(|ty| match ty { 258 let types = self.resolver.resolve_path_in_type_ns_fully(db, &path).map(|ty| match ty {
249 TypeNs::SelfType(it) => PathResolution::SelfType(it.into()), 259 TypeNs::SelfType(it) => PathResolution::SelfType(it.into()),
250 TypeNs::GenericParam(idx) => PathResolution::GenericParam(GenericParam { 260 TypeNs::GenericParam(idx) => PathResolution::GenericParam(GenericParam {
251 parent: self.resolver.generic_def().unwrap().into(), 261 parent: self.resolver.generic_def().unwrap(),
252 idx, 262 idx,
253 }), 263 }),
254 TypeNs::AdtSelfType(it) | TypeNs::AdtId(it) => { 264 TypeNs::AdtSelfType(it) | TypeNs::AdtId(it) => {
@@ -290,13 +300,13 @@ impl SourceAnalyzer {
290 if let Some(path_expr) = path.syntax().parent().and_then(ast::PathExpr::cast) { 300 if let Some(path_expr) = path.syntax().parent().and_then(ast::PathExpr::cast) {
291 let expr_id = self.expr_id(&path_expr.into())?; 301 let expr_id = self.expr_id(&path_expr.into())?;
292 if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_expr(expr_id) { 302 if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_expr(expr_id) {
293 return Some(PathResolution::AssocItem(assoc)); 303 return Some(PathResolution::AssocItem(assoc.into()));
294 } 304 }
295 } 305 }
296 if let Some(path_pat) = path.syntax().parent().and_then(ast::PathPat::cast) { 306 if let Some(path_pat) = path.syntax().parent().and_then(ast::PathPat::cast) {
297 let pat_id = self.pat_id(&path_pat.into())?; 307 let pat_id = self.pat_id(&path_pat.into())?;
298 if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_pat(pat_id) { 308 if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_pat(pat_id) {
299 return Some(PathResolution::AssocItem(assoc)); 309 return Some(PathResolution::AssocItem(assoc.into()));
300 } 310 }
301 } 311 }
302 // This must be a normal source file rather than macro file. 312 // This must be a normal source file rather than macro file.
@@ -323,7 +333,7 @@ impl SourceAnalyzer {
323 resolver::ScopeDef::ImplSelfType(it) => ScopeDef::ImplSelfType(it.into()), 333 resolver::ScopeDef::ImplSelfType(it) => ScopeDef::ImplSelfType(it.into()),
324 resolver::ScopeDef::AdtSelfType(it) => ScopeDef::AdtSelfType(it.into()), 334 resolver::ScopeDef::AdtSelfType(it) => ScopeDef::AdtSelfType(it.into()),
325 resolver::ScopeDef::GenericParam(idx) => { 335 resolver::ScopeDef::GenericParam(idx) => {
326 let parent = self.resolver.generic_def().unwrap().into(); 336 let parent = self.resolver.generic_def().unwrap();
327 ScopeDef::GenericParam(GenericParam { parent, idx }) 337 ScopeDef::GenericParam(GenericParam { parent, idx })
328 } 338 }
329 resolver::ScopeDef::Local(pat_id) => { 339 resolver::ScopeDef::Local(pat_id) => {
@@ -358,14 +368,14 @@ impl SourceAnalyzer {
358 pub fn iterate_method_candidates<T>( 368 pub fn iterate_method_candidates<T>(
359 &self, 369 &self,
360 db: &impl HirDatabase, 370 db: &impl HirDatabase,
361 ty: Ty, 371 ty: &Type,
362 name: Option<&Name>, 372 name: Option<&Name>,
363 mut callback: impl FnMut(&Ty, Function) -> Option<T>, 373 mut callback: impl FnMut(&Ty, Function) -> Option<T>,
364 ) -> Option<T> { 374 ) -> Option<T> {
365 // There should be no inference vars in types passed here 375 // There should be no inference vars in types passed here
366 // FIXME check that? 376 // FIXME check that?
367 // FIXME replace Unknown by bound vars here 377 // FIXME replace Unknown by bound vars here
368 let canonical = crate::ty::Canonical { value: ty, num_vars: 0 }; 378 let canonical = crate::ty::Canonical { value: ty.ty.value.clone(), num_vars: 0 };
369 method_resolution::iterate_method_candidates( 379 method_resolution::iterate_method_candidates(
370 &canonical, 380 &canonical,
371 db, 381 db,
@@ -373,7 +383,7 @@ impl SourceAnalyzer {
373 name, 383 name,
374 method_resolution::LookupMode::MethodCall, 384 method_resolution::LookupMode::MethodCall,
375 |ty, it| match it { 385 |ty, it| match it {
376 AssocItem::Function(f) => callback(ty, f), 386 AssocItemId::FunctionId(f) => callback(ty, f.into()),
377 _ => None, 387 _ => None,
378 }, 388 },
379 ) 389 )
@@ -382,34 +392,37 @@ impl SourceAnalyzer {
382 pub fn iterate_path_candidates<T>( 392 pub fn iterate_path_candidates<T>(
383 &self, 393 &self,
384 db: &impl HirDatabase, 394 db: &impl HirDatabase,
385 ty: Ty, 395 ty: &Type,
386 name: Option<&Name>, 396 name: Option<&Name>,
387 callback: impl FnMut(&Ty, AssocItem) -> Option<T>, 397 mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
388 ) -> Option<T> { 398 ) -> Option<T> {
389 // There should be no inference vars in types passed here 399 // There should be no inference vars in types passed here
390 // FIXME check that? 400 // FIXME check that?
391 // FIXME replace Unknown by bound vars here 401 // FIXME replace Unknown by bound vars here
392 let canonical = crate::ty::Canonical { value: ty, num_vars: 0 }; 402 let canonical = crate::ty::Canonical { value: ty.ty.value.clone(), num_vars: 0 };
393 method_resolution::iterate_method_candidates( 403 method_resolution::iterate_method_candidates(
394 &canonical, 404 &canonical,
395 db, 405 db,
396 &self.resolver, 406 &self.resolver,
397 name, 407 name,
398 method_resolution::LookupMode::Path, 408 method_resolution::LookupMode::Path,
399 callback, 409 |ty, it| callback(ty, it.into()),
400 ) 410 )
401 } 411 }
402 412
403 pub fn autoderef<'a>( 413 // pub fn autoderef<'a>(
404 &'a self, 414 // &'a self,
405 db: &'a impl HirDatabase, 415 // db: &'a impl HirDatabase,
406 ty: Ty, 416 // ty: Ty,
407 ) -> impl Iterator<Item = Ty> + 'a { 417 // ) -> impl Iterator<Item = Ty> + 'a {
408 // There should be no inference vars in types passed here 418 // // There should be no inference vars in types passed here
409 // FIXME check that? 419 // // FIXME check that?
410 let canonical = crate::ty::Canonical { value: ty, num_vars: 0 }; 420 // let canonical = crate::ty::Canonical { value: ty, num_vars: 0 };
411 crate::ty::autoderef(db, &self.resolver, canonical).map(|canonical| canonical.value) 421 // let krate = self.resolver.krate();
412 } 422 // let environment = TraitEnvironment::lower(db, &self.resolver);
423 // let ty = crate::ty::InEnvironment { value: canonical, environment };
424 // crate::ty::autoderef(db, krate, ty).map(|canonical| canonical.value)
425 // }
413 426
414 /// Checks that particular type `ty` implements `std::future::Future`. 427 /// Checks that particular type `ty` implements `std::future::Future`.
415 /// This function is used in `.await` syntax completion. 428 /// This function is used in `.await` syntax completion.
@@ -435,32 +448,16 @@ impl SourceAnalyzer {
435 db: &impl HirDatabase, 448 db: &impl HirDatabase,
436 macro_call: Source<&ast::MacroCall>, 449 macro_call: Source<&ast::MacroCall>,
437 ) -> Option<Expansion> { 450 ) -> Option<Expansion> {
438 let def = self.resolve_macro_call(db, macro_call.value)?.id; 451 let def = self.resolve_macro_call(db, macro_call)?.id;
439 let ast_id = AstId::new( 452 let ast_id = AstId::new(
440 macro_call.file_id, 453 macro_call.file_id,
441 db.ast_id_map(macro_call.file_id).ast_id(macro_call.value), 454 db.ast_id_map(macro_call.file_id).ast_id(macro_call.value),
442 ); 455 );
443 let macro_call_loc = MacroCallLoc { def, ast_id };
444 Some(Expansion { 456 Some(Expansion {
445 macro_call_id: db.intern_macro(macro_call_loc), 457 macro_call_id: def.as_call_id(db, ast_id),
446 macro_file_kind: to_macro_file_kind(macro_call.value), 458 macro_file_kind: to_macro_file_kind(macro_call.value),
447 }) 459 })
448 } 460 }
449
450 #[cfg(test)]
451 pub(crate) fn body_source_map(&self) -> Arc<BodySourceMap> {
452 self.body_source_map.clone().unwrap()
453 }
454
455 #[cfg(test)]
456 pub(crate) fn inference_result(&self) -> Arc<crate::ty::InferenceResult> {
457 self.infer.clone().unwrap()
458 }
459
460 #[cfg(test)]
461 pub(crate) fn analyzed_declaration(&self) -> Option<DefWithBody> {
462 self.body_owner
463 }
464} 461}
465 462
466fn scope_for( 463fn scope_for(
diff --git a/crates/ra_hir/src/test_db.rs b/crates/ra_hir/src/test_db.rs
deleted file mode 100644
index efee2f658..000000000
--- a/crates/ra_hir/src/test_db.rs
+++ /dev/null
@@ -1,119 +0,0 @@
1//! Database used for testing `hir`.
2
3use std::{panic, sync::Arc};
4
5use hir_def::{db::DefDatabase, ModuleId};
6use hir_expand::diagnostics::DiagnosticSink;
7use parking_lot::Mutex;
8use ra_db::{salsa, CrateId, FileId, FileLoader, FileLoaderDelegate, RelativePath, SourceDatabase};
9
10use crate::{db, debug::HirDebugHelper};
11
12#[salsa::database(
13 ra_db::SourceDatabaseExtStorage,
14 ra_db::SourceDatabaseStorage,
15 db::InternDatabaseStorage,
16 db::AstDatabaseStorage,
17 db::DefDatabaseStorage,
18 db::HirDatabaseStorage
19)]
20#[derive(Debug, Default)]
21pub struct TestDB {
22 events: Mutex<Option<Vec<salsa::Event<TestDB>>>>,
23 runtime: salsa::Runtime<TestDB>,
24}
25
26impl salsa::Database for TestDB {
27 fn salsa_runtime(&self) -> &salsa::Runtime<TestDB> {
28 &self.runtime
29 }
30
31 fn salsa_event(&self, event: impl Fn() -> salsa::Event<TestDB>) {
32 let mut events = self.events.lock();
33 if let Some(events) = &mut *events {
34 events.push(event());
35 }
36 }
37}
38
39impl salsa::ParallelDatabase for TestDB {
40 fn snapshot(&self) -> salsa::Snapshot<TestDB> {
41 salsa::Snapshot::new(TestDB {
42 events: Default::default(),
43 runtime: self.runtime.snapshot(self),
44 })
45 }
46}
47
48impl panic::RefUnwindSafe for TestDB {}
49
50impl FileLoader for TestDB {
51 fn file_text(&self, file_id: FileId) -> Arc<String> {
52 FileLoaderDelegate(self).file_text(file_id)
53 }
54 fn resolve_relative_path(
55 &self,
56 anchor: FileId,
57 relative_path: &RelativePath,
58 ) -> Option<FileId> {
59 FileLoaderDelegate(self).resolve_relative_path(anchor, relative_path)
60 }
61 fn relevant_crates(&self, file_id: FileId) -> Arc<Vec<CrateId>> {
62 FileLoaderDelegate(self).relevant_crates(file_id)
63 }
64}
65
66// FIXME: improve `WithFixture` to bring useful hir debugging back
67impl HirDebugHelper for TestDB {
68 fn crate_name(&self, _krate: CrateId) -> Option<String> {
69 None
70 }
71
72 fn file_path(&self, _file_id: FileId) -> Option<String> {
73 None
74 }
75}
76
77impl TestDB {
78 pub fn diagnostics(&self) -> String {
79 let mut buf = String::new();
80 let crate_graph = self.crate_graph();
81 for krate in crate_graph.iter().next() {
82 let crate_def_map = self.crate_def_map(krate);
83 for (module_id, _) in crate_def_map.modules.iter() {
84 let module_id = ModuleId { krate, module_id };
85 let module = crate::Module::from(module_id);
86 module.diagnostics(
87 self,
88 &mut DiagnosticSink::new(|d| {
89 buf += &format!("{:?}: {}\n", d.syntax_node(self).text(), d.message());
90 }),
91 )
92 }
93 }
94 buf
95 }
96}
97
98impl TestDB {
99 pub fn log(&self, f: impl FnOnce()) -> Vec<salsa::Event<TestDB>> {
100 *self.events.lock() = Some(Vec::new());
101 f();
102 self.events.lock().take().unwrap()
103 }
104
105 pub fn log_executed(&self, f: impl FnOnce()) -> Vec<String> {
106 let events = self.log(f);
107 events
108 .into_iter()
109 .filter_map(|e| match e.kind {
110 // This pretty horrible, but `Debug` is the only way to inspect
111 // QueryDescriptor at the moment.
112 salsa::EventKind::WillExecute { database_key } => {
113 Some(format!("{:?}", database_key))
114 }
115 _ => None,
116 })
117 .collect()
118 }
119}
diff --git a/crates/ra_hir/src/ty.rs b/crates/ra_hir/src/ty.rs
index f62316c1f..4ed69c00d 100644
--- a/crates/ra_hir/src/ty.rs
+++ b/crates/ra_hir/src/ty.rs
@@ -1,1094 +1,4 @@
1//! The type system. We currently use this to infer types for completion, hover 1//! The type system. We currently use this to infer types for completion, hover
2//! information and various assists. 2//! information and various assists.
3 3
4mod autoderef; 4pub use hir_ty::*;
5pub(crate) mod primitive;
6pub(crate) mod traits;
7pub(crate) mod method_resolution;
8mod op;
9mod lower;
10mod infer;
11pub(crate) mod display;
12
13#[cfg(test)]
14mod tests;
15
16use std::ops::Deref;
17use std::sync::Arc;
18use std::{fmt, iter, mem};
19
20use hir_def::{generics::GenericParams, AdtId};
21use ra_db::{impl_intern_key, salsa};
22
23use crate::{
24 db::HirDatabase, expr::ExprId, util::make_mut_slice, Adt, Crate, DefWithBody, FloatTy,
25 GenericDef, IntTy, Mutability, Name, Trait, TypeAlias, Uncertain,
26};
27use display::{HirDisplay, HirFormatter};
28
29pub(crate) use autoderef::autoderef;
30pub(crate) use infer::{infer_query, InferTy, InferenceResult};
31pub use lower::CallableDef;
32pub(crate) use lower::{
33 callable_item_sig, field_types_query, generic_defaults_query,
34 generic_predicates_for_param_query, generic_predicates_query, type_for_def, Namespace,
35 TypableDef,
36};
37pub(crate) use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
38
39/// A type constructor or type name: this might be something like the primitive
40/// type `bool`, a struct like `Vec`, or things like function pointers or
41/// tuples.
42#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
43pub enum TypeCtor {
44 /// The primitive boolean type. Written as `bool`.
45 Bool,
46
47 /// The primitive character type; holds a Unicode scalar value
48 /// (a non-surrogate code point). Written as `char`.
49 Char,
50
51 /// A primitive integer type. For example, `i32`.
52 Int(Uncertain<IntTy>),
53
54 /// A primitive floating-point type. For example, `f64`.
55 Float(Uncertain<FloatTy>),
56
57 /// Structures, enumerations and unions.
58 Adt(Adt),
59
60 /// The pointee of a string slice. Written as `str`.
61 Str,
62
63 /// The pointee of an array slice. Written as `[T]`.
64 Slice,
65
66 /// An array with the given length. Written as `[T; n]`.
67 Array,
68
69 /// A raw pointer. Written as `*mut T` or `*const T`
70 RawPtr(Mutability),
71
72 /// A reference; a pointer with an associated lifetime. Written as
73 /// `&'a mut T` or `&'a T`.
74 Ref(Mutability),
75
76 /// The anonymous type of a function declaration/definition. Each
77 /// function has a unique type, which is output (for a function
78 /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
79 ///
80 /// This includes tuple struct / enum variant constructors as well.
81 ///
82 /// For example the type of `bar` here:
83 ///
84 /// ```
85 /// fn foo() -> i32 { 1 }
86 /// let bar = foo; // bar: fn() -> i32 {foo}
87 /// ```
88 FnDef(CallableDef),
89
90 /// A pointer to a function. Written as `fn() -> i32`.
91 ///
92 /// For example the type of `bar` here:
93 ///
94 /// ```
95 /// fn foo() -> i32 { 1 }
96 /// let bar: fn() -> i32 = foo;
97 /// ```
98 FnPtr { num_args: u16 },
99
100 /// The never type `!`.
101 Never,
102
103 /// A tuple type. For example, `(i32, bool)`.
104 Tuple { cardinality: u16 },
105
106 /// Represents an associated item like `Iterator::Item`. This is used
107 /// when we have tried to normalize a projection like `T::Item` but
108 /// couldn't find a better representation. In that case, we generate
109 /// an **application type** like `(Iterator::Item)<T>`.
110 AssociatedType(TypeAlias),
111
112 /// The type of a specific closure.
113 ///
114 /// The closure signature is stored in a `FnPtr` type in the first type
115 /// parameter.
116 Closure { def: DefWithBody, expr: ExprId },
117}
118
119/// This exists just for Chalk, because Chalk just has a single `StructId` where
120/// we have different kinds of ADTs, primitive types and special type
121/// constructors like tuples and function pointers.
122#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
123pub struct TypeCtorId(salsa::InternId);
124impl_intern_key!(TypeCtorId);
125
126impl TypeCtor {
127 pub fn num_ty_params(self, db: &impl HirDatabase) -> usize {
128 match self {
129 TypeCtor::Bool
130 | TypeCtor::Char
131 | TypeCtor::Int(_)
132 | TypeCtor::Float(_)
133 | TypeCtor::Str
134 | TypeCtor::Never => 0,
135 TypeCtor::Slice
136 | TypeCtor::Array
137 | TypeCtor::RawPtr(_)
138 | TypeCtor::Ref(_)
139 | TypeCtor::Closure { .. } // 1 param representing the signature of the closure
140 => 1,
141 TypeCtor::Adt(adt) => {
142 let generic_params = db.generic_params(AdtId::from(adt).into());
143 generic_params.count_params_including_parent()
144 }
145 TypeCtor::FnDef(callable) => {
146 let generic_params = db.generic_params(callable.into());
147 generic_params.count_params_including_parent()
148 }
149 TypeCtor::AssociatedType(type_alias) => {
150 let generic_params = db.generic_params(type_alias.id.into());
151 generic_params.count_params_including_parent()
152 }
153 TypeCtor::FnPtr { num_args } => num_args as usize + 1,
154 TypeCtor::Tuple { cardinality } => cardinality as usize,
155 }
156 }
157
158 pub fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
159 match self {
160 TypeCtor::Bool
161 | TypeCtor::Char
162 | TypeCtor::Int(_)
163 | TypeCtor::Float(_)
164 | TypeCtor::Str
165 | TypeCtor::Never
166 | TypeCtor::Slice
167 | TypeCtor::Array
168 | TypeCtor::RawPtr(_)
169 | TypeCtor::Ref(_)
170 | TypeCtor::FnPtr { .. }
171 | TypeCtor::Tuple { .. } => None,
172 TypeCtor::Closure { def, .. } => def.krate(db),
173 TypeCtor::Adt(adt) => adt.krate(db),
174 TypeCtor::FnDef(callable) => callable.krate(db),
175 TypeCtor::AssociatedType(type_alias) => type_alias.krate(db),
176 }
177 }
178
179 pub fn as_generic_def(self) -> Option<crate::GenericDef> {
180 match self {
181 TypeCtor::Bool
182 | TypeCtor::Char
183 | TypeCtor::Int(_)
184 | TypeCtor::Float(_)
185 | TypeCtor::Str
186 | TypeCtor::Never
187 | TypeCtor::Slice
188 | TypeCtor::Array
189 | TypeCtor::RawPtr(_)
190 | TypeCtor::Ref(_)
191 | TypeCtor::FnPtr { .. }
192 | TypeCtor::Tuple { .. }
193 | TypeCtor::Closure { .. } => None,
194 TypeCtor::Adt(adt) => Some(adt.into()),
195 TypeCtor::FnDef(callable) => Some(callable.into()),
196 TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
197 }
198 }
199}
200
201/// A nominal type with (maybe 0) type parameters. This might be a primitive
202/// type like `bool`, a struct, tuple, function pointer, reference or
203/// several other things.
204#[derive(Clone, PartialEq, Eq, Debug, Hash)]
205pub struct ApplicationTy {
206 pub ctor: TypeCtor,
207 pub parameters: Substs,
208}
209
210/// A "projection" type corresponds to an (unnormalized)
211/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
212/// trait and all its parameters are fully known.
213#[derive(Clone, PartialEq, Eq, Debug, Hash)]
214pub struct ProjectionTy {
215 pub associated_ty: TypeAlias,
216 pub parameters: Substs,
217}
218
219impl ProjectionTy {
220 pub fn trait_ref(&self, db: &impl HirDatabase) -> TraitRef {
221 TraitRef {
222 trait_: self
223 .associated_ty
224 .parent_trait(db)
225 .expect("projection ty without parent trait"),
226 substs: self.parameters.clone(),
227 }
228 }
229}
230
231impl TypeWalk for ProjectionTy {
232 fn walk(&self, f: &mut impl FnMut(&Ty)) {
233 self.parameters.walk(f);
234 }
235
236 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
237 self.parameters.walk_mut_binders(f, binders);
238 }
239}
240
241/// A type.
242///
243/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
244/// the same thing (but in a different way).
245///
246/// This should be cheap to clone.
247#[derive(Clone, PartialEq, Eq, Debug, Hash)]
248pub enum Ty {
249 /// A nominal type with (maybe 0) type parameters. This might be a primitive
250 /// type like `bool`, a struct, tuple, function pointer, reference or
251 /// several other things.
252 Apply(ApplicationTy),
253
254 /// A "projection" type corresponds to an (unnormalized)
255 /// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
256 /// trait and all its parameters are fully known.
257 Projection(ProjectionTy),
258
259 /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
260 Param {
261 /// The index of the parameter (starting with parameters from the
262 /// surrounding impl, then the current function).
263 idx: u32,
264 /// The name of the parameter, for displaying.
265 // FIXME get rid of this
266 name: Name,
267 },
268
269 /// A bound type variable. Used during trait resolution to represent Chalk
270 /// variables, and in `Dyn` and `Opaque` bounds to represent the `Self` type.
271 Bound(u32),
272
273 /// A type variable used during type checking. Not to be confused with a
274 /// type parameter.
275 Infer(InferTy),
276
277 /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
278 ///
279 /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
280 /// represents the `Self` type inside the bounds. This is currently
281 /// implicit; Chalk has the `Binders` struct to make it explicit, but it
282 /// didn't seem worth the overhead yet.
283 Dyn(Arc<[GenericPredicate]>),
284
285 /// An opaque type (`impl Trait`).
286 ///
287 /// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
288 /// more.
289 Opaque(Arc<[GenericPredicate]>),
290
291 /// A placeholder for a type which could not be computed; this is propagated
292 /// to avoid useless error messages. Doubles as a placeholder where type
293 /// variables are inserted before type checking, since we want to try to
294 /// infer a better type here anyway -- for the IDE use case, we want to try
295 /// to infer as much as possible even in the presence of type errors.
296 Unknown,
297}
298
299/// A list of substitutions for generic parameters.
300#[derive(Clone, PartialEq, Eq, Debug, Hash)]
301pub struct Substs(Arc<[Ty]>);
302
303impl TypeWalk for Substs {
304 fn walk(&self, f: &mut impl FnMut(&Ty)) {
305 for t in self.0.iter() {
306 t.walk(f);
307 }
308 }
309
310 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
311 for t in make_mut_slice(&mut self.0) {
312 t.walk_mut_binders(f, binders);
313 }
314 }
315}
316
317impl Substs {
318 pub fn empty() -> Substs {
319 Substs(Arc::new([]))
320 }
321
322 pub fn single(ty: Ty) -> Substs {
323 Substs(Arc::new([ty]))
324 }
325
326 pub fn prefix(&self, n: usize) -> Substs {
327 Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
328 }
329
330 pub fn as_single(&self) -> &Ty {
331 if self.0.len() != 1 {
332 panic!("expected substs of len 1, got {:?}", self);
333 }
334 &self.0[0]
335 }
336
337 /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
338 pub fn identity(generic_params: &GenericParams) -> Substs {
339 Substs(
340 generic_params
341 .params_including_parent()
342 .into_iter()
343 .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() })
344 .collect(),
345 )
346 }
347
348 /// Return Substs that replace each parameter by a bound variable.
349 pub fn bound_vars(generic_params: &GenericParams) -> Substs {
350 Substs(
351 generic_params
352 .params_including_parent()
353 .into_iter()
354 .map(|p| Ty::Bound(p.idx))
355 .collect(),
356 )
357 }
358
359 pub fn build_for_def(db: &impl HirDatabase, def: impl Into<GenericDef>) -> SubstsBuilder {
360 let def = def.into();
361 let params = db.generic_params(def.into());
362 let param_count = params.count_params_including_parent();
363 Substs::builder(param_count)
364 }
365
366 pub fn build_for_generics(generic_params: &GenericParams) -> SubstsBuilder {
367 Substs::builder(generic_params.count_params_including_parent())
368 }
369
370 pub fn build_for_type_ctor(db: &impl HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
371 Substs::builder(type_ctor.num_ty_params(db))
372 }
373
374 fn builder(param_count: usize) -> SubstsBuilder {
375 SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
376 }
377}
378
379#[derive(Debug, Clone)]
380pub struct SubstsBuilder {
381 vec: Vec<Ty>,
382 param_count: usize,
383}
384
385impl SubstsBuilder {
386 pub fn build(self) -> Substs {
387 assert_eq!(self.vec.len(), self.param_count);
388 Substs(self.vec.into())
389 }
390
391 pub fn push(mut self, ty: Ty) -> Self {
392 self.vec.push(ty);
393 self
394 }
395
396 fn remaining(&self) -> usize {
397 self.param_count - self.vec.len()
398 }
399
400 pub fn fill_with_bound_vars(self, starting_from: u32) -> Self {
401 self.fill((starting_from..).map(Ty::Bound))
402 }
403
404 pub fn fill_with_params(self) -> Self {
405 let start = self.vec.len() as u32;
406 self.fill((start..).map(|idx| Ty::Param { idx, name: Name::missing() }))
407 }
408
409 pub fn fill_with_unknown(self) -> Self {
410 self.fill(iter::repeat(Ty::Unknown))
411 }
412
413 pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
414 self.vec.extend(filler.take(self.remaining()));
415 assert_eq!(self.remaining(), 0);
416 self
417 }
418
419 pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
420 assert!(self.vec.is_empty());
421 assert!(parent_substs.len() <= self.param_count);
422 self.vec.extend(parent_substs.iter().cloned());
423 self
424 }
425}
426
427impl Deref for Substs {
428 type Target = [Ty];
429
430 fn deref(&self) -> &[Ty] {
431 &self.0
432 }
433}
434
435/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
436/// Name to be bikeshedded: TraitBound? TraitImplements?
437#[derive(Clone, PartialEq, Eq, Debug, Hash)]
438pub struct TraitRef {
439 /// FIXME name?
440 pub trait_: Trait,
441 pub substs: Substs,
442}
443
444impl TraitRef {
445 pub fn self_ty(&self) -> &Ty {
446 &self.substs[0]
447 }
448}
449
450impl TypeWalk for TraitRef {
451 fn walk(&self, f: &mut impl FnMut(&Ty)) {
452 self.substs.walk(f);
453 }
454
455 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
456 self.substs.walk_mut_binders(f, binders);
457 }
458}
459
460/// Like `generics::WherePredicate`, but with resolved types: A condition on the
461/// parameters of a generic item.
462#[derive(Debug, Clone, PartialEq, Eq, Hash)]
463pub enum GenericPredicate {
464 /// The given trait needs to be implemented for its type parameters.
465 Implemented(TraitRef),
466 /// An associated type bindings like in `Iterator<Item = T>`.
467 Projection(ProjectionPredicate),
468 /// We couldn't resolve the trait reference. (If some type parameters can't
469 /// be resolved, they will just be Unknown).
470 Error,
471}
472
473impl GenericPredicate {
474 pub fn is_error(&self) -> bool {
475 match self {
476 GenericPredicate::Error => true,
477 _ => false,
478 }
479 }
480
481 pub fn is_implemented(&self) -> bool {
482 match self {
483 GenericPredicate::Implemented(_) => true,
484 _ => false,
485 }
486 }
487
488 pub fn trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> {
489 match self {
490 GenericPredicate::Implemented(tr) => Some(tr.clone()),
491 GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
492 GenericPredicate::Error => None,
493 }
494 }
495}
496
497impl TypeWalk for GenericPredicate {
498 fn walk(&self, f: &mut impl FnMut(&Ty)) {
499 match self {
500 GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
501 GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
502 GenericPredicate::Error => {}
503 }
504 }
505
506 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
507 match self {
508 GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
509 GenericPredicate::Projection(projection_pred) => {
510 projection_pred.walk_mut_binders(f, binders)
511 }
512 GenericPredicate::Error => {}
513 }
514 }
515}
516
517/// Basically a claim (currently not validated / checked) that the contained
518/// type / trait ref contains no inference variables; any inference variables it
519/// contained have been replaced by bound variables, and `num_vars` tells us how
520/// many there are. This is used to erase irrelevant differences between types
521/// before using them in queries.
522#[derive(Debug, Clone, PartialEq, Eq, Hash)]
523pub struct Canonical<T> {
524 pub value: T,
525 pub num_vars: usize,
526}
527
528/// A function signature as seen by type inference: Several parameter types and
529/// one return type.
530#[derive(Clone, PartialEq, Eq, Debug)]
531pub struct FnSig {
532 params_and_return: Arc<[Ty]>,
533}
534
535impl FnSig {
536 pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
537 params.push(ret);
538 FnSig { params_and_return: params.into() }
539 }
540
541 pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
542 FnSig { params_and_return: Arc::clone(&substs.0) }
543 }
544
545 pub fn params(&self) -> &[Ty] {
546 &self.params_and_return[0..self.params_and_return.len() - 1]
547 }
548
549 pub fn ret(&self) -> &Ty {
550 &self.params_and_return[self.params_and_return.len() - 1]
551 }
552}
553
554impl TypeWalk for FnSig {
555 fn walk(&self, f: &mut impl FnMut(&Ty)) {
556 for t in self.params_and_return.iter() {
557 t.walk(f);
558 }
559 }
560
561 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
562 for t in make_mut_slice(&mut self.params_and_return) {
563 t.walk_mut_binders(f, binders);
564 }
565 }
566}
567
568impl Ty {
569 pub fn simple(ctor: TypeCtor) -> Ty {
570 Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
571 }
572 pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
573 Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
574 }
575 pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
576 Ty::Apply(ApplicationTy { ctor, parameters })
577 }
578 pub fn unit() -> Self {
579 Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
580 }
581
582 pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
583 match self {
584 Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
585 Some((parameters.as_single(), *mutability))
586 }
587 _ => None,
588 }
589 }
590
591 pub fn as_adt(&self) -> Option<(Adt, &Substs)> {
592 match self {
593 Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
594 Some((*adt_def, parameters))
595 }
596 _ => None,
597 }
598 }
599
600 pub fn as_tuple(&self) -> Option<&Substs> {
601 match self {
602 Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
603 Some(parameters)
604 }
605 _ => None,
606 }
607 }
608
609 pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
610 match self {
611 Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
612 Some((*callable_def, parameters))
613 }
614 _ => None,
615 }
616 }
617
618 fn builtin_deref(&self) -> Option<Ty> {
619 match self {
620 Ty::Apply(a_ty) => match a_ty.ctor {
621 TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
622 TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
623 _ => None,
624 },
625 _ => None,
626 }
627 }
628
629 fn callable_sig(&self, db: &impl HirDatabase) -> Option<FnSig> {
630 match self {
631 Ty::Apply(a_ty) => match a_ty.ctor {
632 TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
633 TypeCtor::FnDef(def) => {
634 let sig = db.callable_item_signature(def);
635 Some(sig.subst(&a_ty.parameters))
636 }
637 TypeCtor::Closure { .. } => {
638 let sig_param = &a_ty.parameters[0];
639 sig_param.callable_sig(db)
640 }
641 _ => None,
642 },
643 _ => None,
644 }
645 }
646
647 /// If this is a type with type parameters (an ADT or function), replaces
648 /// the `Substs` for these type parameters with the given ones. (So e.g. if
649 /// `self` is `Option<_>` and the substs contain `u32`, we'll have
650 /// `Option<u32>` afterwards.)
651 pub fn apply_substs(self, substs: Substs) -> Ty {
652 match self {
653 Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
654 assert_eq!(previous_substs.len(), substs.len());
655 Ty::Apply(ApplicationTy { ctor, parameters: substs })
656 }
657 _ => self,
658 }
659 }
660
661 /// Returns the type parameters of this type if it has some (i.e. is an ADT
662 /// or function); so if `self` is `Option<u32>`, this returns the `u32`.
663 pub fn substs(&self) -> Option<Substs> {
664 match self {
665 Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
666 _ => None,
667 }
668 }
669
670 /// If this is an `impl Trait` or `dyn Trait`, returns that trait.
671 pub fn inherent_trait(&self) -> Option<Trait> {
672 match self {
673 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
674 predicates.iter().find_map(|pred| match pred {
675 GenericPredicate::Implemented(tr) => Some(tr.trait_),
676 _ => None,
677 })
678 }
679 _ => None,
680 }
681 }
682}
683
684/// This allows walking structures that contain types to do something with those
685/// types, similar to Chalk's `Fold` trait.
686pub trait TypeWalk {
687 fn walk(&self, f: &mut impl FnMut(&Ty));
688 fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
689 self.walk_mut_binders(&mut |ty, _binders| f(ty), 0);
690 }
691 /// Walk the type, counting entered binders.
692 ///
693 /// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
694 /// to the innermost binder, 1 to the next, etc.. So when we want to
695 /// substitute a certain bound variable, we can't just walk the whole type
696 /// and blindly replace each instance of a certain index; when we 'enter'
697 /// things that introduce new bound variables, we have to keep track of
698 /// that. Currently, the only thing that introduces bound variables on our
699 /// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
700 /// variable for the self type.
701 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize);
702
703 fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
704 where
705 Self: Sized,
706 {
707 self.walk_mut(&mut |ty_mut| {
708 let ty = mem::replace(ty_mut, Ty::Unknown);
709 *ty_mut = f(ty);
710 });
711 self
712 }
713
714 /// Replaces type parameters in this type using the given `Substs`. (So e.g.
715 /// if `self` is `&[T]`, where type parameter T has index 0, and the
716 /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
717 fn subst(self, substs: &Substs) -> Self
718 where
719 Self: Sized,
720 {
721 self.fold(&mut |ty| match ty {
722 Ty::Param { idx, name } => {
723 substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name })
724 }
725 ty => ty,
726 })
727 }
728
729 /// Substitutes `Ty::Bound` vars (as opposed to type parameters).
730 fn subst_bound_vars(mut self, substs: &Substs) -> Self
731 where
732 Self: Sized,
733 {
734 self.walk_mut_binders(
735 &mut |ty, binders| match ty {
736 &mut Ty::Bound(idx) => {
737 if idx as usize >= binders && (idx as usize - binders) < substs.len() {
738 *ty = substs.0[idx as usize - binders].clone();
739 }
740 }
741 _ => {}
742 },
743 0,
744 );
745 self
746 }
747
748 /// Shifts up `Ty::Bound` vars by `n`.
749 fn shift_bound_vars(self, n: i32) -> Self
750 where
751 Self: Sized,
752 {
753 self.fold(&mut |ty| match ty {
754 Ty::Bound(idx) => {
755 assert!(idx as i32 >= -n);
756 Ty::Bound((idx as i32 + n) as u32)
757 }
758 ty => ty,
759 })
760 }
761}
762
763impl TypeWalk for Ty {
764 fn walk(&self, f: &mut impl FnMut(&Ty)) {
765 match self {
766 Ty::Apply(a_ty) => {
767 for t in a_ty.parameters.iter() {
768 t.walk(f);
769 }
770 }
771 Ty::Projection(p_ty) => {
772 for t in p_ty.parameters.iter() {
773 t.walk(f);
774 }
775 }
776 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
777 for p in predicates.iter() {
778 p.walk(f);
779 }
780 }
781 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
782 }
783 f(self);
784 }
785
786 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
787 match self {
788 Ty::Apply(a_ty) => {
789 a_ty.parameters.walk_mut_binders(f, binders);
790 }
791 Ty::Projection(p_ty) => {
792 p_ty.parameters.walk_mut_binders(f, binders);
793 }
794 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
795 for p in make_mut_slice(predicates) {
796 p.walk_mut_binders(f, binders + 1);
797 }
798 }
799 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
800 }
801 f(self, binders);
802 }
803}
804
805impl HirDisplay for &Ty {
806 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
807 HirDisplay::hir_fmt(*self, f)
808 }
809}
810
811impl HirDisplay for ApplicationTy {
812 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
813 if f.should_truncate() {
814 return write!(f, "…");
815 }
816
817 match self.ctor {
818 TypeCtor::Bool => write!(f, "bool")?,
819 TypeCtor::Char => write!(f, "char")?,
820 TypeCtor::Int(t) => write!(f, "{}", t)?,
821 TypeCtor::Float(t) => write!(f, "{}", t)?,
822 TypeCtor::Str => write!(f, "str")?,
823 TypeCtor::Slice => {
824 let t = self.parameters.as_single();
825 write!(f, "[{}]", t.display(f.db))?;
826 }
827 TypeCtor::Array => {
828 let t = self.parameters.as_single();
829 write!(f, "[{};_]", t.display(f.db))?;
830 }
831 TypeCtor::RawPtr(m) => {
832 let t = self.parameters.as_single();
833 write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
834 }
835 TypeCtor::Ref(m) => {
836 let t = self.parameters.as_single();
837 write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?;
838 }
839 TypeCtor::Never => write!(f, "!")?,
840 TypeCtor::Tuple { .. } => {
841 let ts = &self.parameters;
842 if ts.len() == 1 {
843 write!(f, "({},)", ts[0].display(f.db))?;
844 } else {
845 write!(f, "(")?;
846 f.write_joined(&*ts.0, ", ")?;
847 write!(f, ")")?;
848 }
849 }
850 TypeCtor::FnPtr { .. } => {
851 let sig = FnSig::from_fn_ptr_substs(&self.parameters);
852 write!(f, "fn(")?;
853 f.write_joined(sig.params(), ", ")?;
854 write!(f, ") -> {}", sig.ret().display(f.db))?;
855 }
856 TypeCtor::FnDef(def) => {
857 let sig = f.db.callable_item_signature(def);
858 let name = match def {
859 CallableDef::Function(ff) => ff.name(f.db),
860 CallableDef::Struct(s) => s.name(f.db).unwrap_or_else(Name::missing),
861 CallableDef::EnumVariant(e) => e.name(f.db).unwrap_or_else(Name::missing),
862 };
863 match def {
864 CallableDef::Function(_) => write!(f, "fn {}", name)?,
865 CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?,
866 }
867 if self.parameters.len() > 0 {
868 write!(f, "<")?;
869 f.write_joined(&*self.parameters.0, ", ")?;
870 write!(f, ">")?;
871 }
872 write!(f, "(")?;
873 f.write_joined(sig.params(), ", ")?;
874 write!(f, ") -> {}", sig.ret().display(f.db))?;
875 }
876 TypeCtor::Adt(def_id) => {
877 let name = match def_id {
878 Adt::Struct(s) => s.name(f.db),
879 Adt::Union(u) => u.name(f.db),
880 Adt::Enum(e) => e.name(f.db),
881 }
882 .unwrap_or_else(Name::missing);
883 write!(f, "{}", name)?;
884 if self.parameters.len() > 0 {
885 write!(f, "<")?;
886 f.write_joined(&*self.parameters.0, ", ")?;
887 write!(f, ">")?;
888 }
889 }
890 TypeCtor::AssociatedType(type_alias) => {
891 let trait_name = type_alias
892 .parent_trait(f.db)
893 .and_then(|t| t.name(f.db))
894 .unwrap_or_else(Name::missing);
895 let name = type_alias.name(f.db);
896 write!(f, "{}::{}", trait_name, name)?;
897 if self.parameters.len() > 0 {
898 write!(f, "<")?;
899 f.write_joined(&*self.parameters.0, ", ")?;
900 write!(f, ">")?;
901 }
902 }
903 TypeCtor::Closure { .. } => {
904 let sig = self.parameters[0]
905 .callable_sig(f.db)
906 .expect("first closure parameter should contain signature");
907 write!(f, "|")?;
908 f.write_joined(sig.params(), ", ")?;
909 write!(f, "| -> {}", sig.ret().display(f.db))?;
910 }
911 }
912 Ok(())
913 }
914}
915
916impl HirDisplay for ProjectionTy {
917 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
918 if f.should_truncate() {
919 return write!(f, "…");
920 }
921
922 let trait_name = self
923 .associated_ty
924 .parent_trait(f.db)
925 .and_then(|t| t.name(f.db))
926 .unwrap_or_else(Name::missing);
927 write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_name,)?;
928 if self.parameters.len() > 1 {
929 write!(f, "<")?;
930 f.write_joined(&self.parameters[1..], ", ")?;
931 write!(f, ">")?;
932 }
933 write!(f, ">::{}", self.associated_ty.name(f.db))?;
934 Ok(())
935 }
936}
937
938impl HirDisplay for Ty {
939 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
940 if f.should_truncate() {
941 return write!(f, "…");
942 }
943
944 match self {
945 Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
946 Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
947 Ty::Param { name, .. } => write!(f, "{}", name)?,
948 Ty::Bound(idx) => write!(f, "?{}", idx)?,
949 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
950 match self {
951 Ty::Dyn(_) => write!(f, "dyn ")?,
952 Ty::Opaque(_) => write!(f, "impl ")?,
953 _ => unreachable!(),
954 };
955 // Note: This code is written to produce nice results (i.e.
956 // corresponding to surface Rust) for types that can occur in
957 // actual Rust. It will have weird results if the predicates
958 // aren't as expected (i.e. self types = $0, projection
959 // predicates for a certain trait come after the Implemented
960 // predicate for that trait).
961 let mut first = true;
962 let mut angle_open = false;
963 for p in predicates.iter() {
964 match p {
965 GenericPredicate::Implemented(trait_ref) => {
966 if angle_open {
967 write!(f, ">")?;
968 }
969 if !first {
970 write!(f, " + ")?;
971 }
972 // We assume that the self type is $0 (i.e. the
973 // existential) here, which is the only thing that's
974 // possible in actual Rust, and hence don't print it
975 write!(
976 f,
977 "{}",
978 trait_ref.trait_.name(f.db).unwrap_or_else(Name::missing)
979 )?;
980 if trait_ref.substs.len() > 1 {
981 write!(f, "<")?;
982 f.write_joined(&trait_ref.substs[1..], ", ")?;
983 // there might be assoc type bindings, so we leave the angle brackets open
984 angle_open = true;
985 }
986 }
987 GenericPredicate::Projection(projection_pred) => {
988 // in types in actual Rust, these will always come
989 // after the corresponding Implemented predicate
990 if angle_open {
991 write!(f, ", ")?;
992 } else {
993 write!(f, "<")?;
994 angle_open = true;
995 }
996 let name = projection_pred.projection_ty.associated_ty.name(f.db);
997 write!(f, "{} = ", name)?;
998 projection_pred.ty.hir_fmt(f)?;
999 }
1000 GenericPredicate::Error => {
1001 if angle_open {
1002 // impl Trait<X, {error}>
1003 write!(f, ", ")?;
1004 } else if !first {
1005 // impl Trait + {error}
1006 write!(f, " + ")?;
1007 }
1008 p.hir_fmt(f)?;
1009 }
1010 }
1011 first = false;
1012 }
1013 if angle_open {
1014 write!(f, ">")?;
1015 }
1016 }
1017 Ty::Unknown => write!(f, "{{unknown}}")?,
1018 Ty::Infer(..) => write!(f, "_")?,
1019 }
1020 Ok(())
1021 }
1022}
1023
1024impl TraitRef {
1025 fn hir_fmt_ext(&self, f: &mut HirFormatter<impl HirDatabase>, use_as: bool) -> fmt::Result {
1026 if f.should_truncate() {
1027 return write!(f, "…");
1028 }
1029
1030 self.substs[0].hir_fmt(f)?;
1031 if use_as {
1032 write!(f, " as ")?;
1033 } else {
1034 write!(f, ": ")?;
1035 }
1036 write!(f, "{}", self.trait_.name(f.db).unwrap_or_else(Name::missing))?;
1037 if self.substs.len() > 1 {
1038 write!(f, "<")?;
1039 f.write_joined(&self.substs[1..], ", ")?;
1040 write!(f, ">")?;
1041 }
1042 Ok(())
1043 }
1044}
1045
1046impl HirDisplay for TraitRef {
1047 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1048 self.hir_fmt_ext(f, false)
1049 }
1050}
1051
1052impl HirDisplay for &GenericPredicate {
1053 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1054 HirDisplay::hir_fmt(*self, f)
1055 }
1056}
1057
1058impl HirDisplay for GenericPredicate {
1059 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1060 if f.should_truncate() {
1061 return write!(f, "…");
1062 }
1063
1064 match self {
1065 GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
1066 GenericPredicate::Projection(projection_pred) => {
1067 write!(f, "<")?;
1068 projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
1069 write!(
1070 f,
1071 ">::{} = {}",
1072 projection_pred.projection_ty.associated_ty.name(f.db),
1073 projection_pred.ty.display(f.db)
1074 )?;
1075 }
1076 GenericPredicate::Error => write!(f, "{{error}}")?,
1077 }
1078 Ok(())
1079 }
1080}
1081
1082impl HirDisplay for Obligation {
1083 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1084 match self {
1085 Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)),
1086 Obligation::Projection(proj) => write!(
1087 f,
1088 "Normalize({} => {})",
1089 proj.projection_ty.display(f.db),
1090 proj.ty.display(f.db)
1091 ),
1092 }
1093 }
1094}
diff --git a/crates/ra_hir/src/ty/autoderef.rs b/crates/ra_hir/src/ty/autoderef.rs
deleted file mode 100644
index 41c99d227..000000000
--- a/crates/ra_hir/src/ty/autoderef.rs
+++ /dev/null
@@ -1,103 +0,0 @@
1//! In certain situations, rust automatically inserts derefs as necessary: for
2//! example, field accesses `foo.bar` still work when `foo` is actually a
3//! reference to a type with the field `bar`. This is an approximation of the
4//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
5
6use std::iter::successors;
7
8use hir_def::{lang_item::LangItemTarget, resolver::Resolver};
9use hir_expand::name;
10use log::{info, warn};
11
12use crate::{db::HirDatabase, Trait};
13
14use super::{traits::Solution, Canonical, Substs, Ty, TypeWalk};
15
16const AUTODEREF_RECURSION_LIMIT: usize = 10;
17
18pub(crate) fn autoderef<'a>(
19 db: &'a impl HirDatabase,
20 resolver: &'a Resolver,
21 ty: Canonical<Ty>,
22) -> impl Iterator<Item = Canonical<Ty>> + 'a {
23 successors(Some(ty), move |ty| deref(db, resolver, ty)).take(AUTODEREF_RECURSION_LIMIT)
24}
25
26pub(crate) fn deref(
27 db: &impl HirDatabase,
28 resolver: &Resolver,
29 ty: &Canonical<Ty>,
30) -> Option<Canonical<Ty>> {
31 if let Some(derefed) = ty.value.builtin_deref() {
32 Some(Canonical { value: derefed, num_vars: ty.num_vars })
33 } else {
34 deref_by_trait(db, resolver, ty)
35 }
36}
37
38fn deref_by_trait(
39 db: &impl HirDatabase,
40 resolver: &Resolver,
41 ty: &Canonical<Ty>,
42) -> Option<Canonical<Ty>> {
43 let krate = resolver.krate()?;
44 let deref_trait = match db.lang_item(krate.into(), "deref".into())? {
45 LangItemTarget::TraitId(t) => Trait::from(t),
46 _ => return None,
47 };
48 let target = deref_trait.associated_type_by_name(db, &name::TARGET_TYPE)?;
49
50 let generic_params = db.generic_params(target.id.into());
51 if generic_params.count_params_including_parent() != 1 {
52 // the Target type + Deref trait should only have one generic parameter,
53 // namely Deref's Self type
54 return None;
55 }
56
57 // FIXME make the Canonical handling nicer
58
59 let env = super::lower::trait_env(db, resolver);
60
61 let parameters = Substs::build_for_generics(&generic_params)
62 .push(ty.value.clone().shift_bound_vars(1))
63 .build();
64
65 let projection = super::traits::ProjectionPredicate {
66 ty: Ty::Bound(0),
67 projection_ty: super::ProjectionTy { associated_ty: target, parameters },
68 };
69
70 let obligation = super::Obligation::Projection(projection);
71
72 let in_env = super::traits::InEnvironment { value: obligation, environment: env };
73
74 let canonical = super::Canonical { num_vars: 1 + ty.num_vars, value: in_env };
75
76 let solution = db.trait_solve(krate.into(), canonical)?;
77
78 match &solution {
79 Solution::Unique(vars) => {
80 // FIXME: vars may contain solutions for any inference variables
81 // that happened to be inside ty. To correctly handle these, we
82 // would have to pass the solution up to the inference context, but
83 // that requires a larger refactoring (especially if the deref
84 // happens during method resolution). So for the moment, we just
85 // check that we're not in the situation we're we would actually
86 // need to handle the values of the additional variables, i.e.
87 // they're just being 'passed through'. In the 'standard' case where
88 // we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
89 // the case.
90 for i in 1..vars.0.num_vars {
91 if vars.0.value[i] != Ty::Bound((i - 1) as u32) {
92 warn!("complex solution for derefing {:?}: {:?}, ignoring", ty, solution);
93 return None;
94 }
95 }
96 Some(Canonical { value: vars.0.value[0].clone(), num_vars: vars.0.num_vars })
97 }
98 Solution::Ambig(_) => {
99 info!("Ambiguous solution for derefing {:?}: {:?}", ty, solution);
100 None
101 }
102 }
103}
diff --git a/crates/ra_hir/src/ty/display.rs b/crates/ra_hir/src/ty/display.rs
deleted file mode 100644
index 9bb3ece6c..000000000
--- a/crates/ra_hir/src/ty/display.rs
+++ /dev/null
@@ -1,93 +0,0 @@
1//! FIXME: write short doc here
2
3use std::fmt;
4
5use crate::db::HirDatabase;
6
7pub struct HirFormatter<'a, 'b, DB> {
8 pub db: &'a DB,
9 fmt: &'a mut fmt::Formatter<'b>,
10 buf: String,
11 curr_size: usize,
12 max_size: Option<usize>,
13}
14
15pub trait HirDisplay {
16 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result;
17
18 fn display<'a, DB>(&'a self, db: &'a DB) -> HirDisplayWrapper<'a, DB, Self>
19 where
20 Self: Sized,
21 {
22 HirDisplayWrapper(db, self, None)
23 }
24
25 fn display_truncated<'a, DB>(
26 &'a self,
27 db: &'a DB,
28 max_size: Option<usize>,
29 ) -> HirDisplayWrapper<'a, DB, Self>
30 where
31 Self: Sized,
32 {
33 HirDisplayWrapper(db, self, max_size)
34 }
35}
36
37impl<'a, 'b, DB> HirFormatter<'a, 'b, DB>
38where
39 DB: HirDatabase,
40{
41 pub fn write_joined<T: HirDisplay>(
42 &mut self,
43 iter: impl IntoIterator<Item = T>,
44 sep: &str,
45 ) -> fmt::Result {
46 let mut first = true;
47 for e in iter {
48 if !first {
49 write!(self, "{}", sep)?;
50 }
51 first = false;
52 e.hir_fmt(self)?;
53 }
54 Ok(())
55 }
56
57 /// This allows using the `write!` macro directly with a `HirFormatter`.
58 pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
59 // We write to a buffer first to track output size
60 self.buf.clear();
61 fmt::write(&mut self.buf, args)?;
62 self.curr_size += self.buf.len();
63
64 // Then we write to the internal formatter from the buffer
65 self.fmt.write_str(&self.buf)
66 }
67
68 pub fn should_truncate(&self) -> bool {
69 if let Some(max_size) = self.max_size {
70 self.curr_size >= max_size
71 } else {
72 false
73 }
74 }
75}
76
77pub struct HirDisplayWrapper<'a, DB, T>(&'a DB, &'a T, Option<usize>);
78
79impl<'a, DB, T> fmt::Display for HirDisplayWrapper<'a, DB, T>
80where
81 DB: HirDatabase,
82 T: HirDisplay,
83{
84 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85 self.1.hir_fmt(&mut HirFormatter {
86 db: self.0,
87 fmt: f,
88 buf: String::with_capacity(20),
89 curr_size: 0,
90 max_size: self.2,
91 })
92 }
93}
diff --git a/crates/ra_hir/src/ty/infer.rs b/crates/ra_hir/src/ty/infer.rs
deleted file mode 100644
index ddc7d262a..000000000
--- a/crates/ra_hir/src/ty/infer.rs
+++ /dev/null
@@ -1,748 +0,0 @@
1//! Type inference, i.e. the process of walking through the code and determining
2//! the type of each expression and pattern.
3//!
4//! For type inference, compare the implementations in rustc (the various
5//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
6//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
7//! inference here is the `infer` function, which infers the types of all
8//! expressions in a given function.
9//!
10//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
11//! which represent currently unknown types; as we walk through the expressions,
12//! we might determine that certain variables need to be equal to each other, or
13//! to certain types. To record this, we use the union-find implementation from
14//! the `ena` crate, which is extracted from rustc.
15
16use std::borrow::Cow;
17use std::mem;
18use std::ops::Index;
19use std::sync::Arc;
20
21use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
22use rustc_hash::FxHashMap;
23
24use hir_def::{
25 data::{ConstData, FunctionData},
26 path::known,
27 resolver::{HasResolver, Resolver, TypeNs},
28 type_ref::{Mutability, TypeRef},
29 AdtId, DefWithBodyId,
30};
31use hir_expand::{diagnostics::DiagnosticSink, name};
32use ra_arena::map::ArenaMap;
33use ra_prof::profile;
34use test_utils::tested_by;
35
36use super::{
37 lower,
38 traits::{Guidance, Obligation, ProjectionPredicate, Solution},
39 ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypableDef,
40 TypeCtor, TypeWalk, Uncertain,
41};
42use crate::{
43 code_model::TypeAlias,
44 db::HirDatabase,
45 expr::{BindingAnnotation, Body, ExprId, PatId},
46 ty::infer::diagnostics::InferenceDiagnostic,
47 Adt, AssocItem, DefWithBody, FloatTy, Function, IntTy, Path, StructField, Trait, VariantDef,
48};
49
50macro_rules! ty_app {
51 ($ctor:pat, $param:pat) => {
52 crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
53 };
54 ($ctor:pat) => {
55 ty_app!($ctor, _)
56 };
57}
58
59mod unify;
60mod path;
61mod expr;
62mod pat;
63mod coerce;
64
65/// The entry point of type inference.
66pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
67 let _p = profile("infer_query");
68 let resolver = DefWithBodyId::from(def).resolver(db);
69 let mut ctx = InferenceContext::new(db, def, resolver);
70
71 match &def {
72 DefWithBody::Const(c) => ctx.collect_const(&db.const_data(c.id)),
73 DefWithBody::Function(f) => ctx.collect_fn(&db.function_data(f.id)),
74 DefWithBody::Static(s) => ctx.collect_const(&db.static_data(s.id)),
75 }
76
77 ctx.infer_body();
78
79 Arc::new(ctx.resolve_all())
80}
81
82#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
83enum ExprOrPatId {
84 ExprId(ExprId),
85 PatId(PatId),
86}
87
88impl_froms!(ExprOrPatId: ExprId, PatId);
89
90/// Binding modes inferred for patterns.
91/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
92#[derive(Copy, Clone, Debug, Eq, PartialEq)]
93enum BindingMode {
94 Move,
95 Ref(Mutability),
96}
97
98impl BindingMode {
99 pub fn convert(annotation: BindingAnnotation) -> BindingMode {
100 match annotation {
101 BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
102 BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
103 BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
104 }
105 }
106}
107
108impl Default for BindingMode {
109 fn default() -> Self {
110 BindingMode::Move
111 }
112}
113
114/// A mismatch between an expected and an inferred type.
115#[derive(Clone, PartialEq, Eq, Debug, Hash)]
116pub struct TypeMismatch {
117 pub expected: Ty,
118 pub actual: Ty,
119}
120
121/// The result of type inference: A mapping from expressions and patterns to types.
122#[derive(Clone, PartialEq, Eq, Debug, Default)]
123pub struct InferenceResult {
124 /// For each method call expr, records the function it resolves to.
125 method_resolutions: FxHashMap<ExprId, Function>,
126 /// For each field access expr, records the field it resolves to.
127 field_resolutions: FxHashMap<ExprId, StructField>,
128 /// For each field in record literal, records the field it resolves to.
129 record_field_resolutions: FxHashMap<ExprId, StructField>,
130 /// For each struct literal, records the variant it resolves to.
131 variant_resolutions: FxHashMap<ExprOrPatId, VariantDef>,
132 /// For each associated item record what it resolves to
133 assoc_resolutions: FxHashMap<ExprOrPatId, AssocItem>,
134 diagnostics: Vec<InferenceDiagnostic>,
135 pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
136 pub(super) type_of_pat: ArenaMap<PatId, Ty>,
137 pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
138}
139
140impl InferenceResult {
141 pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
142 self.method_resolutions.get(&expr).copied()
143 }
144 pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
145 self.field_resolutions.get(&expr).copied()
146 }
147 pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructField> {
148 self.record_field_resolutions.get(&expr).copied()
149 }
150 pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantDef> {
151 self.variant_resolutions.get(&id.into()).copied()
152 }
153 pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantDef> {
154 self.variant_resolutions.get(&id.into()).copied()
155 }
156 pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItem> {
157 self.assoc_resolutions.get(&id.into()).copied()
158 }
159 pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItem> {
160 self.assoc_resolutions.get(&id.into()).copied()
161 }
162 pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
163 self.type_mismatches.get(expr)
164 }
165 pub(crate) fn add_diagnostics(
166 &self,
167 db: &impl HirDatabase,
168 owner: Function,
169 sink: &mut DiagnosticSink,
170 ) {
171 self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
172 }
173}
174
175impl Index<ExprId> for InferenceResult {
176 type Output = Ty;
177
178 fn index(&self, expr: ExprId) -> &Ty {
179 self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
180 }
181}
182
183impl Index<PatId> for InferenceResult {
184 type Output = Ty;
185
186 fn index(&self, pat: PatId) -> &Ty {
187 self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
188 }
189}
190
191/// The inference context contains all information needed during type inference.
192#[derive(Clone, Debug)]
193struct InferenceContext<'a, D: HirDatabase> {
194 db: &'a D,
195 owner: DefWithBody,
196 body: Arc<Body>,
197 resolver: Resolver,
198 var_unification_table: InPlaceUnificationTable<TypeVarId>,
199 trait_env: Arc<TraitEnvironment>,
200 obligations: Vec<Obligation>,
201 result: InferenceResult,
202 /// The return type of the function being inferred.
203 return_ty: Ty,
204
205 /// Impls of `CoerceUnsized` used in coercion.
206 /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
207 // FIXME: Use trait solver for this.
208 // Chalk seems unable to work well with builtin impl of `Unsize` now.
209 coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
210}
211
212impl<'a, D: HirDatabase> InferenceContext<'a, D> {
213 fn new(db: &'a D, owner: DefWithBody, resolver: Resolver) -> Self {
214 InferenceContext {
215 result: InferenceResult::default(),
216 var_unification_table: InPlaceUnificationTable::new(),
217 obligations: Vec::default(),
218 return_ty: Ty::Unknown, // set in collect_fn_signature
219 trait_env: lower::trait_env(db, &resolver),
220 coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
221 db,
222 owner,
223 body: db.body(owner.into()),
224 resolver,
225 }
226 }
227
228 fn resolve_all(mut self) -> InferenceResult {
229 // FIXME resolve obligations as well (use Guidance if necessary)
230 let mut result = mem::replace(&mut self.result, InferenceResult::default());
231 let mut tv_stack = Vec::new();
232 for ty in result.type_of_expr.values_mut() {
233 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
234 *ty = resolved;
235 }
236 for ty in result.type_of_pat.values_mut() {
237 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
238 *ty = resolved;
239 }
240 result
241 }
242
243 fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
244 self.result.type_of_expr.insert(expr, ty);
245 }
246
247 fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
248 self.result.method_resolutions.insert(expr, func);
249 }
250
251 fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
252 self.result.field_resolutions.insert(expr, field);
253 }
254
255 fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) {
256 self.result.variant_resolutions.insert(id, variant);
257 }
258
259 fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItem) {
260 self.result.assoc_resolutions.insert(id, item);
261 }
262
263 fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
264 self.result.type_of_pat.insert(pat, ty);
265 }
266
267 fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
268 self.result.diagnostics.push(diagnostic);
269 }
270
271 fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
272 let ty = Ty::from_hir(
273 self.db,
274 // FIXME use right resolver for block
275 &self.resolver,
276 type_ref,
277 );
278 let ty = self.insert_type_vars(ty);
279 self.normalize_associated_types_in(ty)
280 }
281
282 fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
283 substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
284 }
285
286 fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
287 self.unify_inner(ty1, ty2, 0)
288 }
289
290 fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
291 if depth > 1000 {
292 // prevent stackoverflows
293 panic!("infinite recursion in unification");
294 }
295 if ty1 == ty2 {
296 return true;
297 }
298 // try to resolve type vars first
299 let ty1 = self.resolve_ty_shallow(ty1);
300 let ty2 = self.resolve_ty_shallow(ty2);
301 match (&*ty1, &*ty2) {
302 (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
303 self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
304 }
305 _ => self.unify_inner_trivial(&ty1, &ty2),
306 }
307 }
308
309 fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
310 match (ty1, ty2) {
311 (Ty::Unknown, _) | (_, Ty::Unknown) => true,
312
313 (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
314 | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
315 | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
316 | (
317 Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
318 Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
319 ) => {
320 // both type vars are unknown since we tried to resolve them
321 self.var_unification_table.union(*tv1, *tv2);
322 true
323 }
324
325 // The order of MaybeNeverTypeVar matters here.
326 // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
327 // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
328 (Ty::Infer(InferTy::TypeVar(tv)), other)
329 | (other, Ty::Infer(InferTy::TypeVar(tv)))
330 | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
331 | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
332 | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
333 | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
334 | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
335 | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
336 // the type var is unknown since we tried to resolve it
337 self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
338 true
339 }
340
341 _ => false,
342 }
343 }
344
345 fn new_type_var(&mut self) -> Ty {
346 Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
347 }
348
349 fn new_integer_var(&mut self) -> Ty {
350 Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
351 }
352
353 fn new_float_var(&mut self) -> Ty {
354 Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
355 }
356
357 fn new_maybe_never_type_var(&mut self) -> Ty {
358 Ty::Infer(InferTy::MaybeNeverTypeVar(
359 self.var_unification_table.new_key(TypeVarValue::Unknown),
360 ))
361 }
362
363 /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
364 fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
365 match ty {
366 Ty::Unknown => self.new_type_var(),
367 Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
368 self.new_integer_var()
369 }
370 Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
371 self.new_float_var()
372 }
373 _ => ty,
374 }
375 }
376
377 fn insert_type_vars(&mut self, ty: Ty) -> Ty {
378 ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
379 }
380
381 fn resolve_obligations_as_possible(&mut self) {
382 let obligations = mem::replace(&mut self.obligations, Vec::new());
383 for obligation in obligations {
384 let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
385 let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
386 let solution = self
387 .db
388 .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
389
390 match solution {
391 Some(Solution::Unique(substs)) => {
392 canonicalized.apply_solution(self, substs.0);
393 }
394 Some(Solution::Ambig(Guidance::Definite(substs))) => {
395 canonicalized.apply_solution(self, substs.0);
396 self.obligations.push(obligation);
397 }
398 Some(_) => {
399 // FIXME use this when trying to resolve everything at the end
400 self.obligations.push(obligation);
401 }
402 None => {
403 // FIXME obligation cannot be fulfilled => diagnostic
404 }
405 };
406 }
407 }
408
409 /// Resolves the type as far as currently possible, replacing type variables
410 /// by their known types. All types returned by the infer_* functions should
411 /// be resolved as far as possible, i.e. contain no type variables with
412 /// known type.
413 fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
414 self.resolve_obligations_as_possible();
415
416 ty.fold(&mut |ty| match ty {
417 Ty::Infer(tv) => {
418 let inner = tv.to_inner();
419 if tv_stack.contains(&inner) {
420 tested_by!(type_var_cycles_resolve_as_possible);
421 // recursive type
422 return tv.fallback_value();
423 }
424 if let Some(known_ty) =
425 self.var_unification_table.inlined_probe_value(inner).known()
426 {
427 // known_ty may contain other variables that are known by now
428 tv_stack.push(inner);
429 let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
430 tv_stack.pop();
431 result
432 } else {
433 ty
434 }
435 }
436 _ => ty,
437 })
438 }
439
440 /// If `ty` is a type variable with known type, returns that type;
441 /// otherwise, return ty.
442 fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
443 let mut ty = Cow::Borrowed(ty);
444 // The type variable could resolve to a int/float variable. Hence try
445 // resolving up to three times; each type of variable shouldn't occur
446 // more than once
447 for i in 0..3 {
448 if i > 0 {
449 tested_by!(type_var_resolves_to_int_var);
450 }
451 match &*ty {
452 Ty::Infer(tv) => {
453 let inner = tv.to_inner();
454 match self.var_unification_table.inlined_probe_value(inner).known() {
455 Some(known_ty) => {
456 // The known_ty can't be a type var itself
457 ty = Cow::Owned(known_ty.clone());
458 }
459 _ => return ty,
460 }
461 }
462 _ => return ty,
463 }
464 }
465 log::error!("Inference variable still not resolved: {:?}", ty);
466 ty
467 }
468
469 /// Recurses through the given type, normalizing associated types mentioned
470 /// in it by replacing them by type variables and registering obligations to
471 /// resolve later. This should be done once for every type we get from some
472 /// type annotation (e.g. from a let type annotation, field type or function
473 /// call). `make_ty` handles this already, but e.g. for field types we need
474 /// to do it as well.
475 fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
476 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
477 ty.fold(&mut |ty| match ty {
478 Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
479 _ => ty,
480 })
481 }
482
483 fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
484 let var = self.new_type_var();
485 let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
486 let obligation = Obligation::Projection(predicate);
487 self.obligations.push(obligation);
488 var
489 }
490
491 /// Resolves the type completely; type variables without known type are
492 /// replaced by Ty::Unknown.
493 fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
494 ty.fold(&mut |ty| match ty {
495 Ty::Infer(tv) => {
496 let inner = tv.to_inner();
497 if tv_stack.contains(&inner) {
498 tested_by!(type_var_cycles_resolve_completely);
499 // recursive type
500 return tv.fallback_value();
501 }
502 if let Some(known_ty) =
503 self.var_unification_table.inlined_probe_value(inner).known()
504 {
505 // known_ty may contain other variables that are known by now
506 tv_stack.push(inner);
507 let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
508 tv_stack.pop();
509 result
510 } else {
511 tv.fallback_value()
512 }
513 }
514 _ => ty,
515 })
516 }
517
518 fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
519 let path = match path {
520 Some(path) => path,
521 None => return (Ty::Unknown, None),
522 };
523 let resolver = &self.resolver;
524 let def: TypableDef =
525 // FIXME: this should resolve assoc items as well, see this example:
526 // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
527 match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
528 Some(TypeNs::AdtId(AdtId::StructId(it))) => it.into(),
529 Some(TypeNs::AdtId(AdtId::UnionId(it))) => it.into(),
530 Some(TypeNs::AdtSelfType(adt)) => adt.into(),
531 Some(TypeNs::EnumVariantId(it)) => it.into(),
532 Some(TypeNs::TypeAliasId(it)) => it.into(),
533
534 Some(TypeNs::SelfType(_)) |
535 Some(TypeNs::GenericParam(_)) |
536 Some(TypeNs::BuiltinType(_)) |
537 Some(TypeNs::TraitId(_)) |
538 Some(TypeNs::AdtId(AdtId::EnumId(_))) |
539 None => {
540 return (Ty::Unknown, None)
541 }
542 };
543 // FIXME remove the duplication between here and `Ty::from_path`?
544 let substs = Ty::substs_from_path(self.db, resolver, path, def);
545 match def {
546 TypableDef::Adt(Adt::Struct(s)) => {
547 let ty = s.ty(self.db);
548 let ty = self.insert_type_vars(ty.apply_substs(substs));
549 (ty, Some(s.into()))
550 }
551 TypableDef::EnumVariant(var) => {
552 let ty = var.parent_enum(self.db).ty(self.db);
553 let ty = self.insert_type_vars(ty.apply_substs(substs));
554 (ty, Some(var.into()))
555 }
556 TypableDef::Adt(Adt::Enum(_))
557 | TypableDef::Adt(Adt::Union(_))
558 | TypableDef::TypeAlias(_)
559 | TypableDef::Function(_)
560 | TypableDef::Const(_)
561 | TypableDef::Static(_)
562 | TypableDef::BuiltinType(_) => (Ty::Unknown, None),
563 }
564 }
565
566 fn collect_const(&mut self, data: &ConstData) {
567 self.return_ty = self.make_ty(&data.type_ref);
568 }
569
570 fn collect_fn(&mut self, data: &FunctionData) {
571 let body = Arc::clone(&self.body); // avoid borrow checker problem
572 for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
573 let ty = self.make_ty(type_ref);
574
575 self.infer_pat(*pat, &ty, BindingMode::default());
576 }
577 self.return_ty = self.make_ty(&data.ret_type);
578 }
579
580 fn infer_body(&mut self) {
581 self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
582 }
583
584 fn resolve_into_iter_item(&self) -> Option<TypeAlias> {
585 let path = known::std_iter_into_iterator();
586 let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
587 trait_.associated_type_by_name(self.db, &name::ITEM_TYPE)
588 }
589
590 fn resolve_ops_try_ok(&self) -> Option<TypeAlias> {
591 let path = known::std_ops_try();
592 let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
593 trait_.associated_type_by_name(self.db, &name::OK_TYPE)
594 }
595
596 fn resolve_future_future_output(&self) -> Option<TypeAlias> {
597 let path = known::std_future_future();
598 let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
599 trait_.associated_type_by_name(self.db, &name::OUTPUT_TYPE)
600 }
601
602 fn resolve_boxed_box(&self) -> Option<Adt> {
603 let path = known::std_boxed_box();
604 let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
605 Some(Adt::Struct(struct_.into()))
606 }
607}
608
609/// The ID of a type variable.
610#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
611pub struct TypeVarId(pub(super) u32);
612
613impl UnifyKey for TypeVarId {
614 type Value = TypeVarValue;
615
616 fn index(&self) -> u32 {
617 self.0
618 }
619
620 fn from_index(i: u32) -> Self {
621 TypeVarId(i)
622 }
623
624 fn tag() -> &'static str {
625 "TypeVarId"
626 }
627}
628
629/// The value of a type variable: either we already know the type, or we don't
630/// know it yet.
631#[derive(Clone, PartialEq, Eq, Debug)]
632pub enum TypeVarValue {
633 Known(Ty),
634 Unknown,
635}
636
637impl TypeVarValue {
638 fn known(&self) -> Option<&Ty> {
639 match self {
640 TypeVarValue::Known(ty) => Some(ty),
641 TypeVarValue::Unknown => None,
642 }
643 }
644}
645
646impl UnifyValue for TypeVarValue {
647 type Error = NoError;
648
649 fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
650 match (value1, value2) {
651 // We should never equate two type variables, both of which have
652 // known types. Instead, we recursively equate those types.
653 (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
654 "equating two type variables, both of which have known types: {:?} and {:?}",
655 t1, t2
656 ),
657
658 // If one side is known, prefer that one.
659 (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
660 (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
661
662 (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
663 }
664 }
665}
666
667/// The kinds of placeholders we need during type inference. There's separate
668/// values for general types, and for integer and float variables. The latter
669/// two are used for inference of literal values (e.g. `100` could be one of
670/// several integer types).
671#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
672pub enum InferTy {
673 TypeVar(TypeVarId),
674 IntVar(TypeVarId),
675 FloatVar(TypeVarId),
676 MaybeNeverTypeVar(TypeVarId),
677}
678
679impl InferTy {
680 fn to_inner(self) -> TypeVarId {
681 match self {
682 InferTy::TypeVar(ty)
683 | InferTy::IntVar(ty)
684 | InferTy::FloatVar(ty)
685 | InferTy::MaybeNeverTypeVar(ty) => ty,
686 }
687 }
688
689 fn fallback_value(self) -> Ty {
690 match self {
691 InferTy::TypeVar(..) => Ty::Unknown,
692 InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
693 InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
694 InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
695 }
696 }
697}
698
699/// When inferring an expression, we propagate downward whatever type hint we
700/// are able in the form of an `Expectation`.
701#[derive(Clone, PartialEq, Eq, Debug)]
702struct Expectation {
703 ty: Ty,
704 // FIXME: In some cases, we need to be aware whether the expectation is that
705 // the type match exactly what we passed, or whether it just needs to be
706 // coercible to the expected type. See Expectation::rvalue_hint in rustc.
707}
708
709impl Expectation {
710 /// The expectation that the type of the expression needs to equal the given
711 /// type.
712 fn has_type(ty: Ty) -> Self {
713 Expectation { ty }
714 }
715
716 /// This expresses no expectation on the type.
717 fn none() -> Self {
718 Expectation { ty: Ty::Unknown }
719 }
720}
721
722mod diagnostics {
723 use hir_expand::diagnostics::DiagnosticSink;
724
725 use crate::{db::HirDatabase, diagnostics::NoSuchField, expr::ExprId, Function, HasSource};
726
727 #[derive(Debug, PartialEq, Eq, Clone)]
728 pub(super) enum InferenceDiagnostic {
729 NoSuchField { expr: ExprId, field: usize },
730 }
731
732 impl InferenceDiagnostic {
733 pub(super) fn add_to(
734 &self,
735 db: &impl HirDatabase,
736 owner: Function,
737 sink: &mut DiagnosticSink,
738 ) {
739 match self {
740 InferenceDiagnostic::NoSuchField { expr, field } => {
741 let file = owner.source(db).file_id;
742 let field = owner.body_source_map(db).field_syntax(*expr, *field);
743 sink.push(NoSuchField { file, field })
744 }
745 }
746 }
747 }
748}
diff --git a/crates/ra_hir/src/ty/infer/coerce.rs b/crates/ra_hir/src/ty/infer/coerce.rs
deleted file mode 100644
index 54765da35..000000000
--- a/crates/ra_hir/src/ty/infer/coerce.rs
+++ /dev/null
@@ -1,339 +0,0 @@
1//! Coercion logic. Coercions are certain type conversions that can implicitly
2//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
3//! like going from `&Vec<T>` to `&[T]`.
4//!
5//! See: https://doc.rust-lang.org/nomicon/coercions.html
6
7use hir_def::{lang_item::LangItemTarget, resolver::Resolver};
8use rustc_hash::FxHashMap;
9use test_utils::tested_by;
10
11use crate::{
12 db::HirDatabase,
13 ty::{autoderef, Substs, Ty, TypeCtor, TypeWalk},
14 Adt, Mutability,
15};
16
17use super::{InferTy, InferenceContext, TypeVarValue};
18
19impl<'a, D: HirDatabase> InferenceContext<'a, D> {
20 /// Unify two types, but may coerce the first one to the second one
21 /// using "implicit coercion rules" if needed.
22 pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
23 let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
24 let to_ty = self.resolve_ty_shallow(to_ty);
25 self.coerce_inner(from_ty, &to_ty)
26 }
27
28 /// Merge two types from different branches, with possible implicit coerce.
29 ///
30 /// Note that it is only possible that one type are coerced to another.
31 /// Coercing both types to another least upper bound type is not possible in rustc,
32 /// which will simply result in "incompatible types" error.
33 pub(super) fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
34 if self.coerce(ty1, ty2) {
35 ty2.clone()
36 } else if self.coerce(ty2, ty1) {
37 ty1.clone()
38 } else {
39 tested_by!(coerce_merge_fail_fallback);
40 // For incompatible types, we use the latter one as result
41 // to be better recovery for `if` without `else`.
42 ty2.clone()
43 }
44 }
45
46 pub(super) fn init_coerce_unsized_map(
47 db: &'a D,
48 resolver: &Resolver,
49 ) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
50 let krate = resolver.krate().unwrap();
51 let impls = match db.lang_item(krate.into(), "coerce_unsized".into()) {
52 Some(LangItemTarget::TraitId(trait_)) => {
53 db.impls_for_trait(krate.into(), trait_.into())
54 }
55 _ => return FxHashMap::default(),
56 };
57
58 impls
59 .iter()
60 .filter_map(|impl_block| {
61 // `CoerseUnsized` has one generic parameter for the target type.
62 let trait_ref = impl_block.target_trait_ref(db)?;
63 let cur_from_ty = trait_ref.substs.0.get(0)?;
64 let cur_to_ty = trait_ref.substs.0.get(1)?;
65
66 match (&cur_from_ty, cur_to_ty) {
67 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
68 // FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
69 // This works for smart-pointer-like coercion, which covers all impls from std.
70 st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
71 match (ty1, ty2) {
72 (Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
73 if p1 != p2 =>
74 {
75 Some(((*ctor1, *ctor2), i))
76 }
77 _ => None,
78 }
79 })
80 }
81 _ => None,
82 }
83 })
84 .collect()
85 }
86
87 fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
88 match (&from_ty, to_ty) {
89 // Never type will make type variable to fallback to Never Type instead of Unknown.
90 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
91 let var = self.new_maybe_never_type_var();
92 self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
93 return true;
94 }
95 (ty_app!(TypeCtor::Never), _) => return true,
96
97 // Trivial cases, this should go after `never` check to
98 // avoid infer result type to be never
99 _ => {
100 if self.unify_inner_trivial(&from_ty, &to_ty) {
101 return true;
102 }
103 }
104 }
105
106 // Pointer weakening and function to pointer
107 match (&mut from_ty, to_ty) {
108 // `*mut T`, `&mut T, `&T`` -> `*const T`
109 // `&mut T` -> `&T`
110 // `&mut T` -> `*mut T`
111 (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
112 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
113 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
114 | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
115 *c1 = *c2;
116 }
117
118 // Illegal mutablity conversion
119 (
120 ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
121 ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
122 )
123 | (
124 ty_app!(TypeCtor::Ref(Mutability::Shared)),
125 ty_app!(TypeCtor::Ref(Mutability::Mut)),
126 ) => return false,
127
128 // `{function_type}` -> `fn()`
129 (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
130 match from_ty.callable_sig(self.db) {
131 None => return false,
132 Some(sig) => {
133 let num_args = sig.params_and_return.len() as u16 - 1;
134 from_ty =
135 Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
136 }
137 }
138 }
139
140 _ => {}
141 }
142
143 if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
144 return ret;
145 }
146
147 // Auto Deref if cannot coerce
148 match (&from_ty, to_ty) {
149 // FIXME: DerefMut
150 (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
151 self.unify_autoderef_behind_ref(&st1[0], &st2[0])
152 }
153
154 // Otherwise, normal unify
155 _ => self.unify(&from_ty, to_ty),
156 }
157 }
158
159 /// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
160 ///
161 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
162 fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
163 let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
164 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
165 _ => return None,
166 };
167
168 let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
169
170 // Check `Unsize` first
171 match self.check_unsize_and_coerce(
172 st1.0.get(coerce_generic_index)?,
173 st2.0.get(coerce_generic_index)?,
174 0,
175 ) {
176 Some(true) => {}
177 ret => return ret,
178 }
179
180 let ret = st1
181 .iter()
182 .zip(st2.iter())
183 .enumerate()
184 .filter(|&(idx, _)| idx != coerce_generic_index)
185 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
186
187 Some(ret)
188 }
189
190 /// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
191 ///
192 /// It should not be directly called. It is only used by `try_coerce_unsized`.
193 ///
194 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
195 fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
196 if depth > 1000 {
197 panic!("Infinite recursion in coercion");
198 }
199
200 match (&from_ty, &to_ty) {
201 // `[T; N]` -> `[T]`
202 (ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
203 Some(self.unify(&st1[0], &st2[0]))
204 }
205
206 // `T` -> `dyn Trait` when `T: Trait`
207 (_, Ty::Dyn(_)) => {
208 // FIXME: Check predicates
209 Some(true)
210 }
211
212 // `(..., T)` -> `(..., U)` when `T: Unsize<U>`
213 (
214 ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
215 ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
216 ) => {
217 if len1 != len2 || *len1 == 0 {
218 return None;
219 }
220
221 match self.check_unsize_and_coerce(
222 st1.last().unwrap(),
223 st2.last().unwrap(),
224 depth + 1,
225 ) {
226 Some(true) => {}
227 ret => return ret,
228 }
229
230 let ret = st1[..st1.len() - 1]
231 .iter()
232 .zip(&st2[..st2.len() - 1])
233 .all(|(ty1, ty2)| self.unify(ty1, ty2));
234
235 Some(ret)
236 }
237
238 // Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
239 // - T: Unsize<U>
240 // - Foo is a struct
241 // - Only the last field of Foo has a type involving T
242 // - T is not part of the type of any other fields
243 // - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
244 (
245 ty_app!(TypeCtor::Adt(Adt::Struct(struct1)), st1),
246 ty_app!(TypeCtor::Adt(Adt::Struct(struct2)), st2),
247 ) if struct1 == struct2 => {
248 let field_tys = self.db.field_types(struct1.id.into());
249 let struct_data = self.db.struct_data(struct1.id.0);
250
251 let mut fields = struct_data.variant_data.fields().iter();
252 let (last_field_id, _data) = fields.next_back()?;
253
254 // Get the generic parameter involved in the last field.
255 let unsize_generic_index = {
256 let mut index = None;
257 let mut multiple_param = false;
258 field_tys[last_field_id].walk(&mut |ty| match ty {
259 &Ty::Param { idx, .. } => {
260 if index.is_none() {
261 index = Some(idx);
262 } else if Some(idx) != index {
263 multiple_param = true;
264 }
265 }
266 _ => {}
267 });
268
269 if multiple_param {
270 return None;
271 }
272 index?
273 };
274
275 // Check other fields do not involve it.
276 let mut multiple_used = false;
277 fields.for_each(|(field_id, _data)| {
278 field_tys[field_id].walk(&mut |ty| match ty {
279 &Ty::Param { idx, .. } if idx == unsize_generic_index => {
280 multiple_used = true
281 }
282 _ => {}
283 })
284 });
285 if multiple_used {
286 return None;
287 }
288
289 let unsize_generic_index = unsize_generic_index as usize;
290
291 // Check `Unsize` first
292 match self.check_unsize_and_coerce(
293 st1.get(unsize_generic_index)?,
294 st2.get(unsize_generic_index)?,
295 depth + 1,
296 ) {
297 Some(true) => {}
298 ret => return ret,
299 }
300
301 // Then unify other parameters
302 let ret = st1
303 .iter()
304 .zip(st2.iter())
305 .enumerate()
306 .filter(|&(idx, _)| idx != unsize_generic_index)
307 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
308
309 Some(ret)
310 }
311
312 _ => None,
313 }
314 }
315
316 /// Unify `from_ty` to `to_ty` with optional auto Deref
317 ///
318 /// Note that the parameters are already stripped the outer reference.
319 fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
320 let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
321 let to_ty = self.resolve_ty_shallow(&to_ty);
322 // FIXME: Auto DerefMut
323 for derefed_ty in
324 autoderef::autoderef(self.db, &self.resolver.clone(), canonicalized.value.clone())
325 {
326 let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
327 match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
328 // Stop when constructor matches.
329 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
330 // It will not recurse to `coerce`.
331 return self.unify_substs(st1, st2, 0);
332 }
333 _ => {}
334 }
335 }
336
337 false
338 }
339}
diff --git a/crates/ra_hir/src/ty/infer/expr.rs b/crates/ra_hir/src/ty/infer/expr.rs
deleted file mode 100644
index 663ff9435..000000000
--- a/crates/ra_hir/src/ty/infer/expr.rs
+++ /dev/null
@@ -1,667 +0,0 @@
1//! Type inference for expressions.
2
3use std::iter::{repeat, repeat_with};
4use std::sync::Arc;
5
6use hir_def::{
7 builtin_type::Signedness,
8 generics::GenericParams,
9 path::{GenericArg, GenericArgs},
10 resolver::resolver_for_expr,
11};
12use hir_expand::name;
13
14use crate::{
15 db::HirDatabase,
16 expr::{Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
17 ty::{
18 autoderef, method_resolution, op, CallableDef, InferTy, IntTy, Mutability, Namespace,
19 Obligation, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk,
20 Uncertain,
21 },
22 Adt, Name,
23};
24
25use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
26
27impl<'a, D: HirDatabase> InferenceContext<'a, D> {
28 pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
29 let ty = self.infer_expr_inner(tgt_expr, expected);
30 let could_unify = self.unify(&ty, &expected.ty);
31 if !could_unify {
32 self.result.type_mismatches.insert(
33 tgt_expr,
34 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
35 );
36 }
37 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
38 ty
39 }
40
41 /// Infer type of expression with possibly implicit coerce to the expected type.
42 /// Return the type after possible coercion.
43 fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
44 let ty = self.infer_expr_inner(expr, &expected);
45 let ty = if !self.coerce(&ty, &expected.ty) {
46 self.result
47 .type_mismatches
48 .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
49 // Return actual type when type mismatch.
50 // This is needed for diagnostic when return type mismatch.
51 ty
52 } else if expected.ty == Ty::Unknown {
53 ty
54 } else {
55 expected.ty.clone()
56 };
57
58 self.resolve_ty_as_possible(&mut vec![], ty)
59 }
60
61 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
62 let body = Arc::clone(&self.body); // avoid borrow checker problem
63 let ty = match &body[tgt_expr] {
64 Expr::Missing => Ty::Unknown,
65 Expr::If { condition, then_branch, else_branch } => {
66 // if let is desugared to match, so this is always simple if
67 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
68
69 let then_ty = self.infer_expr_inner(*then_branch, &expected);
70 let else_ty = match else_branch {
71 Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
72 None => Ty::unit(),
73 };
74
75 self.coerce_merge_branch(&then_ty, &else_ty)
76 }
77 Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
78 Expr::TryBlock { body } => {
79 let _inner = self.infer_expr(*body, expected);
80 // FIXME should be std::result::Result<{inner}, _>
81 Ty::Unknown
82 }
83 Expr::Loop { body } => {
84 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
85 // FIXME handle break with value
86 Ty::simple(TypeCtor::Never)
87 }
88 Expr::While { condition, body } => {
89 // while let is desugared to a match loop, so this is always simple while
90 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
91 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
92 Ty::unit()
93 }
94 Expr::For { iterable, body, pat } => {
95 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
96
97 let pat_ty = match self.resolve_into_iter_item() {
98 Some(into_iter_item_alias) => {
99 let pat_ty = self.new_type_var();
100 let projection = ProjectionPredicate {
101 ty: pat_ty.clone(),
102 projection_ty: ProjectionTy {
103 associated_ty: into_iter_item_alias,
104 parameters: Substs::single(iterable_ty),
105 },
106 };
107 self.obligations.push(Obligation::Projection(projection));
108 self.resolve_ty_as_possible(&mut vec![], pat_ty)
109 }
110 None => Ty::Unknown,
111 };
112
113 self.infer_pat(*pat, &pat_ty, BindingMode::default());
114 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
115 Ty::unit()
116 }
117 Expr::Lambda { body, args, arg_types } => {
118 assert_eq!(args.len(), arg_types.len());
119
120 let mut sig_tys = Vec::new();
121
122 for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
123 let expected = if let Some(type_ref) = arg_type {
124 self.make_ty(type_ref)
125 } else {
126 Ty::Unknown
127 };
128 let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
129 sig_tys.push(arg_ty);
130 }
131
132 // add return type
133 let ret_ty = self.new_type_var();
134 sig_tys.push(ret_ty.clone());
135 let sig_ty = Ty::apply(
136 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
137 Substs(sig_tys.into()),
138 );
139 let closure_ty =
140 Ty::apply_one(TypeCtor::Closure { def: self.owner, expr: tgt_expr }, sig_ty);
141
142 // Eagerly try to relate the closure type with the expected
143 // type, otherwise we often won't have enough information to
144 // infer the body.
145 self.coerce(&closure_ty, &expected.ty);
146
147 self.infer_expr(*body, &Expectation::has_type(ret_ty));
148 closure_ty
149 }
150 Expr::Call { callee, args } => {
151 let callee_ty = self.infer_expr(*callee, &Expectation::none());
152 let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
153 Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
154 None => {
155 // Not callable
156 // FIXME: report an error
157 (Vec::new(), Ty::Unknown)
158 }
159 };
160 self.register_obligations_for_call(&callee_ty);
161 self.check_call_arguments(args, &param_tys);
162 let ret_ty = self.normalize_associated_types_in(ret_ty);
163 ret_ty
164 }
165 Expr::MethodCall { receiver, args, method_name, generic_args } => self
166 .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
167 Expr::Match { expr, arms } => {
168 let input_ty = self.infer_expr(*expr, &Expectation::none());
169
170 let mut result_ty = self.new_maybe_never_type_var();
171
172 for arm in arms {
173 for &pat in &arm.pats {
174 let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
175 }
176 if let Some(guard_expr) = arm.guard {
177 self.infer_expr(
178 guard_expr,
179 &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
180 );
181 }
182
183 let arm_ty = self.infer_expr_inner(arm.expr, &expected);
184 result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
185 }
186
187 result_ty
188 }
189 Expr::Path(p) => {
190 // FIXME this could be more efficient...
191 let resolver = resolver_for_expr(self.db, self.owner.into(), tgt_expr);
192 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
193 }
194 Expr::Continue => Ty::simple(TypeCtor::Never),
195 Expr::Break { expr } => {
196 if let Some(expr) = expr {
197 // FIXME handle break with value
198 self.infer_expr(*expr, &Expectation::none());
199 }
200 Ty::simple(TypeCtor::Never)
201 }
202 Expr::Return { expr } => {
203 if let Some(expr) = expr {
204 self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
205 }
206 Ty::simple(TypeCtor::Never)
207 }
208 Expr::RecordLit { path, fields, spread } => {
209 let (ty, def_id) = self.resolve_variant(path.as_ref());
210 if let Some(variant) = def_id {
211 self.write_variant_resolution(tgt_expr.into(), variant);
212 }
213
214 self.unify(&ty, &expected.ty);
215
216 let substs = ty.substs().unwrap_or_else(Substs::empty);
217 let field_types =
218 def_id.map(|it| self.db.field_types(it.into())).unwrap_or_default();
219 for (field_idx, field) in fields.iter().enumerate() {
220 let field_def = def_id.and_then(|it| match it.field(self.db, &field.name) {
221 Some(field) => Some(field),
222 None => {
223 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
224 expr: tgt_expr,
225 field: field_idx,
226 });
227 None
228 }
229 });
230 if let Some(field_def) = field_def {
231 self.result.record_field_resolutions.insert(field.expr, field_def);
232 }
233 let field_ty = field_def
234 .map_or(Ty::Unknown, |it| field_types[it.id].clone())
235 .subst(&substs);
236 self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
237 }
238 if let Some(expr) = spread {
239 self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
240 }
241 ty
242 }
243 Expr::Field { expr, name } => {
244 let receiver_ty = self.infer_expr(*expr, &Expectation::none());
245 let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
246 let ty = autoderef::autoderef(
247 self.db,
248 &self.resolver.clone(),
249 canonicalized.value.clone(),
250 )
251 .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
252 Ty::Apply(a_ty) => match a_ty.ctor {
253 TypeCtor::Tuple { .. } => name
254 .as_tuple_index()
255 .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
256 TypeCtor::Adt(Adt::Struct(s)) => s.field(self.db, name).map(|field| {
257 self.write_field_resolution(tgt_expr, field);
258 self.db.field_types(s.id.into())[field.id]
259 .clone()
260 .subst(&a_ty.parameters)
261 }),
262 _ => None,
263 },
264 _ => None,
265 })
266 .unwrap_or(Ty::Unknown);
267 let ty = self.insert_type_vars(ty);
268 self.normalize_associated_types_in(ty)
269 }
270 Expr::Await { expr } => {
271 let inner_ty = self.infer_expr(*expr, &Expectation::none());
272 let ty = match self.resolve_future_future_output() {
273 Some(future_future_output_alias) => {
274 let ty = self.new_type_var();
275 let projection = ProjectionPredicate {
276 ty: ty.clone(),
277 projection_ty: ProjectionTy {
278 associated_ty: future_future_output_alias,
279 parameters: Substs::single(inner_ty),
280 },
281 };
282 self.obligations.push(Obligation::Projection(projection));
283 self.resolve_ty_as_possible(&mut vec![], ty)
284 }
285 None => Ty::Unknown,
286 };
287 ty
288 }
289 Expr::Try { expr } => {
290 let inner_ty = self.infer_expr(*expr, &Expectation::none());
291 let ty = match self.resolve_ops_try_ok() {
292 Some(ops_try_ok_alias) => {
293 let ty = self.new_type_var();
294 let projection = ProjectionPredicate {
295 ty: ty.clone(),
296 projection_ty: ProjectionTy {
297 associated_ty: ops_try_ok_alias,
298 parameters: Substs::single(inner_ty),
299 },
300 };
301 self.obligations.push(Obligation::Projection(projection));
302 self.resolve_ty_as_possible(&mut vec![], ty)
303 }
304 None => Ty::Unknown,
305 };
306 ty
307 }
308 Expr::Cast { expr, type_ref } => {
309 let _inner_ty = self.infer_expr(*expr, &Expectation::none());
310 let cast_ty = self.make_ty(type_ref);
311 // FIXME check the cast...
312 cast_ty
313 }
314 Expr::Ref { expr, mutability } => {
315 let expectation =
316 if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
317 if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
318 // FIXME: throw type error - expected mut reference but found shared ref,
319 // which cannot be coerced
320 }
321 Expectation::has_type(Ty::clone(exp_inner))
322 } else {
323 Expectation::none()
324 };
325 // FIXME reference coercions etc.
326 let inner_ty = self.infer_expr(*expr, &expectation);
327 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
328 }
329 Expr::Box { expr } => {
330 let inner_ty = self.infer_expr(*expr, &Expectation::none());
331 if let Some(box_) = self.resolve_boxed_box() {
332 Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
333 } else {
334 Ty::Unknown
335 }
336 }
337 Expr::UnaryOp { expr, op } => {
338 let inner_ty = self.infer_expr(*expr, &Expectation::none());
339 match op {
340 UnaryOp::Deref => {
341 let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
342 if let Some(derefed_ty) =
343 autoderef::deref(self.db, &self.resolver, &canonicalized.value)
344 {
345 canonicalized.decanonicalize_ty(derefed_ty.value)
346 } else {
347 Ty::Unknown
348 }
349 }
350 UnaryOp::Neg => {
351 match &inner_ty {
352 Ty::Apply(a_ty) => match a_ty.ctor {
353 TypeCtor::Int(Uncertain::Unknown)
354 | TypeCtor::Int(Uncertain::Known(IntTy {
355 signedness: Signedness::Signed,
356 ..
357 }))
358 | TypeCtor::Float(..) => inner_ty,
359 _ => Ty::Unknown,
360 },
361 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
362 inner_ty
363 }
364 // FIXME: resolve ops::Neg trait
365 _ => Ty::Unknown,
366 }
367 }
368 UnaryOp::Not => {
369 match &inner_ty {
370 Ty::Apply(a_ty) => match a_ty.ctor {
371 TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
372 _ => Ty::Unknown,
373 },
374 Ty::Infer(InferTy::IntVar(..)) => inner_ty,
375 // FIXME: resolve ops::Not trait for inner_ty
376 _ => Ty::Unknown,
377 }
378 }
379 }
380 }
381 Expr::BinaryOp { lhs, rhs, op } => match op {
382 Some(op) => {
383 let lhs_expectation = match op {
384 BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
385 _ => Expectation::none(),
386 };
387 let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
388 // FIXME: find implementation of trait corresponding to operation
389 // symbol and resolve associated `Output` type
390 let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
391 let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
392
393 // FIXME: similar as above, return ty is often associated trait type
394 op::binary_op_return_ty(*op, rhs_ty)
395 }
396 _ => Ty::Unknown,
397 },
398 Expr::Index { base, index } => {
399 let _base_ty = self.infer_expr(*base, &Expectation::none());
400 let _index_ty = self.infer_expr(*index, &Expectation::none());
401 // FIXME: use `std::ops::Index::Output` to figure out the real return type
402 Ty::Unknown
403 }
404 Expr::Tuple { exprs } => {
405 let mut tys = match &expected.ty {
406 ty_app!(TypeCtor::Tuple { .. }, st) => st
407 .iter()
408 .cloned()
409 .chain(repeat_with(|| self.new_type_var()))
410 .take(exprs.len())
411 .collect::<Vec<_>>(),
412 _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
413 };
414
415 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
416 self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
417 }
418
419 Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
420 }
421 Expr::Array(array) => {
422 let elem_ty = match &expected.ty {
423 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
424 st.as_single().clone()
425 }
426 _ => self.new_type_var(),
427 };
428
429 match array {
430 Array::ElementList(items) => {
431 for expr in items.iter() {
432 self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
433 }
434 }
435 Array::Repeat { initializer, repeat } => {
436 self.infer_expr_coerce(
437 *initializer,
438 &Expectation::has_type(elem_ty.clone()),
439 );
440 self.infer_expr(
441 *repeat,
442 &Expectation::has_type(Ty::simple(TypeCtor::Int(Uncertain::Known(
443 IntTy::usize(),
444 )))),
445 );
446 }
447 }
448
449 Ty::apply_one(TypeCtor::Array, elem_ty)
450 }
451 Expr::Literal(lit) => match lit {
452 Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
453 Literal::String(..) => {
454 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
455 }
456 Literal::ByteString(..) => {
457 let byte_type = Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::u8())));
458 let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
459 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
460 }
461 Literal::Char(..) => Ty::simple(TypeCtor::Char),
462 Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int((*ty).into())),
463 Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float((*ty).into())),
464 },
465 };
466 // use a new type variable if we got Ty::Unknown here
467 let ty = self.insert_type_vars_shallow(ty);
468 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
469 self.write_expr_ty(tgt_expr, ty.clone());
470 ty
471 }
472
473 fn infer_block(
474 &mut self,
475 statements: &[Statement],
476 tail: Option<ExprId>,
477 expected: &Expectation,
478 ) -> Ty {
479 let mut diverges = false;
480 for stmt in statements {
481 match stmt {
482 Statement::Let { pat, type_ref, initializer } => {
483 let decl_ty =
484 type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
485
486 // Always use the declared type when specified
487 let mut ty = decl_ty.clone();
488
489 if let Some(expr) = initializer {
490 let actual_ty =
491 self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
492 if decl_ty == Ty::Unknown {
493 ty = actual_ty;
494 }
495 }
496
497 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
498 self.infer_pat(*pat, &ty, BindingMode::default());
499 }
500 Statement::Expr(expr) => {
501 if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
502 diverges = true;
503 }
504 }
505 }
506 }
507
508 let ty = if let Some(expr) = tail {
509 self.infer_expr_coerce(expr, expected)
510 } else {
511 self.coerce(&Ty::unit(), &expected.ty);
512 Ty::unit()
513 };
514 if diverges {
515 Ty::simple(TypeCtor::Never)
516 } else {
517 ty
518 }
519 }
520
521 fn infer_method_call(
522 &mut self,
523 tgt_expr: ExprId,
524 receiver: ExprId,
525 args: &[ExprId],
526 method_name: &Name,
527 generic_args: Option<&GenericArgs>,
528 ) -> Ty {
529 let receiver_ty = self.infer_expr(receiver, &Expectation::none());
530 let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
531 let resolved = method_resolution::lookup_method(
532 &canonicalized_receiver.value,
533 self.db,
534 method_name,
535 &self.resolver,
536 );
537 let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
538 Some((ty, func)) => {
539 let ty = canonicalized_receiver.decanonicalize_ty(ty);
540 self.write_method_resolution(tgt_expr, func);
541 (
542 ty,
543 self.db.type_for_def(func.into(), Namespace::Values),
544 Some(self.db.generic_params(func.id.into())),
545 )
546 }
547 None => (receiver_ty, Ty::Unknown, None),
548 };
549 let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
550 let method_ty = method_ty.apply_substs(substs);
551 let method_ty = self.insert_type_vars(method_ty);
552 self.register_obligations_for_call(&method_ty);
553 let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
554 Some(sig) => {
555 if !sig.params().is_empty() {
556 (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
557 } else {
558 (Ty::Unknown, Vec::new(), sig.ret().clone())
559 }
560 }
561 None => (Ty::Unknown, Vec::new(), Ty::Unknown),
562 };
563 // Apply autoref so the below unification works correctly
564 // FIXME: return correct autorefs from lookup_method
565 let actual_receiver_ty = match expected_receiver_ty.as_reference() {
566 Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
567 _ => derefed_receiver_ty,
568 };
569 self.unify(&expected_receiver_ty, &actual_receiver_ty);
570
571 self.check_call_arguments(args, &param_tys);
572 let ret_ty = self.normalize_associated_types_in(ret_ty);
573 ret_ty
574 }
575
576 fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
577 // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
578 // We do this in a pretty awful way: first we type-check any arguments
579 // that are not closures, then we type-check the closures. This is so
580 // that we have more information about the types of arguments when we
581 // type-check the functions. This isn't really the right way to do this.
582 for &check_closures in &[false, true] {
583 let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
584 for (&arg, param_ty) in args.iter().zip(param_iter) {
585 let is_closure = match &self.body[arg] {
586 Expr::Lambda { .. } => true,
587 _ => false,
588 };
589
590 if is_closure != check_closures {
591 continue;
592 }
593
594 let param_ty = self.normalize_associated_types_in(param_ty);
595 self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
596 }
597 }
598 }
599
600 fn substs_for_method_call(
601 &mut self,
602 def_generics: Option<Arc<GenericParams>>,
603 generic_args: Option<&GenericArgs>,
604 receiver_ty: &Ty,
605 ) -> Substs {
606 let (parent_param_count, param_count) =
607 def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
608 let mut substs = Vec::with_capacity(parent_param_count + param_count);
609 // Parent arguments are unknown, except for the receiver type
610 if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
611 for param in &parent_generics.params {
612 if param.name == name::SELF_TYPE {
613 substs.push(receiver_ty.clone());
614 } else {
615 substs.push(Ty::Unknown);
616 }
617 }
618 }
619 // handle provided type arguments
620 if let Some(generic_args) = generic_args {
621 // if args are provided, it should be all of them, but we can't rely on that
622 for arg in generic_args.args.iter().take(param_count) {
623 match arg {
624 GenericArg::Type(type_ref) => {
625 let ty = self.make_ty(type_ref);
626 substs.push(ty);
627 }
628 }
629 }
630 };
631 let supplied_params = substs.len();
632 for _ in supplied_params..parent_param_count + param_count {
633 substs.push(Ty::Unknown);
634 }
635 assert_eq!(substs.len(), parent_param_count + param_count);
636 Substs(substs.into())
637 }
638
639 fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
640 if let Ty::Apply(a_ty) = callable_ty {
641 if let TypeCtor::FnDef(def) = a_ty.ctor {
642 let generic_predicates = self.db.generic_predicates(def.into());
643 for predicate in generic_predicates.iter() {
644 let predicate = predicate.clone().subst(&a_ty.parameters);
645 if let Some(obligation) = Obligation::from_predicate(predicate) {
646 self.obligations.push(obligation);
647 }
648 }
649 // add obligation for trait implementation, if this is a trait method
650 match def {
651 CallableDef::Function(f) => {
652 if let Some(trait_) = f.parent_trait(self.db) {
653 // construct a TraitDef
654 let substs = a_ty.parameters.prefix(
655 self.db
656 .generic_params(trait_.id.into())
657 .count_params_including_parent(),
658 );
659 self.obligations.push(Obligation::Trait(TraitRef { trait_, substs }));
660 }
661 }
662 CallableDef::Struct(_) | CallableDef::EnumVariant(_) => {}
663 }
664 }
665 }
666 }
667}
diff --git a/crates/ra_hir/src/ty/infer/pat.rs b/crates/ra_hir/src/ty/infer/pat.rs
deleted file mode 100644
index 641d61e87..000000000
--- a/crates/ra_hir/src/ty/infer/pat.rs
+++ /dev/null
@@ -1,183 +0,0 @@
1//! Type inference for patterns.
2
3use std::iter::repeat;
4use std::sync::Arc;
5
6use test_utils::tested_by;
7
8use super::{BindingMode, InferenceContext};
9use crate::{
10 db::HirDatabase,
11 expr::{BindingAnnotation, Pat, PatId, RecordFieldPat},
12 ty::{Mutability, Substs, Ty, TypeCtor, TypeWalk},
13 Name, Path,
14};
15
16impl<'a, D: HirDatabase> InferenceContext<'a, D> {
17 fn infer_tuple_struct_pat(
18 &mut self,
19 path: Option<&Path>,
20 subpats: &[PatId],
21 expected: &Ty,
22 default_bm: BindingMode,
23 ) -> Ty {
24 let (ty, def) = self.resolve_variant(path);
25
26 self.unify(&ty, expected);
27
28 let substs = ty.substs().unwrap_or_else(Substs::empty);
29
30 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
31 for (i, &subpat) in subpats.iter().enumerate() {
32 let expected_ty = def
33 .and_then(|d| d.field(self.db, &Name::new_tuple_field(i)))
34 .map_or(Ty::Unknown, |field| field_tys[field.id].clone())
35 .subst(&substs);
36 let expected_ty = self.normalize_associated_types_in(expected_ty);
37 self.infer_pat(subpat, &expected_ty, default_bm);
38 }
39
40 ty
41 }
42
43 fn infer_record_pat(
44 &mut self,
45 path: Option<&Path>,
46 subpats: &[RecordFieldPat],
47 expected: &Ty,
48 default_bm: BindingMode,
49 id: PatId,
50 ) -> Ty {
51 let (ty, def) = self.resolve_variant(path);
52 if let Some(variant) = def {
53 self.write_variant_resolution(id.into(), variant);
54 }
55
56 self.unify(&ty, expected);
57
58 let substs = ty.substs().unwrap_or_else(Substs::empty);
59
60 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
61 for subpat in subpats {
62 let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
63 let expected_ty = matching_field
64 .map_or(Ty::Unknown, |field| field_tys[field.id].clone())
65 .subst(&substs);
66 let expected_ty = self.normalize_associated_types_in(expected_ty);
67 self.infer_pat(subpat.pat, &expected_ty, default_bm);
68 }
69
70 ty
71 }
72
73 pub(super) fn infer_pat(
74 &mut self,
75 pat: PatId,
76 mut expected: &Ty,
77 mut default_bm: BindingMode,
78 ) -> Ty {
79 let body = Arc::clone(&self.body); // avoid borrow checker problem
80
81 let is_non_ref_pat = match &body[pat] {
82 Pat::Tuple(..)
83 | Pat::TupleStruct { .. }
84 | Pat::Record { .. }
85 | Pat::Range { .. }
86 | Pat::Slice { .. } => true,
87 // FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
88 Pat::Path(..) | Pat::Lit(..) => true,
89 Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
90 };
91 if is_non_ref_pat {
92 while let Some((inner, mutability)) = expected.as_reference() {
93 expected = inner;
94 default_bm = match default_bm {
95 BindingMode::Move => BindingMode::Ref(mutability),
96 BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
97 BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
98 }
99 }
100 } else if let Pat::Ref { .. } = &body[pat] {
101 tested_by!(match_ergonomics_ref);
102 // When you encounter a `&pat` pattern, reset to Move.
103 // This is so that `w` is by value: `let (_, &w) = &(1, &2);`
104 default_bm = BindingMode::Move;
105 }
106
107 // Lose mutability.
108 let default_bm = default_bm;
109 let expected = expected;
110
111 let ty = match &body[pat] {
112 Pat::Tuple(ref args) => {
113 let expectations = match expected.as_tuple() {
114 Some(parameters) => &*parameters.0,
115 _ => &[],
116 };
117 let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
118
119 let inner_tys = args
120 .iter()
121 .zip(expectations_iter)
122 .map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
123 .collect();
124
125 Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
126 }
127 Pat::Ref { pat, mutability } => {
128 let expectation = match expected.as_reference() {
129 Some((inner_ty, exp_mut)) => {
130 if *mutability != exp_mut {
131 // FIXME: emit type error?
132 }
133 inner_ty
134 }
135 _ => &Ty::Unknown,
136 };
137 let subty = self.infer_pat(*pat, expectation, default_bm);
138 Ty::apply_one(TypeCtor::Ref(*mutability), subty)
139 }
140 Pat::TupleStruct { path: p, args: subpats } => {
141 self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
142 }
143 Pat::Record { path: p, args: fields } => {
144 self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
145 }
146 Pat::Path(path) => {
147 // FIXME use correct resolver for the surrounding expression
148 let resolver = self.resolver.clone();
149 self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
150 }
151 Pat::Bind { mode, name: _, subpat } => {
152 let mode = if mode == &BindingAnnotation::Unannotated {
153 default_bm
154 } else {
155 BindingMode::convert(*mode)
156 };
157 let inner_ty = if let Some(subpat) = subpat {
158 self.infer_pat(*subpat, expected, default_bm)
159 } else {
160 expected.clone()
161 };
162 let inner_ty = self.insert_type_vars_shallow(inner_ty);
163
164 let bound_ty = match mode {
165 BindingMode::Ref(mutability) => {
166 Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
167 }
168 BindingMode::Move => inner_ty.clone(),
169 };
170 let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
171 self.write_pat_ty(pat, bound_ty);
172 return inner_ty;
173 }
174 _ => Ty::Unknown,
175 };
176 // use a new type variable if we got Ty::Unknown here
177 let ty = self.insert_type_vars_shallow(ty);
178 self.unify(&ty, expected);
179 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
180 self.write_pat_ty(pat, ty.clone());
181 ty
182 }
183}
diff --git a/crates/ra_hir/src/ty/infer/path.rs b/crates/ra_hir/src/ty/infer/path.rs
deleted file mode 100644
index ee54d8217..000000000
--- a/crates/ra_hir/src/ty/infer/path.rs
+++ /dev/null
@@ -1,258 +0,0 @@
1//! Path expression resolution.
2
3use hir_def::{
4 path::PathSegment,
5 resolver::{ResolveValueResult, Resolver, TypeNs, ValueNs},
6};
7
8use crate::{
9 db::HirDatabase,
10 ty::{method_resolution, Namespace, Substs, Ty, TypableDef, TypeWalk},
11 AssocItem, Container, Function, Name, Path,
12};
13
14use super::{ExprOrPatId, InferenceContext, TraitRef};
15
16impl<'a, D: HirDatabase> InferenceContext<'a, D> {
17 pub(super) fn infer_path(
18 &mut self,
19 resolver: &Resolver,
20 path: &Path,
21 id: ExprOrPatId,
22 ) -> Option<Ty> {
23 let ty = self.resolve_value_path(resolver, path, id)?;
24 let ty = self.insert_type_vars(ty);
25 let ty = self.normalize_associated_types_in(ty);
26 Some(ty)
27 }
28
29 fn resolve_value_path(
30 &mut self,
31 resolver: &Resolver,
32 path: &Path,
33 id: ExprOrPatId,
34 ) -> Option<Ty> {
35 let (value, self_subst) = if let crate::PathKind::Type(type_ref) = &path.kind {
36 if path.segments.is_empty() {
37 // This can't actually happen syntax-wise
38 return None;
39 }
40 let ty = self.make_ty(type_ref);
41 let remaining_segments_for_ty = &path.segments[..path.segments.len() - 1];
42 let ty = Ty::from_type_relative_path(self.db, resolver, ty, remaining_segments_for_ty);
43 self.resolve_ty_assoc_item(
44 ty,
45 &path.segments.last().expect("path had at least one segment").name,
46 id,
47 )?
48 } else {
49 let value_or_partial = resolver.resolve_path_in_value_ns(self.db, &path)?;
50
51 match value_or_partial {
52 ResolveValueResult::ValueNs(it) => (it, None),
53 ResolveValueResult::Partial(def, remaining_index) => {
54 self.resolve_assoc_item(def, path, remaining_index, id)?
55 }
56 }
57 };
58
59 let typable: TypableDef = match value {
60 ValueNs::LocalBinding(pat) => {
61 let ty = self.result.type_of_pat.get(pat)?.clone();
62 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
63 return Some(ty);
64 }
65 ValueNs::FunctionId(it) => it.into(),
66 ValueNs::ConstId(it) => it.into(),
67 ValueNs::StaticId(it) => it.into(),
68 ValueNs::StructId(it) => it.into(),
69 ValueNs::EnumVariantId(it) => it.into(),
70 };
71
72 let mut ty = self.db.type_for_def(typable, Namespace::Values);
73 if let Some(self_subst) = self_subst {
74 ty = ty.subst(&self_subst);
75 }
76
77 let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
78 let ty = ty.subst(&substs);
79 Some(ty)
80 }
81
82 fn resolve_assoc_item(
83 &mut self,
84 def: TypeNs,
85 path: &Path,
86 remaining_index: usize,
87 id: ExprOrPatId,
88 ) -> Option<(ValueNs, Option<Substs>)> {
89 assert!(remaining_index < path.segments.len());
90 // there may be more intermediate segments between the resolved one and
91 // the end. Only the last segment needs to be resolved to a value; from
92 // the segments before that, we need to get either a type or a trait ref.
93
94 let resolved_segment = &path.segments[remaining_index - 1];
95 let remaining_segments = &path.segments[remaining_index..];
96 let is_before_last = remaining_segments.len() == 1;
97
98 match (def, is_before_last) {
99 (TypeNs::TraitId(trait_), true) => {
100 let segment =
101 remaining_segments.last().expect("there should be at least one segment here");
102 let trait_ref = TraitRef::from_resolved_path(
103 self.db,
104 &self.resolver,
105 trait_.into(),
106 resolved_segment,
107 None,
108 );
109 self.resolve_trait_assoc_item(trait_ref, segment, id)
110 }
111 (def, _) => {
112 // Either we already have a type (e.g. `Vec::new`), or we have a
113 // trait but it's not the last segment, so the next segment
114 // should resolve to an associated type of that trait (e.g. `<T
115 // as Iterator>::Item::default`)
116 let remaining_segments_for_ty = &remaining_segments[..remaining_segments.len() - 1];
117 let ty = Ty::from_partly_resolved_hir_path(
118 self.db,
119 &self.resolver,
120 def,
121 resolved_segment,
122 remaining_segments_for_ty,
123 );
124 if let Ty::Unknown = ty {
125 return None;
126 }
127
128 let ty = self.insert_type_vars(ty);
129 let ty = self.normalize_associated_types_in(ty);
130
131 let segment =
132 remaining_segments.last().expect("there should be at least one segment here");
133
134 self.resolve_ty_assoc_item(ty, &segment.name, id)
135 }
136 }
137 }
138
139 fn resolve_trait_assoc_item(
140 &mut self,
141 trait_ref: TraitRef,
142 segment: &PathSegment,
143 id: ExprOrPatId,
144 ) -> Option<(ValueNs, Option<Substs>)> {
145 let trait_ = trait_ref.trait_;
146 let item = trait_.items(self.db).iter().copied().find_map(|item| match item {
147 AssocItem::Function(func) => {
148 if segment.name == func.name(self.db) {
149 Some(AssocItem::Function(func))
150 } else {
151 None
152 }
153 }
154
155 AssocItem::Const(konst) => {
156 if konst.name(self.db).map_or(false, |n| n == segment.name) {
157 Some(AssocItem::Const(konst))
158 } else {
159 None
160 }
161 }
162 AssocItem::TypeAlias(_) => None,
163 })?;
164 let def = match item {
165 AssocItem::Function(f) => ValueNs::FunctionId(f.id),
166 AssocItem::Const(c) => ValueNs::ConstId(c.id),
167 AssocItem::TypeAlias(_) => unreachable!(),
168 };
169 let substs = Substs::build_for_def(self.db, item)
170 .use_parent_substs(&trait_ref.substs)
171 .fill_with_params()
172 .build();
173
174 self.write_assoc_resolution(id, item);
175 Some((def, Some(substs)))
176 }
177
178 fn resolve_ty_assoc_item(
179 &mut self,
180 ty: Ty,
181 name: &Name,
182 id: ExprOrPatId,
183 ) -> Option<(ValueNs, Option<Substs>)> {
184 if let Ty::Unknown = ty {
185 return None;
186 }
187
188 let canonical_ty = self.canonicalizer().canonicalize_ty(ty.clone());
189
190 method_resolution::iterate_method_candidates(
191 &canonical_ty.value,
192 self.db,
193 &self.resolver.clone(),
194 Some(name),
195 method_resolution::LookupMode::Path,
196 move |_ty, item| {
197 let def = match item {
198 AssocItem::Function(f) => ValueNs::FunctionId(f.id),
199 AssocItem::Const(c) => ValueNs::ConstId(c.id),
200 AssocItem::TypeAlias(_) => unreachable!(),
201 };
202 let substs = match item.container(self.db) {
203 Container::ImplBlock(_) => self.find_self_types(&def, ty.clone()),
204 Container::Trait(t) => {
205 // we're picking this method
206 let trait_substs = Substs::build_for_def(self.db, t)
207 .push(ty.clone())
208 .fill(std::iter::repeat_with(|| self.new_type_var()))
209 .build();
210 let substs = Substs::build_for_def(self.db, item)
211 .use_parent_substs(&trait_substs)
212 .fill_with_params()
213 .build();
214 self.obligations.push(super::Obligation::Trait(TraitRef {
215 trait_: t,
216 substs: trait_substs,
217 }));
218 Some(substs)
219 }
220 };
221
222 self.write_assoc_resolution(id, item);
223 Some((def, substs))
224 },
225 )
226 }
227
228 fn find_self_types(&self, def: &ValueNs, actual_def_ty: Ty) -> Option<Substs> {
229 if let ValueNs::FunctionId(func) = def {
230 let func = Function::from(*func);
231 // We only do the infer if parent has generic params
232 let gen = self.db.generic_params(func.id.into());
233 if gen.count_parent_params() == 0 {
234 return None;
235 }
236
237 let impl_block = func.impl_block(self.db)?.target_ty(self.db);
238 let impl_block_substs = impl_block.substs()?;
239 let actual_substs = actual_def_ty.substs()?;
240
241 let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
242
243 // The following code *link up* the function actual parma type
244 // and impl_block type param index
245 impl_block_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
246 if let Ty::Param { idx, .. } = param {
247 if let Some(s) = new_substs.get_mut(*idx as usize) {
248 *s = pty.clone();
249 }
250 }
251 });
252
253 Some(Substs(new_substs.into()))
254 } else {
255 None
256 }
257 }
258}
diff --git a/crates/ra_hir/src/ty/infer/unify.rs b/crates/ra_hir/src/ty/infer/unify.rs
deleted file mode 100644
index 64d9394cf..000000000
--- a/crates/ra_hir/src/ty/infer/unify.rs
+++ /dev/null
@@ -1,164 +0,0 @@
1//! Unification and canonicalization logic.
2
3use super::{InferenceContext, Obligation};
4use crate::db::HirDatabase;
5use crate::ty::{
6 Canonical, InEnvironment, InferTy, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty,
7 TypeWalk,
8};
9use crate::util::make_mut_slice;
10
11impl<'a, D: HirDatabase> InferenceContext<'a, D> {
12 pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
13 where
14 'a: 'b,
15 {
16 Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
17 }
18}
19
20pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
21where
22 'a: 'b,
23{
24 ctx: &'b mut InferenceContext<'a, D>,
25 free_vars: Vec<InferTy>,
26 /// A stack of type variables that is used to detect recursive types (which
27 /// are an error, but we need to protect against them to avoid stack
28 /// overflows).
29 var_stack: Vec<super::TypeVarId>,
30}
31
32pub(super) struct Canonicalized<T> {
33 pub value: Canonical<T>,
34 free_vars: Vec<InferTy>,
35}
36
37impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D>
38where
39 'a: 'b,
40{
41 fn add(&mut self, free_var: InferTy) -> usize {
42 self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
43 let next_index = self.free_vars.len();
44 self.free_vars.push(free_var);
45 next_index
46 })
47 }
48
49 fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty {
50 ty.fold(&mut |ty| match ty {
51 Ty::Infer(tv) => {
52 let inner = tv.to_inner();
53 if self.var_stack.contains(&inner) {
54 // recursive type
55 return tv.fallback_value();
56 }
57 if let Some(known_ty) =
58 self.ctx.var_unification_table.inlined_probe_value(inner).known()
59 {
60 self.var_stack.push(inner);
61 let result = self.do_canonicalize_ty(known_ty.clone());
62 self.var_stack.pop();
63 result
64 } else {
65 let root = self.ctx.var_unification_table.find(inner);
66 let free_var = match tv {
67 InferTy::TypeVar(_) => InferTy::TypeVar(root),
68 InferTy::IntVar(_) => InferTy::IntVar(root),
69 InferTy::FloatVar(_) => InferTy::FloatVar(root),
70 InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
71 };
72 let position = self.add(free_var);
73 Ty::Bound(position as u32)
74 }
75 }
76 _ => ty,
77 })
78 }
79
80 fn do_canonicalize_trait_ref(&mut self, mut trait_ref: TraitRef) -> TraitRef {
81 for ty in make_mut_slice(&mut trait_ref.substs.0) {
82 *ty = self.do_canonicalize_ty(ty.clone());
83 }
84 trait_ref
85 }
86
87 fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
88 Canonicalized {
89 value: Canonical { value: result, num_vars: self.free_vars.len() },
90 free_vars: self.free_vars,
91 }
92 }
93
94 fn do_canonicalize_projection_ty(&mut self, mut projection_ty: ProjectionTy) -> ProjectionTy {
95 for ty in make_mut_slice(&mut projection_ty.parameters.0) {
96 *ty = self.do_canonicalize_ty(ty.clone());
97 }
98 projection_ty
99 }
100
101 fn do_canonicalize_projection_predicate(
102 &mut self,
103 projection: ProjectionPredicate,
104 ) -> ProjectionPredicate {
105 let ty = self.do_canonicalize_ty(projection.ty);
106 let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty);
107
108 ProjectionPredicate { ty, projection_ty }
109 }
110
111 // FIXME: add some point, we need to introduce a `Fold` trait that abstracts
112 // over all the things that can be canonicalized (like Chalk and rustc have)
113
114 pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
115 let result = self.do_canonicalize_ty(ty);
116 self.into_canonicalized(result)
117 }
118
119 pub(crate) fn canonicalize_obligation(
120 mut self,
121 obligation: InEnvironment<Obligation>,
122 ) -> Canonicalized<InEnvironment<Obligation>> {
123 let result = match obligation.value {
124 Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)),
125 Obligation::Projection(pr) => {
126 Obligation::Projection(self.do_canonicalize_projection_predicate(pr))
127 }
128 };
129 self.into_canonicalized(InEnvironment {
130 value: result,
131 environment: obligation.environment,
132 })
133 }
134}
135
136impl<T> Canonicalized<T> {
137 pub fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
138 ty.walk_mut_binders(
139 &mut |ty, binders| match ty {
140 &mut Ty::Bound(idx) => {
141 if idx as usize >= binders && (idx as usize - binders) < self.free_vars.len() {
142 *ty = Ty::Infer(self.free_vars[idx as usize - binders]);
143 }
144 }
145 _ => {}
146 },
147 0,
148 );
149 ty
150 }
151
152 pub fn apply_solution(
153 &self,
154 ctx: &mut InferenceContext<'_, impl HirDatabase>,
155 solution: Canonical<Vec<Ty>>,
156 ) {
157 // the solution may contain new variables, which we need to convert to new inference vars
158 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.new_type_var()).collect());
159 for (i, ty) in solution.value.into_iter().enumerate() {
160 let var = self.free_vars[i];
161 ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
162 }
163 }
164}
diff --git a/crates/ra_hir/src/ty/lower.rs b/crates/ra_hir/src/ty/lower.rs
deleted file mode 100644
index a39beb2a0..000000000
--- a/crates/ra_hir/src/ty/lower.rs
+++ /dev/null
@@ -1,831 +0,0 @@
1//! Methods for lowering the HIR to types. There are two main cases here:
2//!
3//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
4//! type: The entry point for this is `Ty::from_hir`.
5//! - Building the type for an item: This happens through the `type_for_def` query.
6//!
7//! This usually involves resolving names, collecting generic arguments etc.
8use std::iter;
9use std::sync::Arc;
10
11use hir_def::{
12 builtin_type::{BuiltinFloat, BuiltinInt, BuiltinType},
13 generics::WherePredicate,
14 path::{GenericArg, PathSegment},
15 resolver::{HasResolver, Resolver, TypeNs},
16 type_ref::{TypeBound, TypeRef},
17 AdtId, GenericDefId, LocalStructFieldId, VariantId,
18};
19use ra_arena::map::ArenaMap;
20
21use super::{
22 FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
23 TypeWalk,
24};
25use crate::{
26 db::HirDatabase,
27 ty::{
28 primitive::{FloatTy, IntTy, Uncertain},
29 Adt,
30 },
31 util::make_mut_slice,
32 Const, Enum, EnumVariant, Function, GenericDef, ImplBlock, ModuleDef, Path, Static, Struct,
33 Trait, TypeAlias, Union,
34};
35
36// FIXME: this is only really used in `type_for_def`, which contains a bunch of
37// impossible cases. Perhaps we should recombine `TypeableDef` and `Namespace`
38// into a `AsTypeDef`, `AsValueDef` enums?
39#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
40pub enum Namespace {
41 Types,
42 Values,
43 // Note that only type inference uses this enum, and it doesn't care about macros.
44 // Macro,
45}
46
47impl Ty {
48 pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
49 match type_ref {
50 TypeRef::Never => Ty::simple(TypeCtor::Never),
51 TypeRef::Tuple(inner) => {
52 let inner_tys: Arc<[Ty]> =
53 inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect();
54 Ty::apply(
55 TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
56 Substs(inner_tys),
57 )
58 }
59 TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
60 TypeRef::RawPtr(inner, mutability) => {
61 let inner_ty = Ty::from_hir(db, resolver, inner);
62 Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
63 }
64 TypeRef::Array(inner) => {
65 let inner_ty = Ty::from_hir(db, resolver, inner);
66 Ty::apply_one(TypeCtor::Array, inner_ty)
67 }
68 TypeRef::Slice(inner) => {
69 let inner_ty = Ty::from_hir(db, resolver, inner);
70 Ty::apply_one(TypeCtor::Slice, inner_ty)
71 }
72 TypeRef::Reference(inner, mutability) => {
73 let inner_ty = Ty::from_hir(db, resolver, inner);
74 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
75 }
76 TypeRef::Placeholder => Ty::Unknown,
77 TypeRef::Fn(params) => {
78 let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect());
79 Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
80 }
81 TypeRef::DynTrait(bounds) => {
82 let self_ty = Ty::Bound(0);
83 let predicates = bounds
84 .iter()
85 .flat_map(|b| {
86 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
87 })
88 .collect();
89 Ty::Dyn(predicates)
90 }
91 TypeRef::ImplTrait(bounds) => {
92 let self_ty = Ty::Bound(0);
93 let predicates = bounds
94 .iter()
95 .flat_map(|b| {
96 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
97 })
98 .collect();
99 Ty::Opaque(predicates)
100 }
101 TypeRef::Error => Ty::Unknown,
102 }
103 }
104
105 /// This is only for `generic_predicates_for_param`, where we can't just
106 /// lower the self types of the predicates since that could lead to cycles.
107 /// So we just check here if the `type_ref` resolves to a generic param, and which.
108 fn from_hir_only_param(
109 db: &impl HirDatabase,
110 resolver: &Resolver,
111 type_ref: &TypeRef,
112 ) -> Option<u32> {
113 let path = match type_ref {
114 TypeRef::Path(path) => path,
115 _ => return None,
116 };
117 if let crate::PathKind::Type(_) = &path.kind {
118 return None;
119 }
120 if path.segments.len() > 1 {
121 return None;
122 }
123 let resolution = match resolver.resolve_path_in_type_ns(db, path) {
124 Some((it, None)) => it,
125 _ => return None,
126 };
127 if let TypeNs::GenericParam(idx) = resolution {
128 Some(idx)
129 } else {
130 None
131 }
132 }
133
134 pub(crate) fn from_type_relative_path(
135 db: &impl HirDatabase,
136 resolver: &Resolver,
137 ty: Ty,
138 remaining_segments: &[PathSegment],
139 ) -> Ty {
140 if remaining_segments.len() == 1 {
141 // resolve unselected assoc types
142 let segment = &remaining_segments[0];
143 Ty::select_associated_type(db, resolver, ty, segment)
144 } else if remaining_segments.len() > 1 {
145 // FIXME report error (ambiguous associated type)
146 Ty::Unknown
147 } else {
148 ty
149 }
150 }
151
152 pub(crate) fn from_partly_resolved_hir_path(
153 db: &impl HirDatabase,
154 resolver: &Resolver,
155 resolution: TypeNs,
156 resolved_segment: &PathSegment,
157 remaining_segments: &[PathSegment],
158 ) -> Ty {
159 let ty = match resolution {
160 TypeNs::TraitId(trait_) => {
161 let trait_ref = TraitRef::from_resolved_path(
162 db,
163 resolver,
164 trait_.into(),
165 resolved_segment,
166 None,
167 );
168 return if remaining_segments.len() == 1 {
169 let segment = &remaining_segments[0];
170 match trait_ref
171 .trait_
172 .associated_type_by_name_including_super_traits(db, &segment.name)
173 {
174 Some(associated_ty) => {
175 // FIXME handle type parameters on the segment
176 Ty::Projection(ProjectionTy {
177 associated_ty,
178 parameters: trait_ref.substs,
179 })
180 }
181 None => {
182 // FIXME: report error (associated type not found)
183 Ty::Unknown
184 }
185 }
186 } else if remaining_segments.len() > 1 {
187 // FIXME report error (ambiguous associated type)
188 Ty::Unknown
189 } else {
190 Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
191 };
192 }
193 TypeNs::GenericParam(idx) => {
194 // FIXME: maybe return name in resolution?
195 let name = resolved_segment.name.clone();
196 Ty::Param { idx, name }
197 }
198 TypeNs::SelfType(impl_block) => ImplBlock::from(impl_block).target_ty(db),
199 TypeNs::AdtSelfType(adt) => Adt::from(adt).ty(db),
200
201 TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
202 TypeNs::BuiltinType(it) => {
203 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
204 }
205 TypeNs::TypeAliasId(it) => {
206 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
207 }
208 // FIXME: report error
209 TypeNs::EnumVariantId(_) => return Ty::Unknown,
210 };
211
212 Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
213 }
214
215 pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
216 // Resolve the path (in type namespace)
217 if let crate::PathKind::Type(type_ref) = &path.kind {
218 let ty = Ty::from_hir(db, resolver, &type_ref);
219 let remaining_segments = &path.segments[..];
220 return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
221 }
222 let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
223 Some(it) => it,
224 None => return Ty::Unknown,
225 };
226 let (resolved_segment, remaining_segments) = match remaining_index {
227 None => (
228 path.segments.last().expect("resolved path has at least one element"),
229 &[] as &[PathSegment],
230 ),
231 Some(i) => (&path.segments[i - 1], &path.segments[i..]),
232 };
233 Ty::from_partly_resolved_hir_path(
234 db,
235 resolver,
236 resolution,
237 resolved_segment,
238 remaining_segments,
239 )
240 }
241
242 fn select_associated_type(
243 db: &impl HirDatabase,
244 resolver: &Resolver,
245 self_ty: Ty,
246 segment: &PathSegment,
247 ) -> Ty {
248 let param_idx = match self_ty {
249 Ty::Param { idx, .. } => idx,
250 _ => return Ty::Unknown, // Error: Ambiguous associated type
251 };
252 let def = match resolver.generic_def() {
253 Some(def) => def,
254 None => return Ty::Unknown, // this can't actually happen
255 };
256 let predicates = db.generic_predicates_for_param(def.into(), param_idx);
257 let traits_from_env = predicates.iter().filter_map(|pred| match pred {
258 GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
259 _ => None,
260 });
261 let traits = traits_from_env.flat_map(|t| t.all_super_traits(db));
262 for t in traits {
263 if let Some(associated_ty) = t.associated_type_by_name(db, &segment.name) {
264 let substs =
265 Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
266 // FIXME handle type parameters on the segment
267 return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
268 }
269 }
270 Ty::Unknown
271 }
272
273 fn from_hir_path_inner(
274 db: &impl HirDatabase,
275 resolver: &Resolver,
276 segment: &PathSegment,
277 typable: TypableDef,
278 ) -> Ty {
279 let ty = db.type_for_def(typable, Namespace::Types);
280 let substs = Ty::substs_from_path_segment(db, resolver, segment, typable);
281 ty.subst(&substs)
282 }
283
284 pub(super) fn substs_from_path_segment(
285 db: &impl HirDatabase,
286 resolver: &Resolver,
287 segment: &PathSegment,
288 resolved: TypableDef,
289 ) -> Substs {
290 let def_generic: Option<GenericDef> = match resolved {
291 TypableDef::Function(func) => Some(func.into()),
292 TypableDef::Adt(adt) => Some(adt.into()),
293 TypableDef::EnumVariant(var) => Some(var.parent_enum(db).into()),
294 TypableDef::TypeAlias(t) => Some(t.into()),
295 TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => None,
296 };
297 substs_from_path_segment(db, resolver, segment, def_generic, false)
298 }
299
300 /// Collect generic arguments from a path into a `Substs`. See also
301 /// `create_substs_for_ast_path` and `def_to_ty` in rustc.
302 pub(super) fn substs_from_path(
303 db: &impl HirDatabase,
304 resolver: &Resolver,
305 path: &Path,
306 resolved: TypableDef,
307 ) -> Substs {
308 let last = path.segments.last().expect("path should have at least one segment");
309 let segment = match resolved {
310 TypableDef::Function(_)
311 | TypableDef::Adt(_)
312 | TypableDef::Const(_)
313 | TypableDef::Static(_)
314 | TypableDef::TypeAlias(_)
315 | TypableDef::BuiltinType(_) => last,
316 TypableDef::EnumVariant(_) => {
317 // the generic args for an enum variant may be either specified
318 // on the segment referring to the enum, or on the segment
319 // referring to the variant. So `Option::<T>::None` and
320 // `Option::None::<T>` are both allowed (though the former is
321 // preferred). See also `def_ids_for_path_segments` in rustc.
322 let len = path.segments.len();
323 let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
324 // Option::<T>::None
325 &path.segments[len - 2]
326 } else {
327 // Option::None::<T>
328 last
329 };
330 segment
331 }
332 };
333 Ty::substs_from_path_segment(db, resolver, segment, resolved)
334 }
335}
336
337pub(super) fn substs_from_path_segment(
338 db: &impl HirDatabase,
339 resolver: &Resolver,
340 segment: &PathSegment,
341 def_generic: Option<GenericDef>,
342 add_self_param: bool,
343) -> Substs {
344 let mut substs = Vec::new();
345 let def_generics = def_generic.map(|def| db.generic_params(def.into()));
346
347 let (parent_param_count, param_count) =
348 def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
349 substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
350 if add_self_param {
351 // FIXME this add_self_param argument is kind of a hack: Traits have the
352 // Self type as an implicit first type parameter, but it can't be
353 // actually provided in the type arguments
354 // (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
355 substs.push(Ty::Unknown);
356 }
357 if let Some(generic_args) = &segment.args_and_bindings {
358 // if args are provided, it should be all of them, but we can't rely on that
359 let self_param_correction = if add_self_param { 1 } else { 0 };
360 let param_count = param_count - self_param_correction;
361 for arg in generic_args.args.iter().take(param_count) {
362 match arg {
363 GenericArg::Type(type_ref) => {
364 let ty = Ty::from_hir(db, resolver, type_ref);
365 substs.push(ty);
366 }
367 }
368 }
369 }
370 // add placeholders for args that were not provided
371 let supplied_params = substs.len();
372 for _ in supplied_params..parent_param_count + param_count {
373 substs.push(Ty::Unknown);
374 }
375 assert_eq!(substs.len(), parent_param_count + param_count);
376
377 // handle defaults
378 if let Some(def_generic) = def_generic {
379 let default_substs = db.generic_defaults(def_generic);
380 assert_eq!(substs.len(), default_substs.len());
381
382 for (i, default_ty) in default_substs.iter().enumerate() {
383 if substs[i] == Ty::Unknown {
384 substs[i] = default_ty.clone();
385 }
386 }
387 }
388
389 Substs(substs.into())
390}
391
392impl TraitRef {
393 pub(crate) fn from_path(
394 db: &impl HirDatabase,
395 resolver: &Resolver,
396 path: &Path,
397 explicit_self_ty: Option<Ty>,
398 ) -> Option<Self> {
399 let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
400 TypeNs::TraitId(tr) => tr,
401 _ => return None,
402 };
403 let segment = path.segments.last().expect("path should have at least one segment");
404 Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty))
405 }
406
407 pub(super) fn from_resolved_path(
408 db: &impl HirDatabase,
409 resolver: &Resolver,
410 resolved: Trait,
411 segment: &PathSegment,
412 explicit_self_ty: Option<Ty>,
413 ) -> Self {
414 let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
415 if let Some(self_ty) = explicit_self_ty {
416 make_mut_slice(&mut substs.0)[0] = self_ty;
417 }
418 TraitRef { trait_: resolved, substs }
419 }
420
421 pub(crate) fn from_hir(
422 db: &impl HirDatabase,
423 resolver: &Resolver,
424 type_ref: &TypeRef,
425 explicit_self_ty: Option<Ty>,
426 ) -> Option<Self> {
427 let path = match type_ref {
428 TypeRef::Path(path) => path,
429 _ => return None,
430 };
431 TraitRef::from_path(db, resolver, path, explicit_self_ty)
432 }
433
434 fn substs_from_path(
435 db: &impl HirDatabase,
436 resolver: &Resolver,
437 segment: &PathSegment,
438 resolved: Trait,
439 ) -> Substs {
440 let has_self_param =
441 segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
442 substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
443 }
444
445 pub(crate) fn for_trait(db: &impl HirDatabase, trait_: Trait) -> TraitRef {
446 let substs = Substs::identity(&db.generic_params(trait_.id.into()));
447 TraitRef { trait_, substs }
448 }
449
450 pub(crate) fn from_type_bound(
451 db: &impl HirDatabase,
452 resolver: &Resolver,
453 bound: &TypeBound,
454 self_ty: Ty,
455 ) -> Option<TraitRef> {
456 match bound {
457 TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
458 TypeBound::Error => None,
459 }
460 }
461}
462
463impl GenericPredicate {
464 pub(crate) fn from_where_predicate<'a>(
465 db: &'a impl HirDatabase,
466 resolver: &'a Resolver,
467 where_predicate: &'a WherePredicate,
468 ) -> impl Iterator<Item = GenericPredicate> + 'a {
469 let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
470 GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
471 }
472
473 pub(crate) fn from_type_bound<'a>(
474 db: &'a impl HirDatabase,
475 resolver: &'a Resolver,
476 bound: &'a TypeBound,
477 self_ty: Ty,
478 ) -> impl Iterator<Item = GenericPredicate> + 'a {
479 let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
480 iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
481 .chain(
482 trait_ref.into_iter().flat_map(move |tr| {
483 assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
484 }),
485 )
486 }
487}
488
489fn assoc_type_bindings_from_type_bound<'a>(
490 db: &'a impl HirDatabase,
491 resolver: &'a Resolver,
492 bound: &'a TypeBound,
493 trait_ref: TraitRef,
494) -> impl Iterator<Item = GenericPredicate> + 'a {
495 let last_segment = match bound {
496 TypeBound::Path(path) => path.segments.last(),
497 TypeBound::Error => None,
498 };
499 last_segment
500 .into_iter()
501 .flat_map(|segment| segment.args_and_bindings.iter())
502 .flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
503 .map(move |(name, type_ref)| {
504 let associated_ty =
505 match trait_ref.trait_.associated_type_by_name_including_super_traits(db, &name) {
506 None => return GenericPredicate::Error,
507 Some(t) => t,
508 };
509 let projection_ty =
510 ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
511 let ty = Ty::from_hir(db, resolver, type_ref);
512 let projection_predicate = ProjectionPredicate { projection_ty, ty };
513 GenericPredicate::Projection(projection_predicate)
514 })
515}
516
517/// Build the declared type of an item. This depends on the namespace; e.g. for
518/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
519/// the constructor function `(usize) -> Foo` which lives in the values
520/// namespace.
521pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty {
522 match (def, ns) {
523 (TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f),
524 (TypableDef::Adt(Adt::Struct(s)), Namespace::Values) => type_for_struct_constructor(db, s),
525 (TypableDef::Adt(adt), Namespace::Types) => type_for_adt(db, adt),
526 (TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v),
527 (TypableDef::TypeAlias(t), Namespace::Types) => type_for_type_alias(db, t),
528 (TypableDef::Const(c), Namespace::Values) => type_for_const(db, c),
529 (TypableDef::Static(c), Namespace::Values) => type_for_static(db, c),
530 (TypableDef::BuiltinType(t), Namespace::Types) => type_for_builtin(t),
531
532 // 'error' cases:
533 (TypableDef::Function(_), Namespace::Types) => Ty::Unknown,
534 (TypableDef::Adt(Adt::Union(_)), Namespace::Values) => Ty::Unknown,
535 (TypableDef::Adt(Adt::Enum(_)), Namespace::Values) => Ty::Unknown,
536 (TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown,
537 (TypableDef::TypeAlias(_), Namespace::Values) => Ty::Unknown,
538 (TypableDef::Const(_), Namespace::Types) => Ty::Unknown,
539 (TypableDef::Static(_), Namespace::Types) => Ty::Unknown,
540 (TypableDef::BuiltinType(_), Namespace::Values) => Ty::Unknown,
541 }
542}
543
544/// Build the signature of a callable item (function, struct or enum variant).
545pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
546 match def {
547 CallableDef::Function(f) => fn_sig_for_fn(db, f),
548 CallableDef::Struct(s) => fn_sig_for_struct_constructor(db, s),
549 CallableDef::EnumVariant(e) => fn_sig_for_enum_variant_constructor(db, e),
550 }
551}
552
553/// Build the type of all specific fields of a struct or enum variant.
554pub(crate) fn field_types_query(
555 db: &impl HirDatabase,
556 variant_id: VariantId,
557) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
558 let (resolver, var_data) = match variant_id {
559 VariantId::StructId(it) => (it.resolver(db), db.struct_data(it.0).variant_data.clone()),
560 VariantId::EnumVariantId(it) => (
561 it.parent.resolver(db),
562 db.enum_data(it.parent).variants[it.local_id].variant_data.clone(),
563 ),
564 };
565 let mut res = ArenaMap::default();
566 for (field_id, field_data) in var_data.fields().iter() {
567 res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref))
568 }
569 Arc::new(res)
570}
571
572/// This query exists only to be used when resolving short-hand associated types
573/// like `T::Item`.
574///
575/// See the analogous query in rustc and its comment:
576/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
577/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
578/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
579/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
580pub(crate) fn generic_predicates_for_param_query(
581 db: &impl HirDatabase,
582 def: GenericDef,
583 param_idx: u32,
584) -> Arc<[GenericPredicate]> {
585 let resolver = GenericDefId::from(def).resolver(db);
586 resolver
587 .where_predicates_in_scope()
588 // we have to filter out all other predicates *first*, before attempting to lower them
589 .filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
590 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
591 .collect()
592}
593
594pub(crate) fn trait_env(
595 db: &impl HirDatabase,
596 resolver: &Resolver,
597) -> Arc<super::TraitEnvironment> {
598 let predicates = resolver
599 .where_predicates_in_scope()
600 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
601 .collect::<Vec<_>>();
602
603 Arc::new(super::TraitEnvironment { predicates })
604}
605
606/// Resolve the where clause(s) of an item with generics.
607pub(crate) fn generic_predicates_query(
608 db: &impl HirDatabase,
609 def: GenericDef,
610) -> Arc<[GenericPredicate]> {
611 let resolver = GenericDefId::from(def).resolver(db);
612 resolver
613 .where_predicates_in_scope()
614 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
615 .collect()
616}
617
618/// Resolve the default type params from generics
619pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDef) -> Substs {
620 let resolver = GenericDefId::from(def).resolver(db);
621 let generic_params = db.generic_params(def.into());
622
623 let defaults = generic_params
624 .params_including_parent()
625 .into_iter()
626 .map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t)))
627 .collect();
628
629 Substs(defaults)
630}
631
632fn fn_sig_for_fn(db: &impl HirDatabase, def: Function) -> FnSig {
633 let data = db.function_data(def.id);
634 let resolver = def.id.resolver(db);
635 let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
636 let ret = Ty::from_hir(db, &resolver, &data.ret_type);
637 FnSig::from_params_and_return(params, ret)
638}
639
640/// Build the declared type of a function. This should not need to look at the
641/// function body.
642fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
643 let generics = db.generic_params(def.id.into());
644 let substs = Substs::identity(&generics);
645 Ty::apply(TypeCtor::FnDef(def.into()), substs)
646}
647
648/// Build the declared type of a const.
649fn type_for_const(db: &impl HirDatabase, def: Const) -> Ty {
650 let data = db.const_data(def.id);
651 let resolver = def.id.resolver(db);
652
653 Ty::from_hir(db, &resolver, &data.type_ref)
654}
655
656/// Build the declared type of a static.
657fn type_for_static(db: &impl HirDatabase, def: Static) -> Ty {
658 let data = db.static_data(def.id);
659 let resolver = def.id.resolver(db);
660
661 Ty::from_hir(db, &resolver, &data.type_ref)
662}
663
664/// Build the declared type of a static.
665fn type_for_builtin(def: BuiltinType) -> Ty {
666 Ty::simple(match def {
667 BuiltinType::Char => TypeCtor::Char,
668 BuiltinType::Bool => TypeCtor::Bool,
669 BuiltinType::Str => TypeCtor::Str,
670 BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
671 BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
672 })
673}
674
675impl From<BuiltinInt> for IntTy {
676 fn from(t: BuiltinInt) -> Self {
677 IntTy { signedness: t.signedness, bitness: t.bitness }
678 }
679}
680
681impl From<BuiltinFloat> for FloatTy {
682 fn from(t: BuiltinFloat) -> Self {
683 FloatTy { bitness: t.bitness }
684 }
685}
686
687impl From<Option<BuiltinInt>> for Uncertain<IntTy> {
688 fn from(t: Option<BuiltinInt>) -> Self {
689 match t {
690 None => Uncertain::Unknown,
691 Some(t) => Uncertain::Known(t.into()),
692 }
693 }
694}
695
696impl From<Option<BuiltinFloat>> for Uncertain<FloatTy> {
697 fn from(t: Option<BuiltinFloat>) -> Self {
698 match t {
699 None => Uncertain::Unknown,
700 Some(t) => Uncertain::Known(t.into()),
701 }
702 }
703}
704
705fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> FnSig {
706 let struct_data = db.struct_data(def.id.into());
707 let fields = struct_data.variant_data.fields();
708 let resolver = def.id.resolver(db);
709 let params = fields
710 .iter()
711 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
712 .collect::<Vec<_>>();
713 let ret = type_for_adt(db, def);
714 FnSig::from_params_and_return(params, ret)
715}
716
717/// Build the type of a tuple struct constructor.
718fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty {
719 let struct_data = db.struct_data(def.id.into());
720 if struct_data.variant_data.is_unit() {
721 return type_for_adt(db, def); // Unit struct
722 }
723 let generics = db.generic_params(def.id.into());
724 let substs = Substs::identity(&generics);
725 Ty::apply(TypeCtor::FnDef(def.into()), substs)
726}
727
728fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> FnSig {
729 let var_data = def.variant_data(db);
730 let fields = var_data.fields();
731 let resolver = def.parent.id.resolver(db);
732 let params = fields
733 .iter()
734 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
735 .collect::<Vec<_>>();
736 let generics = db.generic_params(def.parent_enum(db).id.into());
737 let substs = Substs::identity(&generics);
738 let ret = type_for_adt(db, def.parent_enum(db)).subst(&substs);
739 FnSig::from_params_and_return(params, ret)
740}
741
742/// Build the type of a tuple enum variant constructor.
743fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty {
744 let var_data = def.variant_data(db);
745 if var_data.is_unit() {
746 return type_for_adt(db, def.parent_enum(db)); // Unit variant
747 }
748 let generics = db.generic_params(def.parent_enum(db).id.into());
749 let substs = Substs::identity(&generics);
750 Ty::apply(TypeCtor::FnDef(def.into()), substs)
751}
752
753fn type_for_adt(db: &impl HirDatabase, adt: impl Into<Adt>) -> Ty {
754 let adt = adt.into();
755 let adt_id: AdtId = adt.into();
756 let generics = db.generic_params(adt_id.into());
757 Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics))
758}
759
760fn type_for_type_alias(db: &impl HirDatabase, t: TypeAlias) -> Ty {
761 let generics = db.generic_params(t.id.into());
762 let resolver = t.id.resolver(db);
763 let type_ref = t.type_ref(db);
764 let substs = Substs::identity(&generics);
765 let inner = Ty::from_hir(db, &resolver, &type_ref.unwrap_or(TypeRef::Error));
766 inner.subst(&substs)
767}
768
769#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
770pub enum TypableDef {
771 Function(Function),
772 Adt(Adt),
773 EnumVariant(EnumVariant),
774 TypeAlias(TypeAlias),
775 Const(Const),
776 Static(Static),
777 BuiltinType(BuiltinType),
778}
779impl_froms!(
780 TypableDef: Function,
781 Adt(Struct, Enum, Union),
782 EnumVariant,
783 TypeAlias,
784 Const,
785 Static,
786 BuiltinType
787);
788
789impl From<ModuleDef> for Option<TypableDef> {
790 fn from(def: ModuleDef) -> Option<TypableDef> {
791 let res = match def {
792 ModuleDef::Function(f) => f.into(),
793 ModuleDef::Adt(adt) => adt.into(),
794 ModuleDef::EnumVariant(v) => v.into(),
795 ModuleDef::TypeAlias(t) => t.into(),
796 ModuleDef::Const(v) => v.into(),
797 ModuleDef::Static(v) => v.into(),
798 ModuleDef::BuiltinType(t) => t.into(),
799 ModuleDef::Module(_) | ModuleDef::Trait(_) => return None,
800 };
801 Some(res)
802 }
803}
804
805#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
806pub enum CallableDef {
807 Function(Function),
808 Struct(Struct),
809 EnumVariant(EnumVariant),
810}
811impl_froms!(CallableDef: Function, Struct, EnumVariant);
812
813impl CallableDef {
814 pub fn krate(self, db: &impl HirDatabase) -> Option<crate::Crate> {
815 match self {
816 CallableDef::Function(f) => f.krate(db),
817 CallableDef::Struct(s) => s.krate(db),
818 CallableDef::EnumVariant(e) => e.parent_enum(db).krate(db),
819 }
820 }
821}
822
823impl From<CallableDef> for GenericDef {
824 fn from(def: CallableDef) -> GenericDef {
825 match def {
826 CallableDef::Function(f) => f.into(),
827 CallableDef::Struct(s) => s.into(),
828 CallableDef::EnumVariant(e) => e.into(),
829 }
830 }
831}
diff --git a/crates/ra_hir/src/ty/method_resolution.rs b/crates/ra_hir/src/ty/method_resolution.rs
deleted file mode 100644
index caa5f5f74..000000000
--- a/crates/ra_hir/src/ty/method_resolution.rs
+++ /dev/null
@@ -1,375 +0,0 @@
1//! This module is concerned with finding methods that a given type provides.
2//! For details about how this works in rustc, see the method lookup page in the
3//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
4//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
5use std::sync::Arc;
6
7use arrayvec::ArrayVec;
8use hir_def::{lang_item::LangItemTarget, resolver::Resolver, AstItemDef};
9use rustc_hash::FxHashMap;
10
11use crate::{
12 db::HirDatabase,
13 ty::primitive::{FloatBitness, Uncertain},
14 ty::{Ty, TypeCtor},
15 AssocItem, Crate, Function, ImplBlock, Module, Mutability, Name, Trait,
16};
17
18use super::{autoderef, lower, Canonical, InEnvironment, TraitEnvironment, TraitRef};
19
20/// This is used as a key for indexing impls.
21#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
22pub enum TyFingerprint {
23 Apply(TypeCtor),
24}
25
26impl TyFingerprint {
27 /// Creates a TyFingerprint for looking up an impl. Only certain types can
28 /// have impls: if we have some `struct S`, we can have an `impl S`, but not
29 /// `impl &S`. Hence, this will return `None` for reference types and such.
30 fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
31 match ty {
32 Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
33 _ => None,
34 }
35 }
36}
37
38#[derive(Debug, PartialEq, Eq)]
39pub struct CrateImplBlocks {
40 impls: FxHashMap<TyFingerprint, Vec<ImplBlock>>,
41 impls_by_trait: FxHashMap<Trait, Vec<ImplBlock>>,
42}
43
44impl CrateImplBlocks {
45 pub(crate) fn impls_in_crate_query(
46 db: &impl HirDatabase,
47 krate: Crate,
48 ) -> Arc<CrateImplBlocks> {
49 let mut crate_impl_blocks =
50 CrateImplBlocks { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
51 if let Some(module) = krate.root_module(db) {
52 crate_impl_blocks.collect_recursive(db, module);
53 }
54 Arc::new(crate_impl_blocks)
55 }
56 pub fn lookup_impl_blocks(&self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + '_ {
57 let fingerprint = TyFingerprint::for_impl(ty);
58 fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
59 }
60
61 pub fn lookup_impl_blocks_for_trait(&self, tr: Trait) -> impl Iterator<Item = ImplBlock> + '_ {
62 self.impls_by_trait.get(&tr).into_iter().flatten().copied()
63 }
64
65 pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplBlock> + 'a {
66 self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
67 }
68
69 fn collect_recursive(&mut self, db: &impl HirDatabase, module: Module) {
70 for impl_block in module.impl_blocks(db) {
71 let target_ty = impl_block.target_ty(db);
72
73 if impl_block.target_trait(db).is_some() {
74 if let Some(tr) = impl_block.target_trait_ref(db) {
75 self.impls_by_trait.entry(tr.trait_).or_default().push(impl_block);
76 }
77 } else {
78 if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
79 self.impls.entry(target_ty_fp).or_default().push(impl_block);
80 }
81 }
82 }
83
84 for child in module.children(db) {
85 self.collect_recursive(db, child);
86 }
87 }
88}
89
90fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<ArrayVec<[Crate; 2]>> {
91 // Types like slice can have inherent impls in several crates, (core and alloc).
92 // The corresponding impls are marked with lang items, so we can use them to find the required crates.
93 macro_rules! lang_item_crate {
94 ($($name:expr),+ $(,)?) => {{
95 let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
96 $(
97 v.extend(db.lang_item(cur_crate.crate_id, $name.into()));
98 )+
99 v
100 }};
101 }
102
103 let lang_item_targets = match ty {
104 Ty::Apply(a_ty) => match a_ty.ctor {
105 TypeCtor::Adt(def_id) => return Some(std::iter::once(def_id.krate(db)?).collect()),
106 TypeCtor::Bool => lang_item_crate!("bool"),
107 TypeCtor::Char => lang_item_crate!("char"),
108 TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
109 // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
110 FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
111 FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
112 },
113 TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
114 TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
115 TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
116 TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
117 TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
118 _ => return None,
119 },
120 _ => return None,
121 };
122 let res = lang_item_targets
123 .into_iter()
124 .filter_map(|it| match it {
125 LangItemTarget::ImplBlockId(it) => Some(it),
126 _ => None,
127 })
128 .map(|it| it.module(db).krate.into())
129 .collect();
130 Some(res)
131}
132
133/// Look up the method with the given name, returning the actual autoderefed
134/// receiver type (but without autoref applied yet).
135pub(crate) fn lookup_method(
136 ty: &Canonical<Ty>,
137 db: &impl HirDatabase,
138 name: &Name,
139 resolver: &Resolver,
140) -> Option<(Ty, Function)> {
141 iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| match f
142 {
143 AssocItem::Function(f) => Some((ty.clone(), f)),
144 _ => None,
145 })
146}
147
148/// Whether we're looking up a dotted method call (like `v.len()`) or a path
149/// (like `Vec::new`).
150#[derive(Copy, Clone, Debug, PartialEq, Eq)]
151pub enum LookupMode {
152 /// Looking up a method call like `v.len()`: We only consider candidates
153 /// that have a `self` parameter, and do autoderef.
154 MethodCall,
155 /// Looking up a path like `Vec::new` or `Vec::default`: We consider all
156 /// candidates including associated constants, but don't do autoderef.
157 Path,
158}
159
160// This would be nicer if it just returned an iterator, but that runs into
161// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
162// FIXME add a context type here?
163pub(crate) fn iterate_method_candidates<T>(
164 ty: &Canonical<Ty>,
165 db: &impl HirDatabase,
166 resolver: &Resolver,
167 name: Option<&Name>,
168 mode: LookupMode,
169 mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
170) -> Option<T> {
171 let krate = resolver.krate()?;
172 match mode {
173 LookupMode::MethodCall => {
174 // For method calls, rust first does any number of autoderef, and then one
175 // autoref (i.e. when the method takes &self or &mut self). We just ignore
176 // the autoref currently -- when we find a method matching the given name,
177 // we assume it fits.
178
179 // Also note that when we've got a receiver like &S, even if the method we
180 // find in the end takes &self, we still do the autoderef step (just as
181 // rustc does an autoderef and then autoref again).
182
183 for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) {
184 if let Some(result) = iterate_inherent_methods(
185 &derefed_ty,
186 db,
187 name,
188 mode,
189 krate.into(),
190 &mut callback,
191 ) {
192 return Some(result);
193 }
194 if let Some(result) = iterate_trait_method_candidates(
195 &derefed_ty,
196 db,
197 resolver,
198 name,
199 mode,
200 &mut callback,
201 ) {
202 return Some(result);
203 }
204 }
205 }
206 LookupMode::Path => {
207 // No autoderef for path lookups
208 if let Some(result) =
209 iterate_inherent_methods(&ty, db, name, mode, krate.into(), &mut callback)
210 {
211 return Some(result);
212 }
213 if let Some(result) =
214 iterate_trait_method_candidates(&ty, db, resolver, name, mode, &mut callback)
215 {
216 return Some(result);
217 }
218 }
219 }
220 None
221}
222
223fn iterate_trait_method_candidates<T>(
224 ty: &Canonical<Ty>,
225 db: &impl HirDatabase,
226 resolver: &Resolver,
227 name: Option<&Name>,
228 mode: LookupMode,
229 mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
230) -> Option<T> {
231 let krate = resolver.krate()?;
232 // FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
233 let env = lower::trait_env(db, resolver);
234 // if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
235 let inherent_trait = ty.value.inherent_trait().into_iter();
236 // if we have `T: Trait` in the param env, the trait doesn't need to be in scope
237 let traits_from_env = env
238 .trait_predicates_for_self_ty(&ty.value)
239 .map(|tr| tr.trait_)
240 .flat_map(|t| t.all_super_traits(db));
241 let traits = inherent_trait
242 .chain(traits_from_env)
243 .chain(resolver.traits_in_scope(db).into_iter().map(Trait::from));
244 'traits: for t in traits {
245 let data = db.trait_data(t.id);
246
247 // we'll be lazy about checking whether the type implements the
248 // trait, but if we find out it doesn't, we'll skip the rest of the
249 // iteration
250 let mut known_implemented = false;
251 for &item in data.items.iter() {
252 if !is_valid_candidate(db, name, mode, item.into()) {
253 continue;
254 }
255 if !known_implemented {
256 let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
257 if db.trait_solve(krate.into(), goal).is_none() {
258 continue 'traits;
259 }
260 }
261 known_implemented = true;
262 if let Some(result) = callback(&ty.value, item.into()) {
263 return Some(result);
264 }
265 }
266 }
267 None
268}
269
270fn iterate_inherent_methods<T>(
271 ty: &Canonical<Ty>,
272 db: &impl HirDatabase,
273 name: Option<&Name>,
274 mode: LookupMode,
275 krate: Crate,
276 mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
277) -> Option<T> {
278 for krate in def_crates(db, krate, &ty.value)? {
279 let impls = db.impls_in_crate(krate);
280
281 for impl_block in impls.lookup_impl_blocks(&ty.value) {
282 for item in impl_block.items(db) {
283 if !is_valid_candidate(db, name, mode, item) {
284 continue;
285 }
286 if let Some(result) = callback(&ty.value, item) {
287 return Some(result);
288 }
289 }
290 }
291 }
292 None
293}
294
295fn is_valid_candidate(
296 db: &impl HirDatabase,
297 name: Option<&Name>,
298 mode: LookupMode,
299 item: AssocItem,
300) -> bool {
301 match item {
302 AssocItem::Function(m) => {
303 let data = db.function_data(m.id);
304 name.map_or(true, |name| data.name == *name)
305 && (data.has_self_param || mode == LookupMode::Path)
306 }
307 AssocItem::Const(c) => {
308 name.map_or(true, |name| Some(name) == c.name(db).as_ref())
309 && (mode == LookupMode::Path)
310 }
311 _ => false,
312 }
313}
314
315pub(crate) fn implements_trait(
316 ty: &Canonical<Ty>,
317 db: &impl HirDatabase,
318 resolver: &Resolver,
319 krate: Crate,
320 trait_: Trait,
321) -> bool {
322 if ty.value.inherent_trait() == Some(trait_) {
323 // FIXME this is a bit of a hack, since Chalk should say the same thing
324 // anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
325 return true;
326 }
327 let env = lower::trait_env(db, resolver);
328 let goal = generic_implements_goal(db, env, trait_, ty.clone());
329 let solution = db.trait_solve(krate, goal);
330
331 solution.is_some()
332}
333
334impl Ty {
335 // This would be nicer if it just returned an iterator, but that runs into
336 // lifetime problems, because we need to borrow temp `CrateImplBlocks`.
337 pub fn iterate_impl_items<T>(
338 self,
339 db: &impl HirDatabase,
340 krate: Crate,
341 mut callback: impl FnMut(AssocItem) -> Option<T>,
342 ) -> Option<T> {
343 for krate in def_crates(db, krate, &self)? {
344 let impls = db.impls_in_crate(krate);
345
346 for impl_block in impls.lookup_impl_blocks(&self) {
347 for item in impl_block.items(db) {
348 if let Some(result) = callback(item) {
349 return Some(result);
350 }
351 }
352 }
353 }
354 None
355 }
356}
357
358/// This creates Substs for a trait with the given Self type and type variables
359/// for all other parameters, to query Chalk with it.
360fn generic_implements_goal(
361 db: &impl HirDatabase,
362 env: Arc<TraitEnvironment>,
363 trait_: Trait,
364 self_ty: Canonical<Ty>,
365) -> Canonical<InEnvironment<super::Obligation>> {
366 let num_vars = self_ty.num_vars;
367 let substs = super::Substs::build_for_def(db, trait_)
368 .push(self_ty.value)
369 .fill_with_bound_vars(num_vars as u32)
370 .build();
371 let num_vars = substs.len() - 1 + self_ty.num_vars;
372 let trait_ref = TraitRef { trait_, substs };
373 let obligation = super::Obligation::Trait(trait_ref);
374 Canonical { num_vars, value: InEnvironment::new(env, obligation) }
375}
diff --git a/crates/ra_hir/src/ty/op.rs b/crates/ra_hir/src/ty/op.rs
deleted file mode 100644
index bcfa3a6a2..000000000
--- a/crates/ra_hir/src/ty/op.rs
+++ /dev/null
@@ -1,52 +0,0 @@
1//! FIXME: write short doc here
2
3use super::{InferTy, Ty, TypeCtor};
4use crate::{
5 expr::{BinaryOp, CmpOp},
6 ty::ApplicationTy,
7};
8
9pub(super) fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty {
10 match op {
11 BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => Ty::simple(TypeCtor::Bool),
12 BinaryOp::Assignment { .. } => Ty::unit(),
13 BinaryOp::ArithOp(_) => match rhs_ty {
14 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
15 TypeCtor::Int(..) | TypeCtor::Float(..) => rhs_ty,
16 _ => Ty::Unknown,
17 },
18 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => rhs_ty,
19 _ => Ty::Unknown,
20 },
21 }
22}
23
24pub(super) fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty {
25 match op {
26 BinaryOp::LogicOp(..) => Ty::simple(TypeCtor::Bool),
27 BinaryOp::Assignment { op: None } | BinaryOp::CmpOp(CmpOp::Eq { negated: _ }) => {
28 match lhs_ty {
29 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
30 TypeCtor::Int(..)
31 | TypeCtor::Float(..)
32 | TypeCtor::Str
33 | TypeCtor::Char
34 | TypeCtor::Bool => lhs_ty,
35 _ => Ty::Unknown,
36 },
37 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
38 _ => Ty::Unknown,
39 }
40 }
41 BinaryOp::CmpOp(CmpOp::Ord { .. })
42 | BinaryOp::Assignment { op: Some(_) }
43 | BinaryOp::ArithOp(_) => match lhs_ty {
44 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
45 TypeCtor::Int(..) | TypeCtor::Float(..) => lhs_ty,
46 _ => Ty::Unknown,
47 },
48 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
49 _ => Ty::Unknown,
50 },
51 }
52}
diff --git a/crates/ra_hir/src/ty/primitive.rs b/crates/ra_hir/src/ty/primitive.rs
deleted file mode 100644
index 47789db87..000000000
--- a/crates/ra_hir/src/ty/primitive.rs
+++ /dev/null
@@ -1,160 +0,0 @@
1//! FIXME: write short doc here
2
3use std::fmt;
4
5pub use hir_def::builtin_type::{FloatBitness, IntBitness, Signedness};
6
7#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
8pub enum Uncertain<T> {
9 Unknown,
10 Known(T),
11}
12
13impl From<IntTy> for Uncertain<IntTy> {
14 fn from(ty: IntTy) -> Self {
15 Uncertain::Known(ty)
16 }
17}
18
19impl fmt::Display for Uncertain<IntTy> {
20 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
21 match *self {
22 Uncertain::Unknown => write!(f, "{{integer}}"),
23 Uncertain::Known(ty) => write!(f, "{}", ty),
24 }
25 }
26}
27
28impl From<FloatTy> for Uncertain<FloatTy> {
29 fn from(ty: FloatTy) -> Self {
30 Uncertain::Known(ty)
31 }
32}
33
34impl fmt::Display for Uncertain<FloatTy> {
35 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
36 match *self {
37 Uncertain::Unknown => write!(f, "{{float}}"),
38 Uncertain::Known(ty) => write!(f, "{}", ty),
39 }
40 }
41}
42
43#[derive(Copy, Clone, Eq, PartialEq, Hash)]
44pub struct IntTy {
45 pub signedness: Signedness,
46 pub bitness: IntBitness,
47}
48
49impl fmt::Debug for IntTy {
50 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
51 fmt::Display::fmt(self, f)
52 }
53}
54
55impl fmt::Display for IntTy {
56 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
57 write!(f, "{}", self.ty_to_string())
58 }
59}
60
61impl IntTy {
62 pub fn isize() -> IntTy {
63 IntTy { signedness: Signedness::Signed, bitness: IntBitness::Xsize }
64 }
65
66 pub fn i8() -> IntTy {
67 IntTy { signedness: Signedness::Signed, bitness: IntBitness::X8 }
68 }
69
70 pub fn i16() -> IntTy {
71 IntTy { signedness: Signedness::Signed, bitness: IntBitness::X16 }
72 }
73
74 pub fn i32() -> IntTy {
75 IntTy { signedness: Signedness::Signed, bitness: IntBitness::X32 }
76 }
77
78 pub fn i64() -> IntTy {
79 IntTy { signedness: Signedness::Signed, bitness: IntBitness::X64 }
80 }
81
82 pub fn i128() -> IntTy {
83 IntTy { signedness: Signedness::Signed, bitness: IntBitness::X128 }
84 }
85
86 pub fn usize() -> IntTy {
87 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::Xsize }
88 }
89
90 pub fn u8() -> IntTy {
91 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X8 }
92 }
93
94 pub fn u16() -> IntTy {
95 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X16 }
96 }
97
98 pub fn u32() -> IntTy {
99 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X32 }
100 }
101
102 pub fn u64() -> IntTy {
103 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X64 }
104 }
105
106 pub fn u128() -> IntTy {
107 IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X128 }
108 }
109
110 pub(crate) fn ty_to_string(self) -> &'static str {
111 match (self.signedness, self.bitness) {
112 (Signedness::Signed, IntBitness::Xsize) => "isize",
113 (Signedness::Signed, IntBitness::X8) => "i8",
114 (Signedness::Signed, IntBitness::X16) => "i16",
115 (Signedness::Signed, IntBitness::X32) => "i32",
116 (Signedness::Signed, IntBitness::X64) => "i64",
117 (Signedness::Signed, IntBitness::X128) => "i128",
118 (Signedness::Unsigned, IntBitness::Xsize) => "usize",
119 (Signedness::Unsigned, IntBitness::X8) => "u8",
120 (Signedness::Unsigned, IntBitness::X16) => "u16",
121 (Signedness::Unsigned, IntBitness::X32) => "u32",
122 (Signedness::Unsigned, IntBitness::X64) => "u64",
123 (Signedness::Unsigned, IntBitness::X128) => "u128",
124 }
125 }
126}
127
128#[derive(Copy, Clone, PartialEq, Eq, Hash)]
129pub struct FloatTy {
130 pub bitness: FloatBitness,
131}
132
133impl fmt::Debug for FloatTy {
134 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
135 fmt::Display::fmt(self, f)
136 }
137}
138
139impl fmt::Display for FloatTy {
140 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
141 write!(f, "{}", self.ty_to_string())
142 }
143}
144
145impl FloatTy {
146 pub fn f32() -> FloatTy {
147 FloatTy { bitness: FloatBitness::X32 }
148 }
149
150 pub fn f64() -> FloatTy {
151 FloatTy { bitness: FloatBitness::X64 }
152 }
153
154 pub(crate) fn ty_to_string(self) -> &'static str {
155 match self.bitness {
156 FloatBitness::X32 => "f32",
157 FloatBitness::X64 => "f64",
158 }
159 }
160}
diff --git a/crates/ra_hir/src/ty/tests.rs b/crates/ra_hir/src/ty/tests.rs
deleted file mode 100644
index 3209c66bd..000000000
--- a/crates/ra_hir/src/ty/tests.rs
+++ /dev/null
@@ -1,4895 +0,0 @@
1mod never_type;
2mod coercion;
3
4use std::fmt::Write;
5use std::sync::Arc;
6
7use insta::assert_snapshot;
8use ra_db::{fixture::WithFixture, salsa::Database, FilePosition, SourceDatabase};
9use ra_syntax::{
10 algo,
11 ast::{self, AstNode},
12 SyntaxKind::*,
13};
14use rustc_hash::FxHashSet;
15use test_utils::covers;
16
17use crate::{
18 expr::BodySourceMap, test_db::TestDB, ty::display::HirDisplay, ty::InferenceResult, Source,
19 SourceAnalyzer,
20};
21
22// These tests compare the inference results for all expressions in a file
23// against snapshots of the expected results using insta. Use cargo-insta to
24// update the snapshots.
25
26#[test]
27fn cfg_impl_block() {
28 let (db, pos) = TestDB::with_position(
29 r#"
30//- /main.rs crate:main deps:foo cfg:test
31use foo::S as T;
32struct S;
33
34#[cfg(test)]
35impl S {
36 fn foo1(&self) -> i32 { 0 }
37}
38
39#[cfg(not(test))]
40impl S {
41 fn foo2(&self) -> i32 { 0 }
42}
43
44fn test() {
45 let t = (S.foo1(), S.foo2(), T.foo3(), T.foo4());
46 t<|>;
47}
48
49//- /foo.rs crate:foo
50struct S;
51
52#[cfg(not(test))]
53impl S {
54 fn foo3(&self) -> i32 { 0 }
55}
56
57#[cfg(test)]
58impl S {
59 fn foo4(&self) -> i32 { 0 }
60}
61"#,
62 );
63 assert_eq!("(i32, {unknown}, i32, {unknown})", type_at_pos(&db, pos));
64}
65
66#[test]
67fn infer_await() {
68 let (db, pos) = TestDB::with_position(
69 r#"
70//- /main.rs crate:main deps:std
71
72struct IntFuture;
73
74impl Future for IntFuture {
75 type Output = u64;
76}
77
78fn test() {
79 let r = IntFuture;
80 let v = r.await;
81 v<|>;
82}
83
84//- /std.rs crate:std
85#[prelude_import] use future::*;
86mod future {
87 trait Future {
88 type Output;
89 }
90}
91
92"#,
93 );
94 assert_eq!("u64", type_at_pos(&db, pos));
95}
96
97#[test]
98fn infer_box() {
99 let (db, pos) = TestDB::with_position(
100 r#"
101//- /main.rs crate:main deps:std
102
103fn test() {
104 let x = box 1;
105 let t = (x, box x, box &1, box [1]);
106 t<|>;
107}
108
109//- /std.rs crate:std
110#[prelude_import] use prelude::*;
111mod prelude {}
112
113mod boxed {
114 pub struct Box<T: ?Sized> {
115 inner: *mut T,
116 }
117}
118
119"#,
120 );
121 assert_eq!("(Box<i32>, Box<Box<i32>>, Box<&i32>, Box<[i32;_]>)", type_at_pos(&db, pos));
122}
123
124#[test]
125fn infer_adt_self() {
126 let (db, pos) = TestDB::with_position(
127 r#"
128//- /main.rs
129enum Nat { Succ(Self), Demo(Nat), Zero }
130
131fn test() {
132 let foo: Nat = Nat::Zero;
133 if let Nat::Succ(x) = foo {
134 x<|>
135 }
136}
137
138"#,
139 );
140 assert_eq!("Nat", type_at_pos(&db, pos));
141}
142
143#[test]
144fn infer_try() {
145 let (db, pos) = TestDB::with_position(
146 r#"
147//- /main.rs crate:main deps:std
148
149fn test() {
150 let r: Result<i32, u64> = Result::Ok(1);
151 let v = r?;
152 v<|>;
153}
154
155//- /std.rs crate:std
156
157#[prelude_import] use ops::*;
158mod ops {
159 trait Try {
160 type Ok;
161 type Error;
162 }
163}
164
165#[prelude_import] use result::*;
166mod result {
167 enum Result<O, E> {
168 Ok(O),
169 Err(E)
170 }
171
172 impl<O, E> crate::ops::Try for Result<O, E> {
173 type Ok = O;
174 type Error = E;
175 }
176}
177
178"#,
179 );
180 assert_eq!("i32", type_at_pos(&db, pos));
181}
182
183#[test]
184fn infer_for_loop() {
185 let (db, pos) = TestDB::with_position(
186 r#"
187//- /main.rs crate:main deps:std
188
189use std::collections::Vec;
190
191fn test() {
192 let v = Vec::new();
193 v.push("foo");
194 for x in v {
195 x<|>;
196 }
197}
198
199//- /std.rs crate:std
200
201#[prelude_import] use iter::*;
202mod iter {
203 trait IntoIterator {
204 type Item;
205 }
206}
207
208mod collections {
209 struct Vec<T> {}
210 impl<T> Vec<T> {
211 fn new() -> Self { Vec {} }
212 fn push(&mut self, t: T) { }
213 }
214
215 impl<T> crate::iter::IntoIterator for Vec<T> {
216 type Item=T;
217 }
218}
219"#,
220 );
221 assert_eq!("&str", type_at_pos(&db, pos));
222}
223
224#[test]
225fn infer_while_let() {
226 let (db, pos) = TestDB::with_position(
227 r#"
228//- /main.rs
229enum Option<T> { Some(T), None }
230
231fn test() {
232 let foo: Option<f32> = None;
233 while let Option::Some(x) = foo {
234 <|>x
235 }
236}
237
238"#,
239 );
240 assert_eq!("f32", type_at_pos(&db, pos));
241}
242
243#[test]
244fn infer_basics() {
245 assert_snapshot!(
246 infer(r#"
247fn test(a: u32, b: isize, c: !, d: &str) {
248 a;
249 b;
250 c;
251 d;
252 1usize;
253 1isize;
254 "test";
255 1.0f32;
256}"#),
257 @r###"
258 [9; 10) 'a': u32
259 [17; 18) 'b': isize
260 [27; 28) 'c': !
261 [33; 34) 'd': &str
262 [42; 121) '{ ...f32; }': !
263 [48; 49) 'a': u32
264 [55; 56) 'b': isize
265 [62; 63) 'c': !
266 [69; 70) 'd': &str
267 [76; 82) '1usize': usize
268 [88; 94) '1isize': isize
269 [100; 106) '"test"': &str
270 [112; 118) '1.0f32': f32
271 "###
272 );
273}
274
275#[test]
276fn infer_let() {
277 assert_snapshot!(
278 infer(r#"
279fn test() {
280 let a = 1isize;
281 let b: usize = 1;
282 let c = b;
283 let d: u32;
284 let e;
285 let f: i32 = e;
286}
287"#),
288 @r###"
289 [11; 118) '{ ...= e; }': ()
290 [21; 22) 'a': isize
291 [25; 31) '1isize': isize
292 [41; 42) 'b': usize
293 [52; 53) '1': usize
294 [63; 64) 'c': usize
295 [67; 68) 'b': usize
296 [78; 79) 'd': u32
297 [94; 95) 'e': i32
298 [105; 106) 'f': i32
299 [114; 115) 'e': i32
300 "###
301 );
302}
303
304#[test]
305fn infer_paths() {
306 assert_snapshot!(
307 infer(r#"
308fn a() -> u32 { 1 }
309
310mod b {
311 fn c() -> u32 { 1 }
312}
313
314fn test() {
315 a();
316 b::c();
317}
318"#),
319 @r###"
320 [15; 20) '{ 1 }': u32
321 [17; 18) '1': u32
322 [48; 53) '{ 1 }': u32
323 [50; 51) '1': u32
324 [67; 91) '{ ...c(); }': ()
325 [73; 74) 'a': fn a() -> u32
326 [73; 76) 'a()': u32
327 [82; 86) 'b::c': fn c() -> u32
328 [82; 88) 'b::c()': u32
329 "###
330 );
331}
332
333#[test]
334fn infer_path_type() {
335 assert_snapshot!(
336 infer(r#"
337struct S;
338
339impl S {
340 fn foo() -> i32 { 1 }
341}
342
343fn test() {
344 S::foo();
345 <S>::foo();
346}
347"#),
348 @r###"
349 [41; 46) '{ 1 }': i32
350 [43; 44) '1': i32
351 [60; 93) '{ ...o(); }': ()
352 [66; 72) 'S::foo': fn foo() -> i32
353 [66; 74) 'S::foo()': i32
354 [80; 88) '<S>::foo': fn foo() -> i32
355 [80; 90) '<S>::foo()': i32
356 "###
357 );
358}
359
360#[test]
361fn infer_slice_method() {
362 assert_snapshot!(
363 infer(r#"
364#[lang = "slice"]
365impl<T> [T] {
366 fn foo(&self) -> T {
367 loop {}
368 }
369}
370
371#[lang = "slice_alloc"]
372impl<T> [T] {}
373
374fn test() {
375 <[_]>::foo(b"foo");
376}
377"#),
378 @r###"
379 [45; 49) 'self': &[T]
380 [56; 79) '{ ... }': T
381 [66; 73) 'loop {}': !
382 [71; 73) '{}': ()
383 [133; 160) '{ ...o"); }': ()
384 [139; 149) '<[_]>::foo': fn foo<u8>(&[T]) -> T
385 [139; 157) '<[_]>:..."foo")': u8
386 [150; 156) 'b"foo"': &[u8]
387 "###
388 );
389}
390
391#[test]
392fn infer_struct() {
393 assert_snapshot!(
394 infer(r#"
395struct A {
396 b: B,
397 c: C,
398}
399struct B;
400struct C(usize);
401
402fn test() {
403 let c = C(1);
404 B;
405 let a: A = A { b: B, c: C(1) };
406 a.b;
407 a.c;
408}
409"#),
410 @r###"
411 [72; 154) '{ ...a.c; }': ()
412 [82; 83) 'c': C
413 [86; 87) 'C': C(usize) -> C
414 [86; 90) 'C(1)': C
415 [88; 89) '1': usize
416 [96; 97) 'B': B
417 [107; 108) 'a': A
418 [114; 133) 'A { b:...C(1) }': A
419 [121; 122) 'B': B
420 [127; 128) 'C': C(usize) -> C
421 [127; 131) 'C(1)': C
422 [129; 130) '1': usize
423 [139; 140) 'a': A
424 [139; 142) 'a.b': B
425 [148; 149) 'a': A
426 [148; 151) 'a.c': C
427 "###
428 );
429}
430
431#[test]
432fn infer_enum() {
433 assert_snapshot!(
434 infer(r#"
435enum E {
436 V1 { field: u32 },
437 V2
438}
439fn test() {
440 E::V1 { field: 1 };
441 E::V2;
442}"#),
443 @r###"
444 [48; 82) '{ E:...:V2; }': ()
445 [52; 70) 'E::V1 ...d: 1 }': E
446 [67; 68) '1': u32
447 [74; 79) 'E::V2': E
448 "###
449 );
450}
451
452#[test]
453fn infer_refs() {
454 assert_snapshot!(
455 infer(r#"
456fn test(a: &u32, b: &mut u32, c: *const u32, d: *mut u32) {
457 a;
458 *a;
459 &a;
460 &mut a;
461 b;
462 *b;
463 &b;
464 c;
465 *c;
466 d;
467 *d;
468}
469"#),
470 @r###"
471 [9; 10) 'a': &u32
472 [18; 19) 'b': &mut u32
473 [31; 32) 'c': *const u32
474 [46; 47) 'd': *mut u32
475 [59; 150) '{ ... *d; }': ()
476 [65; 66) 'a': &u32
477 [72; 74) '*a': u32
478 [73; 74) 'a': &u32
479 [80; 82) '&a': &&u32
480 [81; 82) 'a': &u32
481 [88; 94) '&mut a': &mut &u32
482 [93; 94) 'a': &u32
483 [100; 101) 'b': &mut u32
484 [107; 109) '*b': u32
485 [108; 109) 'b': &mut u32
486 [115; 117) '&b': &&mut u32
487 [116; 117) 'b': &mut u32
488 [123; 124) 'c': *const u32
489 [130; 132) '*c': u32
490 [131; 132) 'c': *const u32
491 [138; 139) 'd': *mut u32
492 [145; 147) '*d': u32
493 [146; 147) 'd': *mut u32
494 "###
495 );
496}
497
498#[test]
499fn infer_literals() {
500 assert_snapshot!(
501 infer(r##"
502fn test() {
503 5i32;
504 5f32;
505 5f64;
506 "hello";
507 b"bytes";
508 'c';
509 b'b';
510 3.14;
511 5000;
512 false;
513 true;
514 r#"
515 //! doc
516 // non-doc
517 mod foo {}
518 "#;
519 br#"yolo"#;
520}
521"##),
522 @r###"
523 [11; 221) '{ ...o"#; }': ()
524 [17; 21) '5i32': i32
525 [27; 31) '5f32': f32
526 [37; 41) '5f64': f64
527 [47; 54) '"hello"': &str
528 [60; 68) 'b"bytes"': &[u8]
529 [74; 77) ''c'': char
530 [83; 87) 'b'b'': u8
531 [93; 97) '3.14': f64
532 [103; 107) '5000': i32
533 [113; 118) 'false': bool
534 [124; 128) 'true': bool
535 [134; 202) 'r#" ... "#': &str
536 [208; 218) 'br#"yolo"#': &[u8]
537 "###
538 );
539}
540
541#[test]
542fn infer_unary_op() {
543 assert_snapshot!(
544 infer(r#"
545enum SomeType {}
546
547fn test(x: SomeType) {
548 let b = false;
549 let c = !b;
550 let a = 100;
551 let d: i128 = -a;
552 let e = -100;
553 let f = !!!true;
554 let g = !42;
555 let h = !10u32;
556 let j = !a;
557 -3.14;
558 !3;
559 -x;
560 !x;
561 -"hello";
562 !"hello";
563}
564"#),
565 @r###"
566 [27; 28) 'x': SomeType
567 [40; 272) '{ ...lo"; }': ()
568 [50; 51) 'b': bool
569 [54; 59) 'false': bool
570 [69; 70) 'c': bool
571 [73; 75) '!b': bool
572 [74; 75) 'b': bool
573 [85; 86) 'a': i128
574 [89; 92) '100': i128
575 [102; 103) 'd': i128
576 [112; 114) '-a': i128
577 [113; 114) 'a': i128
578 [124; 125) 'e': i32
579 [128; 132) '-100': i32
580 [129; 132) '100': i32
581 [142; 143) 'f': bool
582 [146; 153) '!!!true': bool
583 [147; 153) '!!true': bool
584 [148; 153) '!true': bool
585 [149; 153) 'true': bool
586 [163; 164) 'g': i32
587 [167; 170) '!42': i32
588 [168; 170) '42': i32
589 [180; 181) 'h': u32
590 [184; 190) '!10u32': u32
591 [185; 190) '10u32': u32
592 [200; 201) 'j': i128
593 [204; 206) '!a': i128
594 [205; 206) 'a': i128
595 [212; 217) '-3.14': f64
596 [213; 217) '3.14': f64
597 [223; 225) '!3': i32
598 [224; 225) '3': i32
599 [231; 233) '-x': {unknown}
600 [232; 233) 'x': SomeType
601 [239; 241) '!x': {unknown}
602 [240; 241) 'x': SomeType
603 [247; 255) '-"hello"': {unknown}
604 [248; 255) '"hello"': &str
605 [261; 269) '!"hello"': {unknown}
606 [262; 269) '"hello"': &str
607 "###
608 );
609}
610
611#[test]
612fn infer_backwards() {
613 assert_snapshot!(
614 infer(r#"
615fn takes_u32(x: u32) {}
616
617struct S { i32_field: i32 }
618
619fn test() -> &mut &f64 {
620 let a = unknown_function();
621 takes_u32(a);
622 let b = unknown_function();
623 S { i32_field: b };
624 let c = unknown_function();
625 &mut &c
626}
627"#),
628 @r###"
629 [14; 15) 'x': u32
630 [22; 24) '{}': ()
631 [78; 231) '{ ...t &c }': &mut &f64
632 [88; 89) 'a': u32
633 [92; 108) 'unknow...nction': {unknown}
634 [92; 110) 'unknow...tion()': u32
635 [116; 125) 'takes_u32': fn takes_u32(u32) -> ()
636 [116; 128) 'takes_u32(a)': ()
637 [126; 127) 'a': u32
638 [138; 139) 'b': i32
639 [142; 158) 'unknow...nction': {unknown}
640 [142; 160) 'unknow...tion()': i32
641 [166; 184) 'S { i3...d: b }': S
642 [181; 182) 'b': i32
643 [194; 195) 'c': f64
644 [198; 214) 'unknow...nction': {unknown}
645 [198; 216) 'unknow...tion()': f64
646 [222; 229) '&mut &c': &mut &f64
647 [227; 229) '&c': &f64
648 [228; 229) 'c': f64
649 "###
650 );
651}
652
653#[test]
654fn infer_self() {
655 assert_snapshot!(
656 infer(r#"
657struct S;
658
659impl S {
660 fn test(&self) {
661 self;
662 }
663 fn test2(self: &Self) {
664 self;
665 }
666 fn test3() -> Self {
667 S {}
668 }
669 fn test4() -> Self {
670 Self {}
671 }
672}
673"#),
674 @r###"
675 [34; 38) 'self': &S
676 [40; 61) '{ ... }': ()
677 [50; 54) 'self': &S
678 [75; 79) 'self': &S
679 [88; 109) '{ ... }': ()
680 [98; 102) 'self': &S
681 [133; 153) '{ ... }': S
682 [143; 147) 'S {}': S
683 [177; 200) '{ ... }': S
684 [187; 194) 'Self {}': S
685 "###
686 );
687}
688
689#[test]
690fn infer_binary_op() {
691 assert_snapshot!(
692 infer(r#"
693fn f(x: bool) -> i32 {
694 0i32
695}
696
697fn test() -> bool {
698 let x = a && b;
699 let y = true || false;
700 let z = x == y;
701 let t = x != y;
702 let minus_forty: isize = -40isize;
703 let h = minus_forty <= CONST_2;
704 let c = f(z || y) + 5;
705 let d = b;
706 let g = minus_forty ^= i;
707 let ten: usize = 10;
708 let ten_is_eleven = ten == some_num;
709
710 ten < 3
711}
712"#),
713 @r###"
714 [6; 7) 'x': bool
715 [22; 34) '{ 0i32 }': i32
716 [28; 32) '0i32': i32
717 [54; 370) '{ ... < 3 }': bool
718 [64; 65) 'x': bool
719 [68; 69) 'a': bool
720 [68; 74) 'a && b': bool
721 [73; 74) 'b': bool
722 [84; 85) 'y': bool
723 [88; 92) 'true': bool
724 [88; 101) 'true || false': bool
725 [96; 101) 'false': bool
726 [111; 112) 'z': bool
727 [115; 116) 'x': bool
728 [115; 121) 'x == y': bool
729 [120; 121) 'y': bool
730 [131; 132) 't': bool
731 [135; 136) 'x': bool
732 [135; 141) 'x != y': bool
733 [140; 141) 'y': bool
734 [151; 162) 'minus_forty': isize
735 [172; 180) '-40isize': isize
736 [173; 180) '40isize': isize
737 [190; 191) 'h': bool
738 [194; 205) 'minus_forty': isize
739 [194; 216) 'minus_...ONST_2': bool
740 [209; 216) 'CONST_2': isize
741 [226; 227) 'c': i32
742 [230; 231) 'f': fn f(bool) -> i32
743 [230; 239) 'f(z || y)': i32
744 [230; 243) 'f(z || y) + 5': i32
745 [232; 233) 'z': bool
746 [232; 238) 'z || y': bool
747 [237; 238) 'y': bool
748 [242; 243) '5': i32
749 [253; 254) 'd': {unknown}
750 [257; 258) 'b': {unknown}
751 [268; 269) 'g': ()
752 [272; 283) 'minus_forty': isize
753 [272; 288) 'minus_...y ^= i': ()
754 [287; 288) 'i': isize
755 [298; 301) 'ten': usize
756 [311; 313) '10': usize
757 [323; 336) 'ten_is_eleven': bool
758 [339; 342) 'ten': usize
759 [339; 354) 'ten == some_num': bool
760 [346; 354) 'some_num': usize
761 [361; 364) 'ten': usize
762 [361; 368) 'ten < 3': bool
763 [367; 368) '3': usize
764 "###
765 );
766}
767
768#[test]
769fn infer_field_autoderef() {
770 assert_snapshot!(
771 infer(r#"
772struct A {
773 b: B,
774}
775struct B;
776
777fn test1(a: A) {
778 let a1 = a;
779 a1.b;
780 let a2 = &a;
781 a2.b;
782 let a3 = &mut a;
783 a3.b;
784 let a4 = &&&&&&&a;
785 a4.b;
786 let a5 = &mut &&mut &&mut a;
787 a5.b;
788}
789
790fn test2(a1: *const A, a2: *mut A) {
791 a1.b;
792 a2.b;
793}
794"#),
795 @r###"
796 [44; 45) 'a': A
797 [50; 213) '{ ...5.b; }': ()
798 [60; 62) 'a1': A
799 [65; 66) 'a': A
800 [72; 74) 'a1': A
801 [72; 76) 'a1.b': B
802 [86; 88) 'a2': &A
803 [91; 93) '&a': &A
804 [92; 93) 'a': A
805 [99; 101) 'a2': &A
806 [99; 103) 'a2.b': B
807 [113; 115) 'a3': &mut A
808 [118; 124) '&mut a': &mut A
809 [123; 124) 'a': A
810 [130; 132) 'a3': &mut A
811 [130; 134) 'a3.b': B
812 [144; 146) 'a4': &&&&&&&A
813 [149; 157) '&&&&&&&a': &&&&&&&A
814 [150; 157) '&&&&&&a': &&&&&&A
815 [151; 157) '&&&&&a': &&&&&A
816 [152; 157) '&&&&a': &&&&A
817 [153; 157) '&&&a': &&&A
818 [154; 157) '&&a': &&A
819 [155; 157) '&a': &A
820 [156; 157) 'a': A
821 [163; 165) 'a4': &&&&&&&A
822 [163; 167) 'a4.b': B
823 [177; 179) 'a5': &mut &&mut &&mut A
824 [182; 200) '&mut &...&mut a': &mut &&mut &&mut A
825 [187; 200) '&&mut &&mut a': &&mut &&mut A
826 [188; 200) '&mut &&mut a': &mut &&mut A
827 [193; 200) '&&mut a': &&mut A
828 [194; 200) '&mut a': &mut A
829 [199; 200) 'a': A
830 [206; 208) 'a5': &mut &&mut &&mut A
831 [206; 210) 'a5.b': B
832 [224; 226) 'a1': *const A
833 [238; 240) 'a2': *mut A
834 [250; 273) '{ ...2.b; }': ()
835 [256; 258) 'a1': *const A
836 [256; 260) 'a1.b': B
837 [266; 268) 'a2': *mut A
838 [266; 270) 'a2.b': B
839 "###
840 );
841}
842
843#[test]
844fn infer_argument_autoderef() {
845 assert_snapshot!(
846 infer(r#"
847#[lang = "deref"]
848pub trait Deref {
849 type Target;
850 fn deref(&self) -> &Self::Target;
851}
852
853struct A<T>(T);
854
855impl<T> A<T> {
856 fn foo(&self) -> &T {
857 &self.0
858 }
859}
860
861struct B<T>(T);
862
863impl<T> Deref for B<T> {
864 type Target = T;
865 fn deref(&self) -> &Self::Target {
866 &self.0
867 }
868}
869
870fn test() {
871 let t = A::foo(&&B(B(A(42))));
872}
873"#),
874 @r###"
875 [68; 72) 'self': &Self
876 [139; 143) 'self': &A<T>
877 [151; 174) '{ ... }': &T
878 [161; 168) '&self.0': &T
879 [162; 166) 'self': &A<T>
880 [162; 168) 'self.0': T
881 [255; 259) 'self': &B<T>
882 [278; 301) '{ ... }': &T
883 [288; 295) '&self.0': &T
884 [289; 293) 'self': &B<T>
885 [289; 295) 'self.0': T
886 [315; 353) '{ ...))); }': ()
887 [325; 326) 't': &i32
888 [329; 335) 'A::foo': fn foo<i32>(&A<T>) -> &T
889 [329; 350) 'A::foo...42))))': &i32
890 [336; 349) '&&B(B(A(42)))': &&B<B<A<i32>>>
891 [337; 349) '&B(B(A(42)))': &B<B<A<i32>>>
892 [338; 339) 'B': B<B<A<i32>>>(T) -> B<T>
893 [338; 349) 'B(B(A(42)))': B<B<A<i32>>>
894 [340; 341) 'B': B<A<i32>>(T) -> B<T>
895 [340; 348) 'B(A(42))': B<A<i32>>
896 [342; 343) 'A': A<i32>(T) -> A<T>
897 [342; 347) 'A(42)': A<i32>
898 [344; 346) '42': i32
899 "###
900 );
901}
902
903#[test]
904fn infer_method_argument_autoderef() {
905 assert_snapshot!(
906 infer(r#"
907#[lang = "deref"]
908pub trait Deref {
909 type Target;
910 fn deref(&self) -> &Self::Target;
911}
912
913struct A<T>(*mut T);
914
915impl<T> A<T> {
916 fn foo(&self, x: &A<T>) -> &T {
917 &*x.0
918 }
919}
920
921struct B<T>(T);
922
923impl<T> Deref for B<T> {
924 type Target = T;
925 fn deref(&self) -> &Self::Target {
926 &self.0
927 }
928}
929
930fn test(a: A<i32>) {
931 let t = A(0 as *mut _).foo(&&B(B(a)));
932}
933"#),
934 @r###"
935 [68; 72) 'self': &Self
936 [144; 148) 'self': &A<T>
937 [150; 151) 'x': &A<T>
938 [166; 187) '{ ... }': &T
939 [176; 181) '&*x.0': &T
940 [177; 181) '*x.0': T
941 [178; 179) 'x': &A<T>
942 [178; 181) 'x.0': *mut T
943 [268; 272) 'self': &B<T>
944 [291; 314) '{ ... }': &T
945 [301; 308) '&self.0': &T
946 [302; 306) 'self': &B<T>
947 [302; 308) 'self.0': T
948 [326; 327) 'a': A<i32>
949 [337; 383) '{ ...))); }': ()
950 [347; 348) 't': &i32
951 [351; 352) 'A': A<i32>(*mut T) -> A<T>
952 [351; 365) 'A(0 as *mut _)': A<i32>
953 [351; 380) 'A(0 as...B(a)))': &i32
954 [353; 354) '0': i32
955 [353; 364) '0 as *mut _': *mut i32
956 [370; 379) '&&B(B(a))': &&B<B<A<i32>>>
957 [371; 379) '&B(B(a))': &B<B<A<i32>>>
958 [372; 373) 'B': B<B<A<i32>>>(T) -> B<T>
959 [372; 379) 'B(B(a))': B<B<A<i32>>>
960 [374; 375) 'B': B<A<i32>>(T) -> B<T>
961 [374; 378) 'B(a)': B<A<i32>>
962 [376; 377) 'a': A<i32>
963 "###
964 );
965}
966
967#[test]
968fn bug_484() {
969 assert_snapshot!(
970 infer(r#"
971fn test() {
972 let x = if true {};
973}
974"#),
975 @r###"
976 [11; 37) '{ l... {}; }': ()
977 [20; 21) 'x': ()
978 [24; 34) 'if true {}': ()
979 [27; 31) 'true': bool
980 [32; 34) '{}': ()
981 "###
982 );
983}
984
985#[test]
986fn infer_in_elseif() {
987 assert_snapshot!(
988 infer(r#"
989struct Foo { field: i32 }
990fn main(foo: Foo) {
991 if true {
992
993 } else if false {
994 foo.field
995 }
996}
997"#),
998 @r###"
999 [35; 38) 'foo': Foo
1000 [45; 109) '{ ... } }': ()
1001 [51; 107) 'if tru... }': ()
1002 [54; 58) 'true': bool
1003 [59; 67) '{ }': ()
1004 [73; 107) 'if fal... }': ()
1005 [76; 81) 'false': bool
1006 [82; 107) '{ ... }': i32
1007 [92; 95) 'foo': Foo
1008 [92; 101) 'foo.field': i32
1009 "###
1010 )
1011}
1012
1013#[test]
1014fn infer_if_match_with_return() {
1015 assert_snapshot!(
1016 infer(r#"
1017fn foo() {
1018 let _x1 = if true {
1019 1
1020 } else {
1021 return;
1022 };
1023 let _x2 = if true {
1024 2
1025 } else {
1026 return
1027 };
1028 let _x3 = match true {
1029 true => 3,
1030 _ => {
1031 return;
1032 }
1033 };
1034 let _x4 = match true {
1035 true => 4,
1036 _ => return
1037 };
1038}"#),
1039 @r###"
1040 [10; 323) '{ ... }; }': ()
1041 [20; 23) '_x1': i32
1042 [26; 80) 'if tru... }': i32
1043 [29; 33) 'true': bool
1044 [34; 51) '{ ... }': i32
1045 [44; 45) '1': i32
1046 [57; 80) '{ ... }': !
1047 [67; 73) 'return': !
1048 [90; 93) '_x2': i32
1049 [96; 149) 'if tru... }': i32
1050 [99; 103) 'true': bool
1051 [104; 121) '{ ... }': i32
1052 [114; 115) '2': i32
1053 [127; 149) '{ ... }': !
1054 [137; 143) 'return': !
1055 [159; 162) '_x3': i32
1056 [165; 247) 'match ... }': i32
1057 [171; 175) 'true': bool
1058 [186; 190) 'true': bool
1059 [194; 195) '3': i32
1060 [205; 206) '_': bool
1061 [210; 241) '{ ... }': !
1062 [224; 230) 'return': !
1063 [257; 260) '_x4': i32
1064 [263; 320) 'match ... }': i32
1065 [269; 273) 'true': bool
1066 [284; 288) 'true': bool
1067 [292; 293) '4': i32
1068 [303; 304) '_': bool
1069 [308; 314) 'return': !
1070 "###
1071 )
1072}
1073
1074#[test]
1075fn infer_inherent_method() {
1076 assert_snapshot!(
1077 infer(r#"
1078struct A;
1079
1080impl A {
1081 fn foo(self, x: u32) -> i32 {}
1082}
1083
1084mod b {
1085 impl super::A {
1086 fn bar(&self, x: u64) -> i64 {}
1087 }
1088}
1089
1090fn test(a: A) {
1091 a.foo(1);
1092 (&a).bar(1);
1093 a.bar(1);
1094}
1095"#),
1096 @r###"
1097 [32; 36) 'self': A
1098 [38; 39) 'x': u32
1099 [53; 55) '{}': ()
1100 [103; 107) 'self': &A
1101 [109; 110) 'x': u64
1102 [124; 126) '{}': ()
1103 [144; 145) 'a': A
1104 [150; 198) '{ ...(1); }': ()
1105 [156; 157) 'a': A
1106 [156; 164) 'a.foo(1)': i32
1107 [162; 163) '1': u32
1108 [170; 181) '(&a).bar(1)': i64
1109 [171; 173) '&a': &A
1110 [172; 173) 'a': A
1111 [179; 180) '1': u64
1112 [187; 188) 'a': A
1113 [187; 195) 'a.bar(1)': i64
1114 [193; 194) '1': u64
1115 "###
1116 );
1117}
1118
1119#[test]
1120fn infer_inherent_method_str() {
1121 assert_snapshot!(
1122 infer(r#"
1123#[lang = "str"]
1124impl str {
1125 fn foo(&self) -> i32 {}
1126}
1127
1128fn test() {
1129 "foo".foo();
1130}
1131"#),
1132 @r###"
1133 [40; 44) 'self': &str
1134 [53; 55) '{}': ()
1135 [69; 89) '{ ...o(); }': ()
1136 [75; 80) '"foo"': &str
1137 [75; 86) '"foo".foo()': i32
1138 "###
1139 );
1140}
1141
1142#[test]
1143fn infer_tuple() {
1144 assert_snapshot!(
1145 infer(r#"
1146fn test(x: &str, y: isize) {
1147 let a: (u32, &str) = (1, "a");
1148 let b = (a, x);
1149 let c = (y, x);
1150 let d = (c, x);
1151 let e = (1, "e");
1152 let f = (e, "d");
1153}
1154"#),
1155 @r###"
1156 [9; 10) 'x': &str
1157 [18; 19) 'y': isize
1158 [28; 170) '{ ...d"); }': ()
1159 [38; 39) 'a': (u32, &str)
1160 [55; 63) '(1, "a")': (u32, &str)
1161 [56; 57) '1': u32
1162 [59; 62) '"a"': &str
1163 [73; 74) 'b': ((u32, &str), &str)
1164 [77; 83) '(a, x)': ((u32, &str), &str)
1165 [78; 79) 'a': (u32, &str)
1166 [81; 82) 'x': &str
1167 [93; 94) 'c': (isize, &str)
1168 [97; 103) '(y, x)': (isize, &str)
1169 [98; 99) 'y': isize
1170 [101; 102) 'x': &str
1171 [113; 114) 'd': ((isize, &str), &str)
1172 [117; 123) '(c, x)': ((isize, &str), &str)
1173 [118; 119) 'c': (isize, &str)
1174 [121; 122) 'x': &str
1175 [133; 134) 'e': (i32, &str)
1176 [137; 145) '(1, "e")': (i32, &str)
1177 [138; 139) '1': i32
1178 [141; 144) '"e"': &str
1179 [155; 156) 'f': ((i32, &str), &str)
1180 [159; 167) '(e, "d")': ((i32, &str), &str)
1181 [160; 161) 'e': (i32, &str)
1182 [163; 166) '"d"': &str
1183 "###
1184 );
1185}
1186
1187#[test]
1188fn infer_array() {
1189 assert_snapshot!(
1190 infer(r#"
1191fn test(x: &str, y: isize) {
1192 let a = [x];
1193 let b = [a, a];
1194 let c = [b, b];
1195
1196 let d = [y, 1, 2, 3];
1197 let d = [1, y, 2, 3];
1198 let e = [y];
1199 let f = [d, d];
1200 let g = [e, e];
1201
1202 let h = [1, 2];
1203 let i = ["a", "b"];
1204
1205 let b = [a, ["b"]];
1206 let x: [u8; 0] = [];
1207}
1208"#),
1209 @r###"
1210 [9; 10) 'x': &str
1211 [18; 19) 'y': isize
1212 [28; 293) '{ ... []; }': ()
1213 [38; 39) 'a': [&str;_]
1214 [42; 45) '[x]': [&str;_]
1215 [43; 44) 'x': &str
1216 [55; 56) 'b': [[&str;_];_]
1217 [59; 65) '[a, a]': [[&str;_];_]
1218 [60; 61) 'a': [&str;_]
1219 [63; 64) 'a': [&str;_]
1220 [75; 76) 'c': [[[&str;_];_];_]
1221 [79; 85) '[b, b]': [[[&str;_];_];_]
1222 [80; 81) 'b': [[&str;_];_]
1223 [83; 84) 'b': [[&str;_];_]
1224 [96; 97) 'd': [isize;_]
1225 [100; 112) '[y, 1, 2, 3]': [isize;_]
1226 [101; 102) 'y': isize
1227 [104; 105) '1': isize
1228 [107; 108) '2': isize
1229 [110; 111) '3': isize
1230 [122; 123) 'd': [isize;_]
1231 [126; 138) '[1, y, 2, 3]': [isize;_]
1232 [127; 128) '1': isize
1233 [130; 131) 'y': isize
1234 [133; 134) '2': isize
1235 [136; 137) '3': isize
1236 [148; 149) 'e': [isize;_]
1237 [152; 155) '[y]': [isize;_]
1238 [153; 154) 'y': isize
1239 [165; 166) 'f': [[isize;_];_]
1240 [169; 175) '[d, d]': [[isize;_];_]
1241 [170; 171) 'd': [isize;_]
1242 [173; 174) 'd': [isize;_]
1243 [185; 186) 'g': [[isize;_];_]
1244 [189; 195) '[e, e]': [[isize;_];_]
1245 [190; 191) 'e': [isize;_]
1246 [193; 194) 'e': [isize;_]
1247 [206; 207) 'h': [i32;_]
1248 [210; 216) '[1, 2]': [i32;_]
1249 [211; 212) '1': i32
1250 [214; 215) '2': i32
1251 [226; 227) 'i': [&str;_]
1252 [230; 240) '["a", "b"]': [&str;_]
1253 [231; 234) '"a"': &str
1254 [236; 239) '"b"': &str
1255 [251; 252) 'b': [[&str;_];_]
1256 [255; 265) '[a, ["b"]]': [[&str;_];_]
1257 [256; 257) 'a': [&str;_]
1258 [259; 264) '["b"]': [&str;_]
1259 [260; 263) '"b"': &str
1260 [275; 276) 'x': [u8;_]
1261 [288; 290) '[]': [u8;_]
1262 "###
1263 );
1264}
1265
1266#[test]
1267fn infer_pattern() {
1268 assert_snapshot!(
1269 infer(r#"
1270fn test(x: &i32) {
1271 let y = x;
1272 let &z = x;
1273 let a = z;
1274 let (c, d) = (1, "hello");
1275
1276 for (e, f) in some_iter {
1277 let g = e;
1278 }
1279
1280 if let [val] = opt {
1281 let h = val;
1282 }
1283
1284 let lambda = |a: u64, b, c: i32| { a + b; c };
1285
1286 let ref ref_to_x = x;
1287 let mut mut_x = x;
1288 let ref mut mut_ref_to_x = x;
1289 let k = mut_ref_to_x;
1290}
1291"#),
1292 @r###"
1293 [9; 10) 'x': &i32
1294 [18; 369) '{ ...o_x; }': ()
1295 [28; 29) 'y': &i32
1296 [32; 33) 'x': &i32
1297 [43; 45) '&z': &i32
1298 [44; 45) 'z': i32
1299 [48; 49) 'x': &i32
1300 [59; 60) 'a': i32
1301 [63; 64) 'z': i32
1302 [74; 80) '(c, d)': (i32, &str)
1303 [75; 76) 'c': i32
1304 [78; 79) 'd': &str
1305 [83; 95) '(1, "hello")': (i32, &str)
1306 [84; 85) '1': i32
1307 [87; 94) '"hello"': &str
1308 [102; 152) 'for (e... }': ()
1309 [106; 112) '(e, f)': ({unknown}, {unknown})
1310 [107; 108) 'e': {unknown}
1311 [110; 111) 'f': {unknown}
1312 [116; 125) 'some_iter': {unknown}
1313 [126; 152) '{ ... }': ()
1314 [140; 141) 'g': {unknown}
1315 [144; 145) 'e': {unknown}
1316 [158; 205) 'if let... }': ()
1317 [165; 170) '[val]': {unknown}
1318 [173; 176) 'opt': {unknown}
1319 [177; 205) '{ ... }': ()
1320 [191; 192) 'h': {unknown}
1321 [195; 198) 'val': {unknown}
1322 [215; 221) 'lambda': |u64, u64, i32| -> i32
1323 [224; 256) '|a: u6...b; c }': |u64, u64, i32| -> i32
1324 [225; 226) 'a': u64
1325 [233; 234) 'b': u64
1326 [236; 237) 'c': i32
1327 [244; 256) '{ a + b; c }': i32
1328 [246; 247) 'a': u64
1329 [246; 251) 'a + b': u64
1330 [250; 251) 'b': u64
1331 [253; 254) 'c': i32
1332 [267; 279) 'ref ref_to_x': &&i32
1333 [282; 283) 'x': &i32
1334 [293; 302) 'mut mut_x': &i32
1335 [305; 306) 'x': &i32
1336 [316; 336) 'ref mu...f_to_x': &mut &i32
1337 [339; 340) 'x': &i32
1338 [350; 351) 'k': &mut &i32
1339 [354; 366) 'mut_ref_to_x': &mut &i32
1340 "###
1341 );
1342}
1343
1344#[test]
1345fn infer_pattern_match_ergonomics() {
1346 assert_snapshot!(
1347 infer(r#"
1348struct A<T>(T);
1349
1350fn test() {
1351 let A(n) = &A(1);
1352 let A(n) = &mut A(1);
1353}
1354"#),
1355 @r###"
1356 [28; 79) '{ ...(1); }': ()
1357 [38; 42) 'A(n)': A<i32>
1358 [40; 41) 'n': &i32
1359 [45; 50) '&A(1)': &A<i32>
1360 [46; 47) 'A': A<i32>(T) -> A<T>
1361 [46; 50) 'A(1)': A<i32>
1362 [48; 49) '1': i32
1363 [60; 64) 'A(n)': A<i32>
1364 [62; 63) 'n': &mut i32
1365 [67; 76) '&mut A(1)': &mut A<i32>
1366 [72; 73) 'A': A<i32>(T) -> A<T>
1367 [72; 76) 'A(1)': A<i32>
1368 [74; 75) '1': i32
1369 "###
1370 );
1371}
1372
1373#[test]
1374fn infer_pattern_match_ergonomics_ref() {
1375 covers!(match_ergonomics_ref);
1376 assert_snapshot!(
1377 infer(r#"
1378fn test() {
1379 let v = &(1, &2);
1380 let (_, &w) = v;
1381}
1382"#),
1383 @r###"
1384 [11; 57) '{ ...= v; }': ()
1385 [21; 22) 'v': &(i32, &i32)
1386 [25; 33) '&(1, &2)': &(i32, &i32)
1387 [26; 33) '(1, &2)': (i32, &i32)
1388 [27; 28) '1': i32
1389 [30; 32) '&2': &i32
1390 [31; 32) '2': i32
1391 [43; 50) '(_, &w)': (i32, &i32)
1392 [44; 45) '_': i32
1393 [47; 49) '&w': &i32
1394 [48; 49) 'w': i32
1395 [53; 54) 'v': &(i32, &i32)
1396 "###
1397 );
1398}
1399
1400#[test]
1401fn infer_adt_pattern() {
1402 assert_snapshot!(
1403 infer(r#"
1404enum E {
1405 A { x: usize },
1406 B
1407}
1408
1409struct S(u32, E);
1410
1411fn test() {
1412 let e = E::A { x: 3 };
1413
1414 let S(y, z) = foo;
1415 let E::A { x: new_var } = e;
1416
1417 match e {
1418 E::A { x } => x,
1419 E::B if foo => 1,
1420 E::B => 10,
1421 };
1422
1423 let ref d @ E::A { .. } = e;
1424 d;
1425}
1426"#),
1427 @r###"
1428 [68; 289) '{ ... d; }': ()
1429 [78; 79) 'e': E
1430 [82; 95) 'E::A { x: 3 }': E
1431 [92; 93) '3': usize
1432 [106; 113) 'S(y, z)': S
1433 [108; 109) 'y': u32
1434 [111; 112) 'z': E
1435 [116; 119) 'foo': S
1436 [129; 148) 'E::A {..._var }': E
1437 [139; 146) 'new_var': usize
1438 [151; 152) 'e': E
1439 [159; 245) 'match ... }': usize
1440 [165; 166) 'e': E
1441 [177; 187) 'E::A { x }': E
1442 [184; 185) 'x': usize
1443 [191; 192) 'x': usize
1444 [202; 206) 'E::B': E
1445 [210; 213) 'foo': bool
1446 [217; 218) '1': usize
1447 [228; 232) 'E::B': E
1448 [236; 238) '10': usize
1449 [256; 275) 'ref d ...{ .. }': &E
1450 [264; 275) 'E::A { .. }': E
1451 [278; 279) 'e': E
1452 [285; 286) 'd': &E
1453 "###
1454 );
1455}
1456
1457#[test]
1458fn infer_struct_generics() {
1459 assert_snapshot!(
1460 infer(r#"
1461struct A<T> {
1462 x: T,
1463}
1464
1465fn test(a1: A<u32>, i: i32) {
1466 a1.x;
1467 let a2 = A { x: i };
1468 a2.x;
1469 let a3 = A::<i128> { x: 1 };
1470 a3.x;
1471}
1472"#),
1473 @r###"
1474 [36; 38) 'a1': A<u32>
1475 [48; 49) 'i': i32
1476 [56; 147) '{ ...3.x; }': ()
1477 [62; 64) 'a1': A<u32>
1478 [62; 66) 'a1.x': u32
1479 [76; 78) 'a2': A<i32>
1480 [81; 91) 'A { x: i }': A<i32>
1481 [88; 89) 'i': i32
1482 [97; 99) 'a2': A<i32>
1483 [97; 101) 'a2.x': i32
1484 [111; 113) 'a3': A<i128>
1485 [116; 134) 'A::<i1...x: 1 }': A<i128>
1486 [131; 132) '1': i128
1487 [140; 142) 'a3': A<i128>
1488 [140; 144) 'a3.x': i128
1489 "###
1490 );
1491}
1492
1493#[test]
1494fn infer_tuple_struct_generics() {
1495 assert_snapshot!(
1496 infer(r#"
1497struct A<T>(T);
1498enum Option<T> { Some(T), None }
1499use Option::*;
1500
1501fn test() {
1502 A(42);
1503 A(42u128);
1504 Some("x");
1505 Option::Some("x");
1506 None;
1507 let x: Option<i64> = None;
1508}
1509"#),
1510 @r###"
1511 [76; 184) '{ ...one; }': ()
1512 [82; 83) 'A': A<i32>(T) -> A<T>
1513 [82; 87) 'A(42)': A<i32>
1514 [84; 86) '42': i32
1515 [93; 94) 'A': A<u128>(T) -> A<T>
1516 [93; 102) 'A(42u128)': A<u128>
1517 [95; 101) '42u128': u128
1518 [108; 112) 'Some': Some<&str>(T) -> Option<T>
1519 [108; 117) 'Some("x")': Option<&str>
1520 [113; 116) '"x"': &str
1521 [123; 135) 'Option::Some': Some<&str>(T) -> Option<T>
1522 [123; 140) 'Option...e("x")': Option<&str>
1523 [136; 139) '"x"': &str
1524 [146; 150) 'None': Option<{unknown}>
1525 [160; 161) 'x': Option<i64>
1526 [177; 181) 'None': Option<i64>
1527 "###
1528 );
1529}
1530
1531#[test]
1532fn infer_generics_in_patterns() {
1533 assert_snapshot!(
1534 infer(r#"
1535struct A<T> {
1536 x: T,
1537}
1538
1539enum Option<T> {
1540 Some(T),
1541 None,
1542}
1543
1544fn test(a1: A<u32>, o: Option<u64>) {
1545 let A { x: x2 } = a1;
1546 let A::<i64> { x: x3 } = A { x: 1 };
1547 match o {
1548 Option::Some(t) => t,
1549 _ => 1,
1550 };
1551}
1552"#),
1553 @r###"
1554 [79; 81) 'a1': A<u32>
1555 [91; 92) 'o': Option<u64>
1556 [107; 244) '{ ... }; }': ()
1557 [117; 128) 'A { x: x2 }': A<u32>
1558 [124; 126) 'x2': u32
1559 [131; 133) 'a1': A<u32>
1560 [143; 161) 'A::<i6...: x3 }': A<i64>
1561 [157; 159) 'x3': i64
1562 [164; 174) 'A { x: 1 }': A<i64>
1563 [171; 172) '1': i64
1564 [180; 241) 'match ... }': u64
1565 [186; 187) 'o': Option<u64>
1566 [198; 213) 'Option::Some(t)': Option<u64>
1567 [211; 212) 't': u64
1568 [217; 218) 't': u64
1569 [228; 229) '_': Option<u64>
1570 [233; 234) '1': u64
1571 "###
1572 );
1573}
1574
1575#[test]
1576fn infer_function_generics() {
1577 assert_snapshot!(
1578 infer(r#"
1579fn id<T>(t: T) -> T { t }
1580
1581fn test() {
1582 id(1u32);
1583 id::<i128>(1);
1584 let x: u64 = id(1);
1585}
1586"#),
1587 @r###"
1588 [10; 11) 't': T
1589 [21; 26) '{ t }': T
1590 [23; 24) 't': T
1591 [38; 98) '{ ...(1); }': ()
1592 [44; 46) 'id': fn id<u32>(T) -> T
1593 [44; 52) 'id(1u32)': u32
1594 [47; 51) '1u32': u32
1595 [58; 68) 'id::<i128>': fn id<i128>(T) -> T
1596 [58; 71) 'id::<i128>(1)': i128
1597 [69; 70) '1': i128
1598 [81; 82) 'x': u64
1599 [90; 92) 'id': fn id<u64>(T) -> T
1600 [90; 95) 'id(1)': u64
1601 [93; 94) '1': u64
1602 "###
1603 );
1604}
1605
1606#[test]
1607fn infer_impl_generics() {
1608 assert_snapshot!(
1609 infer(r#"
1610struct A<T1, T2> {
1611 x: T1,
1612 y: T2,
1613}
1614impl<Y, X> A<X, Y> {
1615 fn x(self) -> X {
1616 self.x
1617 }
1618 fn y(self) -> Y {
1619 self.y
1620 }
1621 fn z<T>(self, t: T) -> (X, Y, T) {
1622 (self.x, self.y, t)
1623 }
1624}
1625
1626fn test() -> i128 {
1627 let a = A { x: 1u64, y: 1i64 };
1628 a.x();
1629 a.y();
1630 a.z(1i128);
1631 a.z::<u128>(1);
1632}
1633"#),
1634 @r###"
1635 [74; 78) 'self': A<X, Y>
1636 [85; 107) '{ ... }': X
1637 [95; 99) 'self': A<X, Y>
1638 [95; 101) 'self.x': X
1639 [117; 121) 'self': A<X, Y>
1640 [128; 150) '{ ... }': Y
1641 [138; 142) 'self': A<X, Y>
1642 [138; 144) 'self.y': Y
1643 [163; 167) 'self': A<X, Y>
1644 [169; 170) 't': T
1645 [188; 223) '{ ... }': (X, Y, T)
1646 [198; 217) '(self.....y, t)': (X, Y, T)
1647 [199; 203) 'self': A<X, Y>
1648 [199; 205) 'self.x': X
1649 [207; 211) 'self': A<X, Y>
1650 [207; 213) 'self.y': Y
1651 [215; 216) 't': T
1652 [245; 342) '{ ...(1); }': ()
1653 [255; 256) 'a': A<u64, i64>
1654 [259; 281) 'A { x:...1i64 }': A<u64, i64>
1655 [266; 270) '1u64': u64
1656 [275; 279) '1i64': i64
1657 [287; 288) 'a': A<u64, i64>
1658 [287; 292) 'a.x()': u64
1659 [298; 299) 'a': A<u64, i64>
1660 [298; 303) 'a.y()': i64
1661 [309; 310) 'a': A<u64, i64>
1662 [309; 319) 'a.z(1i128)': (u64, i64, i128)
1663 [313; 318) '1i128': i128
1664 [325; 326) 'a': A<u64, i64>
1665 [325; 339) 'a.z::<u128>(1)': (u64, i64, u128)
1666 [337; 338) '1': u128
1667 "###
1668 );
1669}
1670
1671#[test]
1672fn infer_impl_generics_with_autoderef() {
1673 assert_snapshot!(
1674 infer(r#"
1675enum Option<T> {
1676 Some(T),
1677 None,
1678}
1679impl<T> Option<T> {
1680 fn as_ref(&self) -> Option<&T> {}
1681}
1682fn test(o: Option<u32>) {
1683 (&o).as_ref();
1684 o.as_ref();
1685}
1686"#),
1687 @r###"
1688 [78; 82) 'self': &Option<T>
1689 [98; 100) '{}': ()
1690 [111; 112) 'o': Option<u32>
1691 [127; 165) '{ ...f(); }': ()
1692 [133; 146) '(&o).as_ref()': Option<&u32>
1693 [134; 136) '&o': &Option<u32>
1694 [135; 136) 'o': Option<u32>
1695 [152; 153) 'o': Option<u32>
1696 [152; 162) 'o.as_ref()': Option<&u32>
1697 "###
1698 );
1699}
1700
1701#[test]
1702fn infer_generic_chain() {
1703 assert_snapshot!(
1704 infer(r#"
1705struct A<T> {
1706 x: T,
1707}
1708impl<T2> A<T2> {
1709 fn x(self) -> T2 {
1710 self.x
1711 }
1712}
1713fn id<T>(t: T) -> T { t }
1714
1715fn test() -> i128 {
1716 let x = 1;
1717 let y = id(x);
1718 let a = A { x: id(y) };
1719 let z = id(a.x);
1720 let b = A { x: z };
1721 b.x()
1722}
1723"#),
1724 @r###"
1725 [53; 57) 'self': A<T2>
1726 [65; 87) '{ ... }': T2
1727 [75; 79) 'self': A<T2>
1728 [75; 81) 'self.x': T2
1729 [99; 100) 't': T
1730 [110; 115) '{ t }': T
1731 [112; 113) 't': T
1732 [135; 261) '{ ....x() }': i128
1733 [146; 147) 'x': i128
1734 [150; 151) '1': i128
1735 [162; 163) 'y': i128
1736 [166; 168) 'id': fn id<i128>(T) -> T
1737 [166; 171) 'id(x)': i128
1738 [169; 170) 'x': i128
1739 [182; 183) 'a': A<i128>
1740 [186; 200) 'A { x: id(y) }': A<i128>
1741 [193; 195) 'id': fn id<i128>(T) -> T
1742 [193; 198) 'id(y)': i128
1743 [196; 197) 'y': i128
1744 [211; 212) 'z': i128
1745 [215; 217) 'id': fn id<i128>(T) -> T
1746 [215; 222) 'id(a.x)': i128
1747 [218; 219) 'a': A<i128>
1748 [218; 221) 'a.x': i128
1749 [233; 234) 'b': A<i128>
1750 [237; 247) 'A { x: z }': A<i128>
1751 [244; 245) 'z': i128
1752 [254; 255) 'b': A<i128>
1753 [254; 259) 'b.x()': i128
1754 "###
1755 );
1756}
1757
1758#[test]
1759fn infer_associated_const() {
1760 assert_snapshot!(
1761 infer(r#"
1762struct Struct;
1763
1764impl Struct {
1765 const FOO: u32 = 1;
1766}
1767
1768enum Enum {}
1769
1770impl Enum {
1771 const BAR: u32 = 2;
1772}
1773
1774trait Trait {
1775 const ID: u32;
1776}
1777
1778struct TraitTest;
1779
1780impl Trait for TraitTest {
1781 const ID: u32 = 5;
1782}
1783
1784fn test() {
1785 let x = Struct::FOO;
1786 let y = Enum::BAR;
1787 let z = TraitTest::ID;
1788}
1789"#),
1790 @r###"
1791 [52; 53) '1': u32
1792 [105; 106) '2': u32
1793 [213; 214) '5': u32
1794 [229; 307) '{ ...:ID; }': ()
1795 [239; 240) 'x': u32
1796 [243; 254) 'Struct::FOO': u32
1797 [264; 265) 'y': u32
1798 [268; 277) 'Enum::BAR': u32
1799 [287; 288) 'z': u32
1800 [291; 304) 'TraitTest::ID': u32
1801 "###
1802 );
1803}
1804
1805#[test]
1806fn infer_associated_method_struct() {
1807 assert_snapshot!(
1808 infer(r#"
1809struct A { x: u32 }
1810
1811impl A {
1812 fn new() -> A {
1813 A { x: 0 }
1814 }
1815}
1816fn test() {
1817 let a = A::new();
1818 a.x;
1819}
1820"#),
1821 @r###"
1822 [49; 75) '{ ... }': A
1823 [59; 69) 'A { x: 0 }': A
1824 [66; 67) '0': u32
1825 [88; 122) '{ ...a.x; }': ()
1826 [98; 99) 'a': A
1827 [102; 108) 'A::new': fn new() -> A
1828 [102; 110) 'A::new()': A
1829 [116; 117) 'a': A
1830 [116; 119) 'a.x': u32
1831 "###
1832 );
1833}
1834
1835#[test]
1836fn infer_associated_method_enum() {
1837 assert_snapshot!(
1838 infer(r#"
1839enum A { B, C }
1840
1841impl A {
1842 pub fn b() -> A {
1843 A::B
1844 }
1845 pub fn c() -> A {
1846 A::C
1847 }
1848}
1849fn test() {
1850 let a = A::b();
1851 a;
1852 let c = A::c();
1853 c;
1854}
1855"#),
1856 @r###"
1857 [47; 67) '{ ... }': A
1858 [57; 61) 'A::B': A
1859 [88; 108) '{ ... }': A
1860 [98; 102) 'A::C': A
1861 [121; 178) '{ ... c; }': ()
1862 [131; 132) 'a': A
1863 [135; 139) 'A::b': fn b() -> A
1864 [135; 141) 'A::b()': A
1865 [147; 148) 'a': A
1866 [158; 159) 'c': A
1867 [162; 166) 'A::c': fn c() -> A
1868 [162; 168) 'A::c()': A
1869 [174; 175) 'c': A
1870 "###
1871 );
1872}
1873
1874#[test]
1875fn infer_associated_method_with_modules() {
1876 assert_snapshot!(
1877 infer(r#"
1878mod a {
1879 struct A;
1880 impl A { pub fn thing() -> A { A {} }}
1881}
1882
1883mod b {
1884 struct B;
1885 impl B { pub fn thing() -> u32 { 99 }}
1886
1887 mod c {
1888 struct C;
1889 impl C { pub fn thing() -> C { C {} }}
1890 }
1891}
1892use b::c;
1893
1894fn test() {
1895 let x = a::A::thing();
1896 let y = b::B::thing();
1897 let z = c::C::thing();
1898}
1899"#),
1900 @r###"
1901 [56; 64) '{ A {} }': A
1902 [58; 62) 'A {}': A
1903 [126; 132) '{ 99 }': u32
1904 [128; 130) '99': u32
1905 [202; 210) '{ C {} }': C
1906 [204; 208) 'C {}': C
1907 [241; 325) '{ ...g(); }': ()
1908 [251; 252) 'x': A
1909 [255; 266) 'a::A::thing': fn thing() -> A
1910 [255; 268) 'a::A::thing()': A
1911 [278; 279) 'y': u32
1912 [282; 293) 'b::B::thing': fn thing() -> u32
1913 [282; 295) 'b::B::thing()': u32
1914 [305; 306) 'z': C
1915 [309; 320) 'c::C::thing': fn thing() -> C
1916 [309; 322) 'c::C::thing()': C
1917 "###
1918 );
1919}
1920
1921#[test]
1922fn infer_associated_method_generics() {
1923 assert_snapshot!(
1924 infer(r#"
1925struct Gen<T> {
1926 val: T
1927}
1928
1929impl<T> Gen<T> {
1930 pub fn make(val: T) -> Gen<T> {
1931 Gen { val }
1932 }
1933}
1934
1935fn test() {
1936 let a = Gen::make(0u32);
1937}
1938"#),
1939 @r###"
1940 [64; 67) 'val': T
1941 [82; 109) '{ ... }': Gen<T>
1942 [92; 103) 'Gen { val }': Gen<T>
1943 [98; 101) 'val': T
1944 [123; 155) '{ ...32); }': ()
1945 [133; 134) 'a': Gen<u32>
1946 [137; 146) 'Gen::make': fn make<u32>(T) -> Gen<T>
1947 [137; 152) 'Gen::make(0u32)': Gen<u32>
1948 [147; 151) '0u32': u32
1949 "###
1950 );
1951}
1952
1953#[test]
1954fn infer_associated_method_generics_with_default_param() {
1955 assert_snapshot!(
1956 infer(r#"
1957struct Gen<T=u32> {
1958 val: T
1959}
1960
1961impl<T> Gen<T> {
1962 pub fn make() -> Gen<T> {
1963 loop { }
1964 }
1965}
1966
1967fn test() {
1968 let a = Gen::make();
1969}
1970"#),
1971 @r###"
1972 [80; 104) '{ ... }': Gen<T>
1973 [90; 98) 'loop { }': !
1974 [95; 98) '{ }': ()
1975 [118; 146) '{ ...e(); }': ()
1976 [128; 129) 'a': Gen<u32>
1977 [132; 141) 'Gen::make': fn make<u32>() -> Gen<T>
1978 [132; 143) 'Gen::make()': Gen<u32>
1979 "###
1980 );
1981}
1982
1983#[test]
1984fn infer_associated_method_generics_with_default_tuple_param() {
1985 let t = type_at(
1986 r#"
1987//- /main.rs
1988struct Gen<T=()> {
1989 val: T
1990}
1991
1992impl<T> Gen<T> {
1993 pub fn make() -> Gen<T> {
1994 loop { }
1995 }
1996}
1997
1998fn test() {
1999 let a = Gen::make();
2000 a.val<|>;
2001}
2002"#,
2003 );
2004 assert_eq!(t, "()");
2005}
2006
2007#[test]
2008fn infer_associated_method_generics_without_args() {
2009 assert_snapshot!(
2010 infer(r#"
2011struct Gen<T> {
2012 val: T
2013}
2014
2015impl<T> Gen<T> {
2016 pub fn make() -> Gen<T> {
2017 loop { }
2018 }
2019}
2020
2021fn test() {
2022 let a = Gen::<u32>::make();
2023}
2024"#),
2025 @r###"
2026 [76; 100) '{ ... }': Gen<T>
2027 [86; 94) 'loop { }': !
2028 [91; 94) '{ }': ()
2029 [114; 149) '{ ...e(); }': ()
2030 [124; 125) 'a': Gen<u32>
2031 [128; 144) 'Gen::<...::make': fn make<u32>() -> Gen<T>
2032 [128; 146) 'Gen::<...make()': Gen<u32>
2033 "###
2034 );
2035}
2036
2037#[test]
2038fn infer_associated_method_generics_2_type_params_without_args() {
2039 assert_snapshot!(
2040 infer(r#"
2041struct Gen<T, U> {
2042 val: T,
2043 val2: U,
2044}
2045
2046impl<T> Gen<u32, T> {
2047 pub fn make() -> Gen<u32,T> {
2048 loop { }
2049 }
2050}
2051
2052fn test() {
2053 let a = Gen::<u32, u64>::make();
2054}
2055"#),
2056 @r###"
2057 [102; 126) '{ ... }': Gen<u32, T>
2058 [112; 120) 'loop { }': !
2059 [117; 120) '{ }': ()
2060 [140; 180) '{ ...e(); }': ()
2061 [150; 151) 'a': Gen<u32, u64>
2062 [154; 175) 'Gen::<...::make': fn make<u64>() -> Gen<u32, T>
2063 [154; 177) 'Gen::<...make()': Gen<u32, u64>
2064 "###
2065 );
2066}
2067
2068#[test]
2069fn infer_type_alias() {
2070 assert_snapshot!(
2071 infer(r#"
2072struct A<X, Y> { x: X, y: Y }
2073type Foo = A<u32, i128>;
2074type Bar<T> = A<T, u128>;
2075type Baz<U, V> = A<V, U>;
2076fn test(x: Foo, y: Bar<&str>, z: Baz<i8, u8>) {
2077 x.x;
2078 x.y;
2079 y.x;
2080 y.y;
2081 z.x;
2082 z.y;
2083}
2084"#),
2085 @r###"
2086 [116; 117) 'x': A<u32, i128>
2087 [124; 125) 'y': A<&str, u128>
2088 [138; 139) 'z': A<u8, i8>
2089 [154; 211) '{ ...z.y; }': ()
2090 [160; 161) 'x': A<u32, i128>
2091 [160; 163) 'x.x': u32
2092 [169; 170) 'x': A<u32, i128>
2093 [169; 172) 'x.y': i128
2094 [178; 179) 'y': A<&str, u128>
2095 [178; 181) 'y.x': &str
2096 [187; 188) 'y': A<&str, u128>
2097 [187; 190) 'y.y': u128
2098 [196; 197) 'z': A<u8, i8>
2099 [196; 199) 'z.x': u8
2100 [205; 206) 'z': A<u8, i8>
2101 [205; 208) 'z.y': i8
2102 "###
2103 )
2104}
2105
2106#[test]
2107#[should_panic] // we currently can't handle this
2108fn recursive_type_alias() {
2109 assert_snapshot!(
2110 infer(r#"
2111struct A<X> {}
2112type Foo = Foo;
2113type Bar = A<Bar>;
2114fn test(x: Foo) {}
2115"#),
2116 @""
2117 )
2118}
2119
2120#[test]
2121fn no_panic_on_field_of_enum() {
2122 assert_snapshot!(
2123 infer(r#"
2124enum X {}
2125
2126fn test(x: X) {
2127 x.some_field;
2128}
2129"#),
2130 @r###"
2131 [20; 21) 'x': X
2132 [26; 47) '{ ...eld; }': ()
2133 [32; 33) 'x': X
2134 [32; 44) 'x.some_field': {unknown}
2135 "###
2136 );
2137}
2138
2139#[test]
2140fn bug_585() {
2141 assert_snapshot!(
2142 infer(r#"
2143fn test() {
2144 X {};
2145 match x {
2146 A::B {} => (),
2147 A::Y() => (),
2148 }
2149}
2150"#),
2151 @r###"
2152 [11; 89) '{ ... } }': ()
2153 [17; 21) 'X {}': {unknown}
2154 [27; 87) 'match ... }': ()
2155 [33; 34) 'x': {unknown}
2156 [45; 52) 'A::B {}': {unknown}
2157 [56; 58) '()': ()
2158 [68; 74) 'A::Y()': {unknown}
2159 [78; 80) '()': ()
2160 "###
2161 );
2162}
2163
2164#[test]
2165fn bug_651() {
2166 assert_snapshot!(
2167 infer(r#"
2168fn quux() {
2169 let y = 92;
2170 1 + y;
2171}
2172"#),
2173 @r###"
2174 [11; 41) '{ ...+ y; }': ()
2175 [21; 22) 'y': i32
2176 [25; 27) '92': i32
2177 [33; 34) '1': i32
2178 [33; 38) '1 + y': i32
2179 [37; 38) 'y': i32
2180 "###
2181 );
2182}
2183
2184#[test]
2185fn recursive_vars() {
2186 covers!(type_var_cycles_resolve_completely);
2187 covers!(type_var_cycles_resolve_as_possible);
2188 assert_snapshot!(
2189 infer(r#"
2190fn test() {
2191 let y = unknown;
2192 [y, &y];
2193}
2194"#),
2195 @r###"
2196 [11; 48) '{ ...&y]; }': ()
2197 [21; 22) 'y': &{unknown}
2198 [25; 32) 'unknown': &{unknown}
2199 [38; 45) '[y, &y]': [&&{unknown};_]
2200 [39; 40) 'y': &{unknown}
2201 [42; 44) '&y': &&{unknown}
2202 [43; 44) 'y': &{unknown}
2203 "###
2204 );
2205}
2206
2207#[test]
2208fn recursive_vars_2() {
2209 covers!(type_var_cycles_resolve_completely);
2210 covers!(type_var_cycles_resolve_as_possible);
2211 assert_snapshot!(
2212 infer(r#"
2213fn test() {
2214 let x = unknown;
2215 let y = unknown;
2216 [(x, y), (&y, &x)];
2217}
2218"#),
2219 @r###"
2220 [11; 80) '{ ...x)]; }': ()
2221 [21; 22) 'x': &&{unknown}
2222 [25; 32) 'unknown': &&{unknown}
2223 [42; 43) 'y': &&{unknown}
2224 [46; 53) 'unknown': &&{unknown}
2225 [59; 77) '[(x, y..., &x)]': [(&&&{unknown}, &&&{unknown});_]
2226 [60; 66) '(x, y)': (&&&{unknown}, &&&{unknown})
2227 [61; 62) 'x': &&{unknown}
2228 [64; 65) 'y': &&{unknown}
2229 [68; 76) '(&y, &x)': (&&&{unknown}, &&&{unknown})
2230 [69; 71) '&y': &&&{unknown}
2231 [70; 71) 'y': &&{unknown}
2232 [73; 75) '&x': &&&{unknown}
2233 [74; 75) 'x': &&{unknown}
2234 "###
2235 );
2236}
2237
2238#[test]
2239fn infer_type_param() {
2240 assert_snapshot!(
2241 infer(r#"
2242fn id<T>(x: T) -> T {
2243 x
2244}
2245
2246fn clone<T>(x: &T) -> T {
2247 *x
2248}
2249
2250fn test() {
2251 let y = 10u32;
2252 id(y);
2253 let x: bool = clone(z);
2254 id::<i128>(1);
2255}
2256"#),
2257 @r###"
2258 [10; 11) 'x': T
2259 [21; 30) '{ x }': T
2260 [27; 28) 'x': T
2261 [44; 45) 'x': &T
2262 [56; 66) '{ *x }': T
2263 [62; 64) '*x': T
2264 [63; 64) 'x': &T
2265 [78; 158) '{ ...(1); }': ()
2266 [88; 89) 'y': u32
2267 [92; 97) '10u32': u32
2268 [103; 105) 'id': fn id<u32>(T) -> T
2269 [103; 108) 'id(y)': u32
2270 [106; 107) 'y': u32
2271 [118; 119) 'x': bool
2272 [128; 133) 'clone': fn clone<bool>(&T) -> T
2273 [128; 136) 'clone(z)': bool
2274 [134; 135) 'z': &bool
2275 [142; 152) 'id::<i128>': fn id<i128>(T) -> T
2276 [142; 155) 'id::<i128>(1)': i128
2277 [153; 154) '1': i128
2278 "###
2279 );
2280}
2281
2282#[test]
2283fn infer_std_crash_1() {
2284 // caused stack overflow, taken from std
2285 assert_snapshot!(
2286 infer(r#"
2287enum Maybe<T> {
2288 Real(T),
2289 Fake,
2290}
2291
2292fn write() {
2293 match something_unknown {
2294 Maybe::Real(ref mut something) => (),
2295 }
2296}
2297"#),
2298 @r###"
2299 [54; 139) '{ ... } }': ()
2300 [60; 137) 'match ... }': ()
2301 [66; 83) 'someth...nknown': Maybe<{unknown}>
2302 [94; 124) 'Maybe:...thing)': Maybe<{unknown}>
2303 [106; 123) 'ref mu...ething': &mut {unknown}
2304 [128; 130) '()': ()
2305 "###
2306 );
2307}
2308
2309#[test]
2310fn infer_std_crash_2() {
2311 covers!(type_var_resolves_to_int_var);
2312 // caused "equating two type variables, ...", taken from std
2313 assert_snapshot!(
2314 infer(r#"
2315fn test_line_buffer() {
2316 &[0, b'\n', 1, b'\n'];
2317}
2318"#),
2319 @r###"
2320 [23; 53) '{ ...n']; }': ()
2321 [29; 50) '&[0, b...b'\n']': &[u8;_]
2322 [30; 50) '[0, b'...b'\n']': [u8;_]
2323 [31; 32) '0': u8
2324 [34; 39) 'b'\n'': u8
2325 [41; 42) '1': u8
2326 [44; 49) 'b'\n'': u8
2327 "###
2328 );
2329}
2330
2331#[test]
2332fn infer_std_crash_3() {
2333 // taken from rustc
2334 assert_snapshot!(
2335 infer(r#"
2336pub fn compute() {
2337 match nope!() {
2338 SizeSkeleton::Pointer { non_zero: true, tail } => {}
2339 }
2340}
2341"#),
2342 @r###"
2343 [18; 108) '{ ... } }': ()
2344 [24; 106) 'match ... }': ()
2345 [30; 37) 'nope!()': {unknown}
2346 [48; 94) 'SizeSk...tail }': {unknown}
2347 [82; 86) 'true': {unknown}
2348 [88; 92) 'tail': {unknown}
2349 [98; 100) '{}': ()
2350 "###
2351 );
2352}
2353
2354#[test]
2355fn infer_std_crash_4() {
2356 // taken from rustc
2357 assert_snapshot!(
2358 infer(r#"
2359pub fn primitive_type() {
2360 match *self {
2361 BorrowedRef { type_: Primitive(p), ..} => {},
2362 }
2363}
2364"#),
2365 @r###"
2366 [25; 106) '{ ... } }': ()
2367 [31; 104) 'match ... }': ()
2368 [37; 42) '*self': {unknown}
2369 [38; 42) 'self': {unknown}
2370 [53; 91) 'Borrow...), ..}': {unknown}
2371 [74; 86) 'Primitive(p)': {unknown}
2372 [84; 85) 'p': {unknown}
2373 [95; 97) '{}': ()
2374 "###
2375 );
2376}
2377
2378#[test]
2379fn infer_std_crash_5() {
2380 // taken from rustc
2381 assert_snapshot!(
2382 infer(r#"
2383fn extra_compiler_flags() {
2384 for content in doesnt_matter {
2385 let name = if doesnt_matter {
2386 first
2387 } else {
2388 &content
2389 };
2390
2391 let content = if ICE_REPORT_COMPILER_FLAGS_STRIP_VALUE.contains(&name) {
2392 name
2393 } else {
2394 content
2395 };
2396 }
2397}
2398"#),
2399 @r###"
2400 [27; 323) '{ ... } }': ()
2401 [33; 321) 'for co... }': ()
2402 [37; 44) 'content': &{unknown}
2403 [48; 61) 'doesnt_matter': {unknown}
2404 [62; 321) '{ ... }': ()
2405 [76; 80) 'name': &&{unknown}
2406 [83; 167) 'if doe... }': &&{unknown}
2407 [86; 99) 'doesnt_matter': bool
2408 [100; 129) '{ ... }': &&{unknown}
2409 [114; 119) 'first': &&{unknown}
2410 [135; 167) '{ ... }': &&{unknown}
2411 [149; 157) '&content': &&{unknown}
2412 [150; 157) 'content': &{unknown}
2413 [182; 189) 'content': &{unknown}
2414 [192; 314) 'if ICE... }': &{unknown}
2415 [195; 232) 'ICE_RE..._VALUE': {unknown}
2416 [195; 248) 'ICE_RE...&name)': bool
2417 [242; 247) '&name': &&&{unknown}
2418 [243; 247) 'name': &&{unknown}
2419 [249; 277) '{ ... }': &&{unknown}
2420 [263; 267) 'name': &&{unknown}
2421 [283; 314) '{ ... }': &{unknown}
2422 [297; 304) 'content': &{unknown}
2423 "###
2424 );
2425}
2426
2427#[test]
2428fn infer_nested_generics_crash() {
2429 // another crash found typechecking rustc
2430 assert_snapshot!(
2431 infer(r#"
2432struct Canonical<V> {
2433 value: V,
2434}
2435struct QueryResponse<V> {
2436 value: V,
2437}
2438fn test<R>(query_response: Canonical<QueryResponse<R>>) {
2439 &query_response.value;
2440}
2441"#),
2442 @r###"
2443 [92; 106) 'query_response': Canonical<QueryResponse<R>>
2444 [137; 167) '{ ...lue; }': ()
2445 [143; 164) '&query....value': &QueryResponse<R>
2446 [144; 158) 'query_response': Canonical<QueryResponse<R>>
2447 [144; 164) 'query_....value': QueryResponse<R>
2448 "###
2449 );
2450}
2451
2452#[test]
2453fn bug_1030() {
2454 assert_snapshot!(infer(r#"
2455struct HashSet<T, H>;
2456struct FxHasher;
2457type FxHashSet<T> = HashSet<T, FxHasher>;
2458
2459impl<T, H> HashSet<T, H> {
2460 fn default() -> HashSet<T, H> {}
2461}
2462
2463pub fn main_loop() {
2464 FxHashSet::default();
2465}
2466"#),
2467 @r###"
2468 [144; 146) '{}': ()
2469 [169; 198) '{ ...t(); }': ()
2470 [175; 193) 'FxHash...efault': fn default<{unknown}, FxHasher>() -> HashSet<T, H>
2471 [175; 195) 'FxHash...ault()': HashSet<{unknown}, FxHasher>
2472 "###
2473 );
2474}
2475
2476#[test]
2477fn cross_crate_associated_method_call() {
2478 let (db, pos) = TestDB::with_position(
2479 r#"
2480//- /main.rs crate:main deps:other_crate
2481fn test() {
2482 let x = other_crate::foo::S::thing();
2483 x<|>;
2484}
2485
2486//- /lib.rs crate:other_crate
2487mod foo {
2488 struct S;
2489 impl S {
2490 fn thing() -> i128 {}
2491 }
2492}
2493"#,
2494 );
2495 assert_eq!("i128", type_at_pos(&db, pos));
2496}
2497
2498#[test]
2499fn infer_const() {
2500 assert_snapshot!(
2501 infer(r#"
2502struct Foo;
2503impl Foo { const ASSOC_CONST: u32 = 0; }
2504const GLOBAL_CONST: u32 = 101;
2505fn test() {
2506 const LOCAL_CONST: u32 = 99;
2507 let x = LOCAL_CONST;
2508 let z = GLOBAL_CONST;
2509 let id = Foo::ASSOC_CONST;
2510}
2511"#),
2512 @r###"
2513 [49; 50) '0': u32
2514 [80; 83) '101': u32
2515 [95; 213) '{ ...NST; }': ()
2516 [138; 139) 'x': {unknown}
2517 [142; 153) 'LOCAL_CONST': {unknown}
2518 [163; 164) 'z': u32
2519 [167; 179) 'GLOBAL_CONST': u32
2520 [189; 191) 'id': u32
2521 [194; 210) 'Foo::A..._CONST': u32
2522 "###
2523 );
2524}
2525
2526#[test]
2527fn infer_static() {
2528 assert_snapshot!(
2529 infer(r#"
2530static GLOBAL_STATIC: u32 = 101;
2531static mut GLOBAL_STATIC_MUT: u32 = 101;
2532fn test() {
2533 static LOCAL_STATIC: u32 = 99;
2534 static mut LOCAL_STATIC_MUT: u32 = 99;
2535 let x = LOCAL_STATIC;
2536 let y = LOCAL_STATIC_MUT;
2537 let z = GLOBAL_STATIC;
2538 let w = GLOBAL_STATIC_MUT;
2539}
2540"#),
2541 @r###"
2542 [29; 32) '101': u32
2543 [70; 73) '101': u32
2544 [85; 280) '{ ...MUT; }': ()
2545 [173; 174) 'x': {unknown}
2546 [177; 189) 'LOCAL_STATIC': {unknown}
2547 [199; 200) 'y': {unknown}
2548 [203; 219) 'LOCAL_...IC_MUT': {unknown}
2549 [229; 230) 'z': u32
2550 [233; 246) 'GLOBAL_STATIC': u32
2551 [256; 257) 'w': u32
2552 [260; 277) 'GLOBAL...IC_MUT': u32
2553 "###
2554 );
2555}
2556
2557#[test]
2558fn infer_trait_method_simple() {
2559 // the trait implementation is intentionally incomplete -- it shouldn't matter
2560 assert_snapshot!(
2561 infer(r#"
2562trait Trait1 {
2563 fn method(&self) -> u32;
2564}
2565struct S1;
2566impl Trait1 for S1 {}
2567trait Trait2 {
2568 fn method(&self) -> i128;
2569}
2570struct S2;
2571impl Trait2 for S2 {}
2572fn test() {
2573 S1.method(); // -> u32
2574 S2.method(); // -> i128
2575}
2576"#),
2577 @r###"
2578 [31; 35) 'self': &Self
2579 [110; 114) 'self': &Self
2580 [170; 228) '{ ...i128 }': ()
2581 [176; 178) 'S1': S1
2582 [176; 187) 'S1.method()': u32
2583 [203; 205) 'S2': S2
2584 [203; 214) 'S2.method()': i128
2585 "###
2586 );
2587}
2588
2589#[test]
2590fn infer_trait_method_scoped() {
2591 // the trait implementation is intentionally incomplete -- it shouldn't matter
2592 assert_snapshot!(
2593 infer(r#"
2594struct S;
2595mod foo {
2596 pub trait Trait1 {
2597 fn method(&self) -> u32;
2598 }
2599 impl Trait1 for super::S {}
2600}
2601mod bar {
2602 pub trait Trait2 {
2603 fn method(&self) -> i128;
2604 }
2605 impl Trait2 for super::S {}
2606}
2607
2608mod foo_test {
2609 use super::S;
2610 use super::foo::Trait1;
2611 fn test() {
2612 S.method(); // -> u32
2613 }
2614}
2615
2616mod bar_test {
2617 use super::S;
2618 use super::bar::Trait2;
2619 fn test() {
2620 S.method(); // -> i128
2621 }
2622}
2623"#),
2624 @r###"
2625 [63; 67) 'self': &Self
2626 [169; 173) 'self': &Self
2627 [300; 337) '{ ... }': ()
2628 [310; 311) 'S': S
2629 [310; 320) 'S.method()': u32
2630 [416; 454) '{ ... }': ()
2631 [426; 427) 'S': S
2632 [426; 436) 'S.method()': i128
2633 "###
2634 );
2635}
2636
2637#[test]
2638fn infer_trait_method_generic_1() {
2639 // the trait implementation is intentionally incomplete -- it shouldn't matter
2640 assert_snapshot!(
2641 infer(r#"
2642trait Trait<T> {
2643 fn method(&self) -> T;
2644}
2645struct S;
2646impl Trait<u32> for S {}
2647fn test() {
2648 S.method();
2649}
2650"#),
2651 @r###"
2652 [33; 37) 'self': &Self
2653 [92; 111) '{ ...d(); }': ()
2654 [98; 99) 'S': S
2655 [98; 108) 'S.method()': u32
2656 "###
2657 );
2658}
2659
2660#[test]
2661fn infer_trait_method_generic_more_params() {
2662 // the trait implementation is intentionally incomplete -- it shouldn't matter
2663 assert_snapshot!(
2664 infer(r#"
2665trait Trait<T1, T2, T3> {
2666 fn method1(&self) -> (T1, T2, T3);
2667 fn method2(&self) -> (T3, T2, T1);
2668}
2669struct S1;
2670impl Trait<u8, u16, u32> for S1 {}
2671struct S2;
2672impl<T> Trait<i8, i16, T> for S2 {}
2673fn test() {
2674 S1.method1(); // u8, u16, u32
2675 S1.method2(); // u32, u16, u8
2676 S2.method1(); // i8, i16, {unknown}
2677 S2.method2(); // {unknown}, i16, i8
2678}
2679"#),
2680 @r###"
2681 [43; 47) 'self': &Self
2682 [82; 86) 'self': &Self
2683 [210; 361) '{ ..., i8 }': ()
2684 [216; 218) 'S1': S1
2685 [216; 228) 'S1.method1()': (u8, u16, u32)
2686 [250; 252) 'S1': S1
2687 [250; 262) 'S1.method2()': (u32, u16, u8)
2688 [284; 286) 'S2': S2
2689 [284; 296) 'S2.method1()': (i8, i16, {unknown})
2690 [324; 326) 'S2': S2
2691 [324; 336) 'S2.method2()': ({unknown}, i16, i8)
2692 "###
2693 );
2694}
2695
2696#[test]
2697fn infer_trait_method_generic_2() {
2698 // the trait implementation is intentionally incomplete -- it shouldn't matter
2699 assert_snapshot!(
2700 infer(r#"
2701trait Trait<T> {
2702 fn method(&self) -> T;
2703}
2704struct S<T>(T);
2705impl<U> Trait<U> for S<U> {}
2706fn test() {
2707 S(1u32).method();
2708}
2709"#),
2710 @r###"
2711 [33; 37) 'self': &Self
2712 [102; 127) '{ ...d(); }': ()
2713 [108; 109) 'S': S<u32>(T) -> S<T>
2714 [108; 115) 'S(1u32)': S<u32>
2715 [108; 124) 'S(1u32...thod()': u32
2716 [110; 114) '1u32': u32
2717 "###
2718 );
2719}
2720
2721#[test]
2722fn infer_trait_assoc_method() {
2723 assert_snapshot!(
2724 infer(r#"
2725trait Default {
2726 fn default() -> Self;
2727}
2728struct S;
2729impl Default for S {}
2730fn test() {
2731 let s1: S = Default::default();
2732 let s2 = S::default();
2733 let s3 = <S as Default>::default();
2734}
2735"#),
2736 @r###"
2737 [87; 193) '{ ...t(); }': ()
2738 [97; 99) 's1': S
2739 [105; 121) 'Defaul...efault': fn default<S>() -> Self
2740 [105; 123) 'Defaul...ault()': S
2741 [133; 135) 's2': S
2742 [138; 148) 'S::default': fn default<S>() -> Self
2743 [138; 150) 'S::default()': S
2744 [160; 162) 's3': S
2745 [165; 188) '<S as ...efault': fn default<S>() -> Self
2746 [165; 190) '<S as ...ault()': S
2747 "###
2748 );
2749}
2750
2751#[test]
2752fn infer_trait_assoc_method_generics_1() {
2753 assert_snapshot!(
2754 infer(r#"
2755trait Trait<T> {
2756 fn make() -> T;
2757}
2758struct S;
2759impl Trait<u32> for S {}
2760struct G<T>;
2761impl<T> Trait<T> for G<T> {}
2762fn test() {
2763 let a = S::make();
2764 let b = G::<u64>::make();
2765 let c: f64 = G::make();
2766}
2767"#),
2768 @r###"
2769 [127; 211) '{ ...e(); }': ()
2770 [137; 138) 'a': u32
2771 [141; 148) 'S::make': fn make<S, u32>() -> T
2772 [141; 150) 'S::make()': u32
2773 [160; 161) 'b': u64
2774 [164; 178) 'G::<u64>::make': fn make<G<u64>, u64>() -> T
2775 [164; 180) 'G::<u6...make()': u64
2776 [190; 191) 'c': f64
2777 [199; 206) 'G::make': fn make<G<f64>, f64>() -> T
2778 [199; 208) 'G::make()': f64
2779 "###
2780 );
2781}
2782
2783#[test]
2784fn infer_trait_assoc_method_generics_2() {
2785 assert_snapshot!(
2786 infer(r#"
2787trait Trait<T> {
2788 fn make<U>() -> (T, U);
2789}
2790struct S;
2791impl Trait<u32> for S {}
2792struct G<T>;
2793impl<T> Trait<T> for G<T> {}
2794fn test() {
2795 let a = S::make::<i64>();
2796 let b: (_, i64) = S::make();
2797 let c = G::<u32>::make::<i64>();
2798 let d: (u32, _) = G::make::<i64>();
2799 let e: (u32, i64) = G::make();
2800}
2801"#),
2802 @r###"
2803 [135; 313) '{ ...e(); }': ()
2804 [145; 146) 'a': (u32, i64)
2805 [149; 163) 'S::make::<i64>': fn make<S, u32, i64>() -> (T, U)
2806 [149; 165) 'S::mak...i64>()': (u32, i64)
2807 [175; 176) 'b': (u32, i64)
2808 [189; 196) 'S::make': fn make<S, u32, i64>() -> (T, U)
2809 [189; 198) 'S::make()': (u32, i64)
2810 [208; 209) 'c': (u32, i64)
2811 [212; 233) 'G::<u3...:<i64>': fn make<G<u32>, u32, i64>() -> (T, U)
2812 [212; 235) 'G::<u3...i64>()': (u32, i64)
2813 [245; 246) 'd': (u32, i64)
2814 [259; 273) 'G::make::<i64>': fn make<G<u32>, u32, i64>() -> (T, U)
2815 [259; 275) 'G::mak...i64>()': (u32, i64)
2816 [285; 286) 'e': (u32, i64)
2817 [301; 308) 'G::make': fn make<G<u32>, u32, i64>() -> (T, U)
2818 [301; 310) 'G::make()': (u32, i64)
2819 "###
2820 );
2821}
2822
2823#[test]
2824fn infer_trait_assoc_method_generics_3() {
2825 assert_snapshot!(
2826 infer(r#"
2827trait Trait<T> {
2828 fn make() -> (Self, T);
2829}
2830struct S<T>;
2831impl Trait<i64> for S<i32> {}
2832fn test() {
2833 let a = S::make();
2834}
2835"#),
2836 @r###"
2837 [101; 127) '{ ...e(); }': ()
2838 [111; 112) 'a': (S<i32>, i64)
2839 [115; 122) 'S::make': fn make<S<i32>, i64>() -> (Self, T)
2840 [115; 124) 'S::make()': (S<i32>, i64)
2841 "###
2842 );
2843}
2844
2845#[test]
2846fn infer_trait_assoc_method_generics_4() {
2847 assert_snapshot!(
2848 infer(r#"
2849trait Trait<T> {
2850 fn make() -> (Self, T);
2851}
2852struct S<T>;
2853impl Trait<i64> for S<u64> {}
2854impl Trait<i32> for S<u32> {}
2855fn test() {
2856 let a: (S<u64>, _) = S::make();
2857 let b: (_, i32) = S::make();
2858}
2859"#),
2860 @r###"
2861 [131; 203) '{ ...e(); }': ()
2862 [141; 142) 'a': (S<u64>, i64)
2863 [158; 165) 'S::make': fn make<S<u64>, i64>() -> (Self, T)
2864 [158; 167) 'S::make()': (S<u64>, i64)
2865 [177; 178) 'b': (S<u32>, i32)
2866 [191; 198) 'S::make': fn make<S<u32>, i32>() -> (Self, T)
2867 [191; 200) 'S::make()': (S<u32>, i32)
2868 "###
2869 );
2870}
2871
2872#[test]
2873fn infer_trait_assoc_method_generics_5() {
2874 assert_snapshot!(
2875 infer(r#"
2876trait Trait<T> {
2877 fn make<U>() -> (Self, T, U);
2878}
2879struct S<T>;
2880impl Trait<i64> for S<u64> {}
2881fn test() {
2882 let a = <S as Trait<i64>>::make::<u8>();
2883 let b: (S<u64>, _, _) = Trait::<i64>::make::<u8>();
2884}
2885"#),
2886 @r###"
2887 [107; 211) '{ ...>(); }': ()
2888 [117; 118) 'a': (S<u64>, i64, u8)
2889 [121; 150) '<S as ...::<u8>': fn make<S<u64>, i64, u8>() -> (Self, T, U)
2890 [121; 152) '<S as ...<u8>()': (S<u64>, i64, u8)
2891 [162; 163) 'b': (S<u64>, i64, u8)
2892 [182; 206) 'Trait:...::<u8>': fn make<S<u64>, i64, u8>() -> (Self, T, U)
2893 [182; 208) 'Trait:...<u8>()': (S<u64>, i64, u8)
2894 "###
2895 );
2896}
2897
2898#[test]
2899fn infer_from_bound_1() {
2900 assert_snapshot!(
2901 infer(r#"
2902trait Trait<T> {}
2903struct S<T>(T);
2904impl<U> Trait<U> for S<U> {}
2905fn foo<T: Trait<u32>>(t: T) {}
2906fn test() {
2907 let s = S(unknown);
2908 foo(s);
2909}
2910"#),
2911 @r###"
2912 [86; 87) 't': T
2913 [92; 94) '{}': ()
2914 [105; 144) '{ ...(s); }': ()
2915 [115; 116) 's': S<u32>
2916 [119; 120) 'S': S<u32>(T) -> S<T>
2917 [119; 129) 'S(unknown)': S<u32>
2918 [121; 128) 'unknown': u32
2919 [135; 138) 'foo': fn foo<S<u32>>(T) -> ()
2920 [135; 141) 'foo(s)': ()
2921 [139; 140) 's': S<u32>
2922 "###
2923 );
2924}
2925
2926#[test]
2927fn infer_from_bound_2() {
2928 assert_snapshot!(
2929 infer(r#"
2930trait Trait<T> {}
2931struct S<T>(T);
2932impl<U> Trait<U> for S<U> {}
2933fn foo<U, T: Trait<U>>(t: T) -> U {}
2934fn test() {
2935 let s = S(unknown);
2936 let x: u32 = foo(s);
2937}
2938"#),
2939 @r###"
2940 [87; 88) 't': T
2941 [98; 100) '{}': ()
2942 [111; 163) '{ ...(s); }': ()
2943 [121; 122) 's': S<u32>
2944 [125; 126) 'S': S<u32>(T) -> S<T>
2945 [125; 135) 'S(unknown)': S<u32>
2946 [127; 134) 'unknown': u32
2947 [145; 146) 'x': u32
2948 [154; 157) 'foo': fn foo<u32, S<u32>>(T) -> U
2949 [154; 160) 'foo(s)': u32
2950 [158; 159) 's': S<u32>
2951 "###
2952 );
2953}
2954
2955#[test]
2956fn infer_call_trait_method_on_generic_param_1() {
2957 assert_snapshot!(
2958 infer(r#"
2959trait Trait {
2960 fn method(&self) -> u32;
2961}
2962fn test<T: Trait>(t: T) {
2963 t.method();
2964}
2965"#),
2966 @r###"
2967 [30; 34) 'self': &Self
2968 [64; 65) 't': T
2969 [70; 89) '{ ...d(); }': ()
2970 [76; 77) 't': T
2971 [76; 86) 't.method()': u32
2972 "###
2973 );
2974}
2975
2976#[test]
2977fn infer_call_trait_method_on_generic_param_2() {
2978 assert_snapshot!(
2979 infer(r#"
2980trait Trait<T> {
2981 fn method(&self) -> T;
2982}
2983fn test<U, T: Trait<U>>(t: T) {
2984 t.method();
2985}
2986"#),
2987 @r###"
2988 [33; 37) 'self': &Self
2989 [71; 72) 't': T
2990 [77; 96) '{ ...d(); }': ()
2991 [83; 84) 't': T
2992 [83; 93) 't.method()': [missing name]
2993 "###
2994 );
2995}
2996
2997#[test]
2998fn infer_with_multiple_trait_impls() {
2999 assert_snapshot!(
3000 infer(r#"
3001trait Into<T> {
3002 fn into(self) -> T;
3003}
3004struct S;
3005impl Into<u32> for S {}
3006impl Into<u64> for S {}
3007fn test() {
3008 let x: u32 = S.into();
3009 let y: u64 = S.into();
3010 let z = Into::<u64>::into(S);
3011}
3012"#),
3013 @r###"
3014 [29; 33) 'self': Self
3015 [111; 202) '{ ...(S); }': ()
3016 [121; 122) 'x': u32
3017 [130; 131) 'S': S
3018 [130; 138) 'S.into()': u32
3019 [148; 149) 'y': u64
3020 [157; 158) 'S': S
3021 [157; 165) 'S.into()': u64
3022 [175; 176) 'z': u64
3023 [179; 196) 'Into::...::into': fn into<S, u64>(Self) -> T
3024 [179; 199) 'Into::...nto(S)': u64
3025 [197; 198) 'S': S
3026 "###
3027 );
3028}
3029
3030#[test]
3031fn infer_project_associated_type() {
3032 // y, z, a don't yet work because of https://github.com/rust-lang/chalk/issues/234
3033 assert_snapshot!(
3034 infer(r#"
3035trait Iterable {
3036 type Item;
3037}
3038struct S;
3039impl Iterable for S { type Item = u32; }
3040fn test<T: Iterable>() {
3041 let x: <S as Iterable>::Item = 1;
3042 let y: <T as Iterable>::Item = no_matter;
3043 let z: T::Item = no_matter;
3044 let a: <T>::Item = no_matter;
3045}
3046"#),
3047 @r###"
3048 [108; 261) '{ ...ter; }': ()
3049 [118; 119) 'x': u32
3050 [145; 146) '1': u32
3051 [156; 157) 'y': {unknown}
3052 [183; 192) 'no_matter': {unknown}
3053 [202; 203) 'z': {unknown}
3054 [215; 224) 'no_matter': {unknown}
3055 [234; 235) 'a': {unknown}
3056 [249; 258) 'no_matter': {unknown}
3057 "###
3058 );
3059}
3060
3061#[test]
3062fn infer_return_associated_type() {
3063 assert_snapshot!(
3064 infer(r#"
3065trait Iterable {
3066 type Item;
3067}
3068struct S;
3069impl Iterable for S { type Item = u32; }
3070fn foo1<T: Iterable>(t: T) -> T::Item {}
3071fn foo2<T: Iterable>(t: T) -> <T as Iterable>::Item {}
3072fn foo3<T: Iterable>(t: T) -> <T>::Item {}
3073fn test() {
3074 let x = foo1(S);
3075 let y = foo2(S);
3076 let z = foo3(S);
3077}
3078"#),
3079 @r###"
3080 [106; 107) 't': T
3081 [123; 125) '{}': ()
3082 [147; 148) 't': T
3083 [178; 180) '{}': ()
3084 [202; 203) 't': T
3085 [221; 223) '{}': ()
3086 [234; 300) '{ ...(S); }': ()
3087 [244; 245) 'x': u32
3088 [248; 252) 'foo1': fn foo1<S>(T) -> <T as Iterable>::Item
3089 [248; 255) 'foo1(S)': u32
3090 [253; 254) 'S': S
3091 [265; 266) 'y': u32
3092 [269; 273) 'foo2': fn foo2<S>(T) -> <T as Iterable>::Item
3093 [269; 276) 'foo2(S)': u32
3094 [274; 275) 'S': S
3095 [286; 287) 'z': u32
3096 [290; 294) 'foo3': fn foo3<S>(T) -> <T as Iterable>::Item
3097 [290; 297) 'foo3(S)': u32
3098 [295; 296) 'S': S
3099 "###
3100 );
3101}
3102
3103#[test]
3104fn infer_associated_type_bound() {
3105 assert_snapshot!(
3106 infer(r#"
3107trait Iterable {
3108 type Item;
3109}
3110fn test<T: Iterable<Item=u32>>() {
3111 let y: T::Item = unknown;
3112}
3113"#),
3114 @r###"
3115 [67; 100) '{ ...own; }': ()
3116 [77; 78) 'y': {unknown}
3117 [90; 97) 'unknown': {unknown}
3118 "###
3119 );
3120}
3121
3122#[test]
3123fn infer_const_body() {
3124 assert_snapshot!(
3125 infer(r#"
3126const A: u32 = 1 + 1;
3127static B: u64 = { let x = 1; x };
3128"#),
3129 @r###"
3130 [16; 17) '1': u32
3131 [16; 21) '1 + 1': u32
3132 [20; 21) '1': u32
3133 [39; 55) '{ let ...1; x }': u64
3134 [45; 46) 'x': u64
3135 [49; 50) '1': u64
3136 [52; 53) 'x': u64
3137 "###
3138 );
3139}
3140
3141#[test]
3142fn tuple_struct_fields() {
3143 assert_snapshot!(
3144 infer(r#"
3145struct S(i32, u64);
3146fn test() -> u64 {
3147 let a = S(4, 6);
3148 let b = a.0;
3149 a.1
3150}
3151"#),
3152 @r###"
3153 [38; 87) '{ ... a.1 }': u64
3154 [48; 49) 'a': S
3155 [52; 53) 'S': S(i32, u64) -> S
3156 [52; 59) 'S(4, 6)': S
3157 [54; 55) '4': i32
3158 [57; 58) '6': u64
3159 [69; 70) 'b': i32
3160 [73; 74) 'a': S
3161 [73; 76) 'a.0': i32
3162 [82; 83) 'a': S
3163 [82; 85) 'a.1': u64
3164 "###
3165 );
3166}
3167
3168#[test]
3169fn tuple_struct_with_fn() {
3170 assert_snapshot!(
3171 infer(r#"
3172struct S(fn(u32) -> u64);
3173fn test() -> u64 {
3174 let a = S(|i| 2*i);
3175 let b = a.0(4);
3176 a.0(2)
3177}
3178"#),
3179 @r###"
3180 [44; 102) '{ ...0(2) }': u64
3181 [54; 55) 'a': S
3182 [58; 59) 'S': S(fn(u32) -> u64) -> S
3183 [58; 68) 'S(|i| 2*i)': S
3184 [60; 67) '|i| 2*i': |i32| -> i32
3185 [61; 62) 'i': i32
3186 [64; 65) '2': i32
3187 [64; 67) '2*i': i32
3188 [66; 67) 'i': i32
3189 [78; 79) 'b': u64
3190 [82; 83) 'a': S
3191 [82; 85) 'a.0': fn(u32) -> u64
3192 [82; 88) 'a.0(4)': u64
3193 [86; 87) '4': u32
3194 [94; 95) 'a': S
3195 [94; 97) 'a.0': fn(u32) -> u64
3196 [94; 100) 'a.0(2)': u64
3197 [98; 99) '2': u32
3198 "###
3199 );
3200}
3201
3202#[test]
3203fn indexing_arrays() {
3204 assert_snapshot!(
3205 infer("fn main() { &mut [9][2]; }"),
3206 @r###"
3207 [10; 26) '{ &mut...[2]; }': ()
3208 [12; 23) '&mut [9][2]': &mut {unknown}
3209 [17; 20) '[9]': [i32;_]
3210 [17; 23) '[9][2]': {unknown}
3211 [18; 19) '9': i32
3212 [21; 22) '2': i32
3213 "###
3214 )
3215}
3216
3217#[test]
3218fn infer_macros_expanded() {
3219 assert_snapshot!(
3220 infer(r#"
3221struct Foo(Vec<i32>);
3222
3223macro_rules! foo {
3224 ($($item:expr),*) => {
3225 {
3226 Foo(vec![$($item,)*])
3227 }
3228 };
3229}
3230
3231fn main() {
3232 let x = foo!(1,2);
3233}
3234"#),
3235 @r###"
3236 ![0; 17) '{Foo(v...,2,])}': Foo
3237 ![1; 4) 'Foo': Foo({unknown}) -> Foo
3238 ![1; 16) 'Foo(vec![1,2,])': Foo
3239 ![5; 15) 'vec![1,2,]': {unknown}
3240 [156; 182) '{ ...,2); }': ()
3241 [166; 167) 'x': Foo
3242 "###
3243 );
3244}
3245
3246#[test]
3247fn infer_legacy_textual_scoped_macros_expanded() {
3248 assert_snapshot!(
3249 infer(r#"
3250struct Foo(Vec<i32>);
3251
3252#[macro_use]
3253mod m {
3254 macro_rules! foo {
3255 ($($item:expr),*) => {
3256 {
3257 Foo(vec![$($item,)*])
3258 }
3259 };
3260 }
3261}
3262
3263fn main() {
3264 let x = foo!(1,2);
3265 let y = crate::foo!(1,2);
3266}
3267"#),
3268 @r###"
3269 ![0; 17) '{Foo(v...,2,])}': Foo
3270 ![1; 4) 'Foo': Foo({unknown}) -> Foo
3271 ![1; 16) 'Foo(vec![1,2,])': Foo
3272 ![5; 15) 'vec![1,2,]': {unknown}
3273 [195; 251) '{ ...,2); }': ()
3274 [205; 206) 'x': Foo
3275 [228; 229) 'y': {unknown}
3276 [232; 248) 'crate:...!(1,2)': {unknown}
3277 "###
3278 );
3279}
3280
3281#[test]
3282fn infer_path_qualified_macros_expanded() {
3283 assert_snapshot!(
3284 infer(r#"
3285#[macro_export]
3286macro_rules! foo {
3287 () => { 42i32 }
3288}
3289
3290mod m {
3291 pub use super::foo as bar;
3292}
3293
3294fn main() {
3295 let x = crate::foo!();
3296 let y = m::bar!();
3297}
3298"#),
3299 @r###"
3300 ![0; 5) '42i32': i32
3301 ![0; 5) '42i32': i32
3302 [111; 164) '{ ...!(); }': ()
3303 [121; 122) 'x': i32
3304 [148; 149) 'y': i32
3305 "###
3306 );
3307}
3308
3309#[test]
3310fn infer_type_value_macro_having_same_name() {
3311 assert_snapshot!(
3312 infer(r#"
3313#[macro_export]
3314macro_rules! foo {
3315 () => {
3316 mod foo {
3317 pub use super::foo;
3318 }
3319 };
3320 ($x:tt) => {
3321 $x
3322 };
3323}
3324
3325foo!();
3326
3327fn foo() {
3328 let foo = foo::foo!(42i32);
3329}
3330"#),
3331 @r###"
3332 ![0; 5) '42i32': i32
3333 [171; 206) '{ ...32); }': ()
3334 [181; 184) 'foo': i32
3335 "###
3336 );
3337}
3338
3339#[test]
3340fn processes_impls_generated_by_macros() {
3341 let t = type_at(
3342 r#"
3343//- /main.rs
3344macro_rules! m {
3345 ($ident:ident) => (impl Trait for $ident {})
3346}
3347trait Trait { fn foo(self) -> u128 {} }
3348struct S;
3349m!(S);
3350fn test() { S.foo()<|>; }
3351"#,
3352 );
3353 assert_eq!(t, "u128");
3354}
3355
3356#[test]
3357fn infer_macro_with_dollar_crate_is_correct_in_expr() {
3358 let (db, pos) = TestDB::with_position(
3359 r#"
3360//- /main.rs crate:main deps:foo
3361fn test() {
3362 let x = (foo::foo!(1), foo::foo!(2));
3363 x<|>;
3364}
3365
3366//- /lib.rs crate:foo
3367#[macro_export]
3368macro_rules! foo {
3369 (1) => { $crate::bar!() };
3370 (2) => { 1 + $crate::baz() };
3371}
3372
3373#[macro_export]
3374macro_rules! bar {
3375 () => { 42 }
3376}
3377
3378pub fn baz() -> usize { 31usize }
3379"#,
3380 );
3381 assert_eq!("(i32, usize)", type_at_pos(&db, pos));
3382}
3383
3384#[ignore]
3385#[test]
3386fn method_resolution_trait_before_autoref() {
3387 let t = type_at(
3388 r#"
3389//- /main.rs
3390trait Trait { fn foo(self) -> u128; }
3391struct S;
3392impl S { fn foo(&self) -> i8 { 0 } }
3393impl Trait for S { fn foo(self) -> u128 { 0 } }
3394fn test() { S.foo()<|>; }
3395"#,
3396 );
3397 assert_eq!(t, "u128");
3398}
3399
3400#[ignore]
3401#[test]
3402fn method_resolution_by_value_before_autoref() {
3403 let t = type_at(
3404 r#"
3405//- /main.rs
3406trait Clone { fn clone(&self) -> Self; }
3407struct S;
3408impl Clone for S {}
3409impl Clone for &S {}
3410fn test() { (S.clone(), (&S).clone(), (&&S).clone())<|>; }
3411"#,
3412 );
3413 assert_eq!(t, "(S, S, &S)");
3414}
3415
3416#[test]
3417fn method_resolution_trait_before_autoderef() {
3418 let t = type_at(
3419 r#"
3420//- /main.rs
3421trait Trait { fn foo(self) -> u128; }
3422struct S;
3423impl S { fn foo(self) -> i8 { 0 } }
3424impl Trait for &S { fn foo(self) -> u128 { 0 } }
3425fn test() { (&S).foo()<|>; }
3426"#,
3427 );
3428 assert_eq!(t, "u128");
3429}
3430
3431#[test]
3432fn method_resolution_impl_before_trait() {
3433 let t = type_at(
3434 r#"
3435//- /main.rs
3436trait Trait { fn foo(self) -> u128; }
3437struct S;
3438impl S { fn foo(self) -> i8 { 0 } }
3439impl Trait for S { fn foo(self) -> u128 { 0 } }
3440fn test() { S.foo()<|>; }
3441"#,
3442 );
3443 assert_eq!(t, "i8");
3444}
3445
3446#[test]
3447fn method_resolution_trait_autoderef() {
3448 let t = type_at(
3449 r#"
3450//- /main.rs
3451trait Trait { fn foo(self) -> u128; }
3452struct S;
3453impl Trait for S { fn foo(self) -> u128 { 0 } }
3454fn test() { (&S).foo()<|>; }
3455"#,
3456 );
3457 assert_eq!(t, "u128");
3458}
3459
3460#[test]
3461fn method_resolution_trait_from_prelude() {
3462 let (db, pos) = TestDB::with_position(
3463 r#"
3464//- /main.rs crate:main deps:other_crate
3465struct S;
3466impl Clone for S {}
3467
3468fn test() {
3469 S.clone()<|>;
3470}
3471
3472//- /lib.rs crate:other_crate
3473#[prelude_import] use foo::*;
3474
3475mod foo {
3476 trait Clone {
3477 fn clone(&self) -> Self;
3478 }
3479}
3480"#,
3481 );
3482 assert_eq!("S", type_at_pos(&db, pos));
3483}
3484
3485#[test]
3486fn method_resolution_where_clause_for_unknown_trait() {
3487 // The blanket impl shouldn't apply because we can't even resolve UnknownTrait
3488 let t = type_at(
3489 r#"
3490//- /main.rs
3491trait Trait { fn foo(self) -> u128; }
3492struct S;
3493impl<T> Trait for T where T: UnknownTrait {}
3494fn test() { (&S).foo()<|>; }
3495"#,
3496 );
3497 assert_eq!(t, "{unknown}");
3498}
3499
3500#[test]
3501fn method_resolution_where_clause_not_met() {
3502 // The blanket impl shouldn't apply because we can't prove S: Clone
3503 let t = type_at(
3504 r#"
3505//- /main.rs
3506trait Clone {}
3507trait Trait { fn foo(self) -> u128; }
3508struct S;
3509impl<T> Trait for T where T: Clone {}
3510fn test() { (&S).foo()<|>; }
3511"#,
3512 );
3513 // This is also to make sure that we don't resolve to the foo method just
3514 // because that's the only method named foo we can find, which would make
3515 // the below tests not work
3516 assert_eq!(t, "{unknown}");
3517}
3518
3519#[test]
3520fn method_resolution_where_clause_inline_not_met() {
3521 // The blanket impl shouldn't apply because we can't prove S: Clone
3522 let t = type_at(
3523 r#"
3524//- /main.rs
3525trait Clone {}
3526trait Trait { fn foo(self) -> u128; }
3527struct S;
3528impl<T: Clone> Trait for T {}
3529fn test() { (&S).foo()<|>; }
3530"#,
3531 );
3532 assert_eq!(t, "{unknown}");
3533}
3534
3535#[test]
3536fn method_resolution_where_clause_1() {
3537 let t = type_at(
3538 r#"
3539//- /main.rs
3540trait Clone {}
3541trait Trait { fn foo(self) -> u128; }
3542struct S;
3543impl Clone for S {}
3544impl<T> Trait for T where T: Clone {}
3545fn test() { S.foo()<|>; }
3546"#,
3547 );
3548 assert_eq!(t, "u128");
3549}
3550
3551#[test]
3552fn method_resolution_where_clause_2() {
3553 let t = type_at(
3554 r#"
3555//- /main.rs
3556trait Into<T> { fn into(self) -> T; }
3557trait From<T> { fn from(other: T) -> Self; }
3558struct S1;
3559struct S2;
3560impl From<S2> for S1 {}
3561impl<T, U> Into<U> for T where U: From<T> {}
3562fn test() { S2.into()<|>; }
3563"#,
3564 );
3565 assert_eq!(t, "{unknown}");
3566}
3567
3568#[test]
3569fn method_resolution_where_clause_inline() {
3570 let t = type_at(
3571 r#"
3572//- /main.rs
3573trait Into<T> { fn into(self) -> T; }
3574trait From<T> { fn from(other: T) -> Self; }
3575struct S1;
3576struct S2;
3577impl From<S2> for S1 {}
3578impl<T, U: From<T>> Into<U> for T {}
3579fn test() { S2.into()<|>; }
3580"#,
3581 );
3582 assert_eq!(t, "{unknown}");
3583}
3584
3585#[test]
3586fn method_resolution_encountering_fn_type() {
3587 type_at(
3588 r#"
3589//- /main.rs
3590fn foo() {}
3591trait FnOnce { fn call(self); }
3592fn test() { foo.call()<|>; }
3593"#,
3594 );
3595}
3596
3597#[test]
3598fn method_resolution_slow() {
3599 // this can get quite slow if we set the solver size limit too high
3600 let t = type_at(
3601 r#"
3602//- /main.rs
3603trait SendX {}
3604
3605struct S1; impl SendX for S1 {}
3606struct S2; impl SendX for S2 {}
3607struct U1;
3608
3609trait Trait { fn method(self); }
3610
3611struct X1<A, B> {}
3612impl<A, B> SendX for X1<A, B> where A: SendX, B: SendX {}
3613
3614struct S<B, C> {}
3615
3616trait FnX {}
3617
3618impl<B, C> Trait for S<B, C> where C: FnX, B: SendX {}
3619
3620fn test() { (S {}).method()<|>; }
3621"#,
3622 );
3623 assert_eq!(t, "()");
3624}
3625
3626#[test]
3627fn shadowing_primitive() {
3628 let t = type_at(
3629 r#"
3630//- /main.rs
3631struct i32;
3632struct Foo;
3633
3634impl i32 { fn foo(&self) -> Foo { Foo } }
3635
3636fn main() {
3637 let x: i32 = i32;
3638 x.foo()<|>;
3639}"#,
3640 );
3641 assert_eq!(t, "Foo");
3642}
3643
3644#[test]
3645fn deref_trait() {
3646 let t = type_at(
3647 r#"
3648//- /main.rs
3649#[lang = "deref"]
3650trait Deref {
3651 type Target;
3652 fn deref(&self) -> &Self::Target;
3653}
3654
3655struct Arc<T>;
3656impl<T> Deref for Arc<T> {
3657 type Target = T;
3658}
3659
3660struct S;
3661impl S {
3662 fn foo(&self) -> u128 {}
3663}
3664
3665fn test(s: Arc<S>) {
3666 (*s, s.foo())<|>;
3667}
3668"#,
3669 );
3670 assert_eq!(t, "(S, u128)");
3671}
3672
3673#[test]
3674fn deref_trait_with_inference_var() {
3675 let t = type_at(
3676 r#"
3677//- /main.rs
3678#[lang = "deref"]
3679trait Deref {
3680 type Target;
3681 fn deref(&self) -> &Self::Target;
3682}
3683
3684struct Arc<T>;
3685fn new_arc<T>() -> Arc<T> {}
3686impl<T> Deref for Arc<T> {
3687 type Target = T;
3688}
3689
3690struct S;
3691fn foo(a: Arc<S>) {}
3692
3693fn test() {
3694 let a = new_arc();
3695 let b = (*a)<|>;
3696 foo(a);
3697}
3698"#,
3699 );
3700 assert_eq!(t, "S");
3701}
3702
3703#[test]
3704fn deref_trait_infinite_recursion() {
3705 let t = type_at(
3706 r#"
3707//- /main.rs
3708#[lang = "deref"]
3709trait Deref {
3710 type Target;
3711 fn deref(&self) -> &Self::Target;
3712}
3713
3714struct S;
3715
3716impl Deref for S {
3717 type Target = S;
3718}
3719
3720fn test(s: S) {
3721 s.foo()<|>;
3722}
3723"#,
3724 );
3725 assert_eq!(t, "{unknown}");
3726}
3727
3728#[test]
3729fn deref_trait_with_question_mark_size() {
3730 let t = type_at(
3731 r#"
3732//- /main.rs
3733#[lang = "deref"]
3734trait Deref {
3735 type Target;
3736 fn deref(&self) -> &Self::Target;
3737}
3738
3739struct Arc<T>;
3740impl<T> Deref for Arc<T> {
3741 type Target = T;
3742}
3743
3744struct S;
3745impl S {
3746 fn foo(&self) -> u128 {}
3747}
3748
3749fn test(s: Arc<S>) {
3750 (*s, s.foo())<|>;
3751}
3752"#,
3753 );
3754 assert_eq!(t, "(S, u128)");
3755}
3756
3757#[test]
3758fn obligation_from_function_clause() {
3759 let t = type_at(
3760 r#"
3761//- /main.rs
3762struct S;
3763
3764trait Trait<T> {}
3765impl Trait<u32> for S {}
3766
3767fn foo<T: Trait<U>, U>(t: T) -> U {}
3768
3769fn test(s: S) {
3770 foo(s)<|>;
3771}
3772"#,
3773 );
3774 assert_eq!(t, "u32");
3775}
3776
3777#[test]
3778fn obligation_from_method_clause() {
3779 let t = type_at(
3780 r#"
3781//- /main.rs
3782struct S;
3783
3784trait Trait<T> {}
3785impl Trait<isize> for S {}
3786
3787struct O;
3788impl O {
3789 fn foo<T: Trait<U>, U>(&self, t: T) -> U {}
3790}
3791
3792fn test() {
3793 O.foo(S)<|>;
3794}
3795"#,
3796 );
3797 assert_eq!(t, "isize");
3798}
3799
3800#[test]
3801fn obligation_from_self_method_clause() {
3802 let t = type_at(
3803 r#"
3804//- /main.rs
3805struct S;
3806
3807trait Trait<T> {}
3808impl Trait<i64> for S {}
3809
3810impl S {
3811 fn foo<U>(&self) -> U where Self: Trait<U> {}
3812}
3813
3814fn test() {
3815 S.foo()<|>;
3816}
3817"#,
3818 );
3819 assert_eq!(t, "i64");
3820}
3821
3822#[test]
3823fn obligation_from_impl_clause() {
3824 let t = type_at(
3825 r#"
3826//- /main.rs
3827struct S;
3828
3829trait Trait<T> {}
3830impl Trait<&str> for S {}
3831
3832struct O<T>;
3833impl<U, T: Trait<U>> O<T> {
3834 fn foo(&self) -> U {}
3835}
3836
3837fn test(o: O<S>) {
3838 o.foo()<|>;
3839}
3840"#,
3841 );
3842 assert_eq!(t, "&str");
3843}
3844
3845#[test]
3846fn generic_param_env_1() {
3847 let t = type_at(
3848 r#"
3849//- /main.rs
3850trait Clone {}
3851trait Trait { fn foo(self) -> u128; }
3852struct S;
3853impl Clone for S {}
3854impl<T> Trait for T where T: Clone {}
3855fn test<T: Clone>(t: T) { t.foo()<|>; }
3856"#,
3857 );
3858 assert_eq!(t, "u128");
3859}
3860
3861#[test]
3862fn generic_param_env_1_not_met() {
3863 let t = type_at(
3864 r#"
3865//- /main.rs
3866trait Clone {}
3867trait Trait { fn foo(self) -> u128; }
3868struct S;
3869impl Clone for S {}
3870impl<T> Trait for T where T: Clone {}
3871fn test<T>(t: T) { t.foo()<|>; }
3872"#,
3873 );
3874 assert_eq!(t, "{unknown}");
3875}
3876
3877#[test]
3878fn generic_param_env_2() {
3879 let t = type_at(
3880 r#"
3881//- /main.rs
3882trait Trait { fn foo(self) -> u128; }
3883struct S;
3884impl Trait for S {}
3885fn test<T: Trait>(t: T) { t.foo()<|>; }
3886"#,
3887 );
3888 assert_eq!(t, "u128");
3889}
3890
3891#[test]
3892fn generic_param_env_2_not_met() {
3893 let t = type_at(
3894 r#"
3895//- /main.rs
3896trait Trait { fn foo(self) -> u128; }
3897struct S;
3898impl Trait for S {}
3899fn test<T>(t: T) { t.foo()<|>; }
3900"#,
3901 );
3902 assert_eq!(t, "{unknown}");
3903}
3904
3905#[test]
3906fn generic_param_env_deref() {
3907 let t = type_at(
3908 r#"
3909//- /main.rs
3910#[lang = "deref"]
3911trait Deref {
3912 type Target;
3913}
3914trait Trait {}
3915impl<T> Deref for T where T: Trait {
3916 type Target = i128;
3917}
3918fn test<T: Trait>(t: T) { (*t)<|>; }
3919"#,
3920 );
3921 assert_eq!(t, "i128");
3922}
3923
3924#[test]
3925fn associated_type_placeholder() {
3926 let t = type_at(
3927 r#"
3928//- /main.rs
3929pub trait ApplyL {
3930 type Out;
3931}
3932
3933pub struct RefMutL<T>;
3934
3935impl<T> ApplyL for RefMutL<T> {
3936 type Out = <T as ApplyL>::Out;
3937}
3938
3939fn test<T: ApplyL>() {
3940 let y: <RefMutL<T> as ApplyL>::Out = no_matter;
3941 y<|>;
3942}
3943"#,
3944 );
3945 // inside the generic function, the associated type gets normalized to a placeholder `ApplL::Out<T>` [https://rust-lang.github.io/rustc-guide/traits/associated-types.html#placeholder-associated-types].
3946 // FIXME: fix type parameter names going missing when going through Chalk
3947 assert_eq!(t, "ApplyL::Out<[missing name]>");
3948}
3949
3950#[test]
3951fn associated_type_placeholder_2() {
3952 let t = type_at(
3953 r#"
3954//- /main.rs
3955pub trait ApplyL {
3956 type Out;
3957}
3958fn foo<T: ApplyL>(t: T) -> <T as ApplyL>::Out;
3959
3960fn test<T: ApplyL>(t: T) {
3961 let y = foo(t);
3962 y<|>;
3963}
3964"#,
3965 );
3966 // FIXME here Chalk doesn't normalize the type to a placeholder. I think we
3967 // need to add a rule like Normalize(<T as ApplyL>::Out -> ApplyL::Out<T>)
3968 // to the trait env ourselves here; probably Chalk can't do this by itself.
3969 // assert_eq!(t, "ApplyL::Out<[missing name]>");
3970 assert_eq!(t, "{unknown}");
3971}
3972
3973#[test]
3974fn impl_trait() {
3975 assert_snapshot!(
3976 infer(r#"
3977trait Trait<T> {
3978 fn foo(&self) -> T;
3979 fn foo2(&self) -> i64;
3980}
3981fn bar() -> impl Trait<u64> {}
3982
3983fn test(x: impl Trait<u64>, y: &impl Trait<u64>) {
3984 x;
3985 y;
3986 let z = bar();
3987 x.foo();
3988 y.foo();
3989 z.foo();
3990 x.foo2();
3991 y.foo2();
3992 z.foo2();
3993}
3994"#),
3995 @r###"
3996 [30; 34) 'self': &Self
3997 [55; 59) 'self': &Self
3998 [99; 101) '{}': ()
3999 [111; 112) 'x': impl Trait<u64>
4000 [131; 132) 'y': &impl Trait<u64>
4001 [152; 269) '{ ...2(); }': ()
4002 [158; 159) 'x': impl Trait<u64>
4003 [165; 166) 'y': &impl Trait<u64>
4004 [176; 177) 'z': impl Trait<u64>
4005 [180; 183) 'bar': fn bar() -> impl Trait<u64>
4006 [180; 185) 'bar()': impl Trait<u64>
4007 [191; 192) 'x': impl Trait<u64>
4008 [191; 198) 'x.foo()': u64
4009 [204; 205) 'y': &impl Trait<u64>
4010 [204; 211) 'y.foo()': u64
4011 [217; 218) 'z': impl Trait<u64>
4012 [217; 224) 'z.foo()': u64
4013 [230; 231) 'x': impl Trait<u64>
4014 [230; 238) 'x.foo2()': i64
4015 [244; 245) 'y': &impl Trait<u64>
4016 [244; 252) 'y.foo2()': i64
4017 [258; 259) 'z': impl Trait<u64>
4018 [258; 266) 'z.foo2()': i64
4019 "###
4020 );
4021}
4022
4023#[test]
4024fn dyn_trait() {
4025 assert_snapshot!(
4026 infer(r#"
4027trait Trait<T> {
4028 fn foo(&self) -> T;
4029 fn foo2(&self) -> i64;
4030}
4031fn bar() -> dyn Trait<u64> {}
4032
4033fn test(x: dyn Trait<u64>, y: &dyn Trait<u64>) {
4034 x;
4035 y;
4036 let z = bar();
4037 x.foo();
4038 y.foo();
4039 z.foo();
4040 x.foo2();
4041 y.foo2();
4042 z.foo2();
4043}
4044"#),
4045 @r###"
4046 [30; 34) 'self': &Self
4047 [55; 59) 'self': &Self
4048 [98; 100) '{}': ()
4049 [110; 111) 'x': dyn Trait<u64>
4050 [129; 130) 'y': &dyn Trait<u64>
4051 [149; 266) '{ ...2(); }': ()
4052 [155; 156) 'x': dyn Trait<u64>
4053 [162; 163) 'y': &dyn Trait<u64>
4054 [173; 174) 'z': dyn Trait<u64>
4055 [177; 180) 'bar': fn bar() -> dyn Trait<u64>
4056 [177; 182) 'bar()': dyn Trait<u64>
4057 [188; 189) 'x': dyn Trait<u64>
4058 [188; 195) 'x.foo()': u64
4059 [201; 202) 'y': &dyn Trait<u64>
4060 [201; 208) 'y.foo()': u64
4061 [214; 215) 'z': dyn Trait<u64>
4062 [214; 221) 'z.foo()': u64
4063 [227; 228) 'x': dyn Trait<u64>
4064 [227; 235) 'x.foo2()': i64
4065 [241; 242) 'y': &dyn Trait<u64>
4066 [241; 249) 'y.foo2()': i64
4067 [255; 256) 'z': dyn Trait<u64>
4068 [255; 263) 'z.foo2()': i64
4069 "###
4070 );
4071}
4072
4073#[test]
4074fn dyn_trait_bare() {
4075 assert_snapshot!(
4076 infer(r#"
4077trait Trait {
4078 fn foo(&self) -> u64;
4079}
4080fn bar() -> Trait {}
4081
4082fn test(x: Trait, y: &Trait) -> u64 {
4083 x;
4084 y;
4085 let z = bar();
4086 x.foo();
4087 y.foo();
4088 z.foo();
4089}
4090"#),
4091 @r###"
4092 [27; 31) 'self': &Self
4093 [61; 63) '{}': ()
4094 [73; 74) 'x': dyn Trait
4095 [83; 84) 'y': &dyn Trait
4096 [101; 176) '{ ...o(); }': ()
4097 [107; 108) 'x': dyn Trait
4098 [114; 115) 'y': &dyn Trait
4099 [125; 126) 'z': dyn Trait
4100 [129; 132) 'bar': fn bar() -> dyn Trait
4101 [129; 134) 'bar()': dyn Trait
4102 [140; 141) 'x': dyn Trait
4103 [140; 147) 'x.foo()': u64
4104 [153; 154) 'y': &dyn Trait
4105 [153; 160) 'y.foo()': u64
4106 [166; 167) 'z': dyn Trait
4107 [166; 173) 'z.foo()': u64
4108 "###
4109 );
4110}
4111
4112#[test]
4113fn weird_bounds() {
4114 assert_snapshot!(
4115 infer(r#"
4116trait Trait {}
4117fn test() {
4118 let a: impl Trait + 'lifetime = foo;
4119 let b: impl 'lifetime = foo;
4120 let b: impl (Trait) = foo;
4121 let b: impl ('lifetime) = foo;
4122 let d: impl ?Sized = foo;
4123 let e: impl Trait + ?Sized = foo;
4124}
4125"#),
4126 @r###"
4127 [26; 237) '{ ...foo; }': ()
4128 [36; 37) 'a': impl Trait + {error}
4129 [64; 67) 'foo': impl Trait + {error}
4130 [77; 78) 'b': impl {error}
4131 [97; 100) 'foo': impl {error}
4132 [110; 111) 'b': impl Trait
4133 [128; 131) 'foo': impl Trait
4134 [141; 142) 'b': impl {error}
4135 [163; 166) 'foo': impl {error}
4136 [176; 177) 'd': impl {error}
4137 [193; 196) 'foo': impl {error}
4138 [206; 207) 'e': impl Trait + {error}
4139 [231; 234) 'foo': impl Trait + {error}
4140 "###
4141 );
4142}
4143
4144#[test]
4145fn assoc_type_bindings() {
4146 assert_snapshot!(
4147 infer(r#"
4148trait Trait {
4149 type Type;
4150}
4151
4152fn get<T: Trait>(t: T) -> <T as Trait>::Type {}
4153fn get2<U, T: Trait<Type = U>>(t: T) -> U {}
4154fn set<T: Trait<Type = u64>>(t: T) -> T {t}
4155
4156struct S<T>;
4157impl<T> Trait for S<T> { type Type = T; }
4158
4159fn test<T: Trait<Type = u32>>(x: T, y: impl Trait<Type = i64>) {
4160 get(x);
4161 get2(x);
4162 get(y);
4163 get2(y);
4164 get(set(S));
4165 get2(set(S));
4166 get2(S::<str>);
4167}
4168"#),
4169 @r###"
4170 [50; 51) 't': T
4171 [78; 80) '{}': ()
4172 [112; 113) 't': T
4173 [123; 125) '{}': ()
4174 [155; 156) 't': T
4175 [166; 169) '{t}': T
4176 [167; 168) 't': T
4177 [257; 258) 'x': T
4178 [263; 264) 'y': impl Trait<Type = i64>
4179 [290; 398) '{ ...r>); }': ()
4180 [296; 299) 'get': fn get<T>(T) -> <T as Trait>::Type
4181 [296; 302) 'get(x)': {unknown}
4182 [300; 301) 'x': T
4183 [308; 312) 'get2': fn get2<{unknown}, T>(T) -> U
4184 [308; 315) 'get2(x)': {unknown}
4185 [313; 314) 'x': T
4186 [321; 324) 'get': fn get<impl Trait<Type = i64>>(T) -> <T as Trait>::Type
4187 [321; 327) 'get(y)': {unknown}
4188 [325; 326) 'y': impl Trait<Type = i64>
4189 [333; 337) 'get2': fn get2<{unknown}, impl Trait<Type = i64>>(T) -> U
4190 [333; 340) 'get2(y)': {unknown}
4191 [338; 339) 'y': impl Trait<Type = i64>
4192 [346; 349) 'get': fn get<S<u64>>(T) -> <T as Trait>::Type
4193 [346; 357) 'get(set(S))': u64
4194 [350; 353) 'set': fn set<S<u64>>(T) -> T
4195 [350; 356) 'set(S)': S<u64>
4196 [354; 355) 'S': S<u64>
4197 [363; 367) 'get2': fn get2<u64, S<u64>>(T) -> U
4198 [363; 375) 'get2(set(S))': u64
4199 [368; 371) 'set': fn set<S<u64>>(T) -> T
4200 [368; 374) 'set(S)': S<u64>
4201 [372; 373) 'S': S<u64>
4202 [381; 385) 'get2': fn get2<str, S<str>>(T) -> U
4203 [381; 395) 'get2(S::<str>)': str
4204 [386; 394) 'S::<str>': S<str>
4205 "###
4206 );
4207}
4208
4209#[test]
4210fn impl_trait_assoc_binding_projection_bug() {
4211 let (db, pos) = TestDB::with_position(
4212 r#"
4213//- /main.rs crate:main deps:std
4214pub trait Language {
4215 type Kind;
4216}
4217pub enum RustLanguage {}
4218impl Language for RustLanguage {
4219 type Kind = SyntaxKind;
4220}
4221struct SyntaxNode<L> {}
4222fn foo() -> impl Iterator<Item = SyntaxNode<RustLanguage>> {}
4223
4224trait Clone {
4225 fn clone(&self) -> Self;
4226}
4227
4228fn api_walkthrough() {
4229 for node in foo() {
4230 node.clone()<|>;
4231 }
4232}
4233
4234//- /std.rs crate:std
4235#[prelude_import] use iter::*;
4236mod iter {
4237 trait IntoIterator {
4238 type Item;
4239 }
4240 trait Iterator {
4241 type Item;
4242 }
4243 impl<T: Iterator> IntoIterator for T {
4244 type Item = <T as Iterator>::Item;
4245 }
4246}
4247"#,
4248 );
4249 assert_eq!("{unknown}", type_at_pos(&db, pos));
4250}
4251
4252#[test]
4253fn projection_eq_within_chalk() {
4254 // std::env::set_var("CHALK_DEBUG", "1");
4255 assert_snapshot!(
4256 infer(r#"
4257trait Trait1 {
4258 type Type;
4259}
4260trait Trait2<T> {
4261 fn foo(self) -> T;
4262}
4263impl<T, U> Trait2<T> for U where U: Trait1<Type = T> {}
4264
4265fn test<T: Trait1<Type = u32>>(x: T) {
4266 x.foo();
4267}
4268"#),
4269 @r###"
4270 [62; 66) 'self': Self
4271 [164; 165) 'x': T
4272 [170; 186) '{ ...o(); }': ()
4273 [176; 177) 'x': T
4274 [176; 183) 'x.foo()': {unknown}
4275 "###
4276 );
4277}
4278
4279#[test]
4280fn where_clause_trait_in_scope_for_method_resolution() {
4281 let t = type_at(
4282 r#"
4283//- /main.rs
4284mod foo {
4285 trait Trait {
4286 fn foo(&self) -> u32 {}
4287 }
4288}
4289
4290fn test<T: foo::Trait>(x: T) {
4291 x.foo()<|>;
4292}
4293"#,
4294 );
4295 assert_eq!(t, "u32");
4296}
4297
4298#[test]
4299fn super_trait_method_resolution() {
4300 assert_snapshot!(
4301 infer(r#"
4302mod foo {
4303 trait SuperTrait {
4304 fn foo(&self) -> u32 {}
4305 }
4306}
4307trait Trait1: foo::SuperTrait {}
4308trait Trait2 where Self: foo::SuperTrait {}
4309
4310fn test<T: Trait1, U: Trait2>(x: T, y: U) {
4311 x.foo();
4312 y.foo();
4313}
4314"#),
4315 @r###"
4316 [50; 54) 'self': &Self
4317 [63; 65) '{}': ()
4318 [182; 183) 'x': T
4319 [188; 189) 'y': U
4320 [194; 223) '{ ...o(); }': ()
4321 [200; 201) 'x': T
4322 [200; 207) 'x.foo()': u32
4323 [213; 214) 'y': U
4324 [213; 220) 'y.foo()': u32
4325 "###
4326 );
4327}
4328
4329#[test]
4330fn super_trait_cycle() {
4331 // This just needs to not crash
4332 assert_snapshot!(
4333 infer(r#"
4334trait A: B {}
4335trait B: A {}
4336
4337fn test<T: A>(x: T) {
4338 x.foo();
4339}
4340"#),
4341 @r###"
4342 [44; 45) 'x': T
4343 [50; 66) '{ ...o(); }': ()
4344 [56; 57) 'x': T
4345 [56; 63) 'x.foo()': {unknown}
4346 "###
4347 );
4348}
4349
4350#[test]
4351fn super_trait_assoc_type_bounds() {
4352 assert_snapshot!(
4353 infer(r#"
4354trait SuperTrait { type Type; }
4355trait Trait where Self: SuperTrait {}
4356
4357fn get2<U, T: Trait<Type = U>>(t: T) -> U {}
4358fn set<T: Trait<Type = u64>>(t: T) -> T {t}
4359
4360struct S<T>;
4361impl<T> SuperTrait for S<T> { type Type = T; }
4362impl<T> Trait for S<T> {}
4363
4364fn test() {
4365 get2(set(S));
4366}
4367"#),
4368 @r###"
4369 [103; 104) 't': T
4370 [114; 116) '{}': ()
4371 [146; 147) 't': T
4372 [157; 160) '{t}': T
4373 [158; 159) 't': T
4374 [259; 280) '{ ...S)); }': ()
4375 [265; 269) 'get2': fn get2<u64, S<u64>>(T) -> U
4376 [265; 277) 'get2(set(S))': u64
4377 [270; 273) 'set': fn set<S<u64>>(T) -> T
4378 [270; 276) 'set(S)': S<u64>
4379 [274; 275) 'S': S<u64>
4380 "###
4381 );
4382}
4383
4384#[test]
4385fn fn_trait() {
4386 assert_snapshot!(
4387 infer(r#"
4388trait FnOnce<Args> {
4389 type Output;
4390
4391 fn call_once(self, args: Args) -> <Self as FnOnce<Args>>::Output;
4392}
4393
4394fn test<F: FnOnce(u32, u64) -> u128>(f: F) {
4395 f.call_once((1, 2));
4396}
4397"#),
4398 @r###"
4399 [57; 61) 'self': Self
4400 [63; 67) 'args': Args
4401 [150; 151) 'f': F
4402 [156; 184) '{ ...2)); }': ()
4403 [162; 163) 'f': F
4404 [162; 181) 'f.call...1, 2))': {unknown}
4405 [174; 180) '(1, 2)': (u32, u64)
4406 [175; 176) '1': u32
4407 [178; 179) '2': u64
4408 "###
4409 );
4410}
4411
4412#[test]
4413fn closure_1() {
4414 assert_snapshot!(
4415 infer(r#"
4416#[lang = "fn_once"]
4417trait FnOnce<Args> {
4418 type Output;
4419}
4420
4421enum Option<T> { Some(T), None }
4422impl<T> Option<T> {
4423 fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {}
4424}
4425
4426fn test() {
4427 let x = Option::Some(1u32);
4428 x.map(|v| v + 1);
4429 x.map(|_v| 1u64);
4430 let y: Option<i64> = x.map(|_v| 1);
4431}
4432"#),
4433 @r###"
4434 [148; 152) 'self': Option<T>
4435 [154; 155) 'f': F
4436 [173; 175) '{}': ()
4437 [189; 308) '{ ... 1); }': ()
4438 [199; 200) 'x': Option<u32>
4439 [203; 215) 'Option::Some': Some<u32>(T) -> Option<T>
4440 [203; 221) 'Option...(1u32)': Option<u32>
4441 [216; 220) '1u32': u32
4442 [227; 228) 'x': Option<u32>
4443 [227; 243) 'x.map(...v + 1)': Option<u32>
4444 [233; 242) '|v| v + 1': |u32| -> u32
4445 [234; 235) 'v': u32
4446 [237; 238) 'v': u32
4447 [237; 242) 'v + 1': u32
4448 [241; 242) '1': u32
4449 [249; 250) 'x': Option<u32>
4450 [249; 265) 'x.map(... 1u64)': Option<u64>
4451 [255; 264) '|_v| 1u64': |u32| -> u64
4452 [256; 258) '_v': u32
4453 [260; 264) '1u64': u64
4454 [275; 276) 'y': Option<i64>
4455 [292; 293) 'x': Option<u32>
4456 [292; 305) 'x.map(|_v| 1)': Option<i64>
4457 [298; 304) '|_v| 1': |u32| -> i64
4458 [299; 301) '_v': u32
4459 [303; 304) '1': i64
4460 "###
4461 );
4462}
4463
4464#[test]
4465fn closure_2() {
4466 assert_snapshot!(
4467 infer(r#"
4468trait FnOnce<Args> {
4469 type Output;
4470}
4471
4472fn test<F: FnOnce(u32) -> u64>(f: F) {
4473 f(1);
4474 let g = |v| v + 1;
4475 g(1u64);
4476 let h = |v| 1u128 + v;
4477}
4478"#),
4479 @r###"
4480 [73; 74) 'f': F
4481 [79; 155) '{ ...+ v; }': ()
4482 [85; 86) 'f': F
4483 [85; 89) 'f(1)': {unknown}
4484 [87; 88) '1': i32
4485 [99; 100) 'g': |u64| -> i32
4486 [103; 112) '|v| v + 1': |u64| -> i32
4487 [104; 105) 'v': u64
4488 [107; 108) 'v': u64
4489 [107; 112) 'v + 1': i32
4490 [111; 112) '1': i32
4491 [118; 119) 'g': |u64| -> i32
4492 [118; 125) 'g(1u64)': i32
4493 [120; 124) '1u64': u64
4494 [135; 136) 'h': |u128| -> u128
4495 [139; 152) '|v| 1u128 + v': |u128| -> u128
4496 [140; 141) 'v': u128
4497 [143; 148) '1u128': u128
4498 [143; 152) '1u128 + v': u128
4499 [151; 152) 'v': u128
4500 "###
4501 );
4502}
4503
4504#[test]
4505fn closure_as_argument_inference_order() {
4506 assert_snapshot!(
4507 infer(r#"
4508#[lang = "fn_once"]
4509trait FnOnce<Args> {
4510 type Output;
4511}
4512
4513fn foo1<T, U, F: FnOnce(T) -> U>(x: T, f: F) -> U {}
4514fn foo2<T, U, F: FnOnce(T) -> U>(f: F, x: T) -> U {}
4515
4516struct S;
4517impl S {
4518 fn method(self) -> u64;
4519
4520 fn foo1<T, U, F: FnOnce(T) -> U>(self, x: T, f: F) -> U {}
4521 fn foo2<T, U, F: FnOnce(T) -> U>(self, f: F, x: T) -> U {}
4522}
4523
4524fn test() {
4525 let x1 = foo1(S, |s| s.method());
4526 let x2 = foo2(|s| s.method(), S);
4527 let x3 = S.foo1(S, |s| s.method());
4528 let x4 = S.foo2(|s| s.method(), S);
4529}
4530"#),
4531 @r###"
4532 [95; 96) 'x': T
4533 [101; 102) 'f': F
4534 [112; 114) '{}': ()
4535 [148; 149) 'f': F
4536 [154; 155) 'x': T
4537 [165; 167) '{}': ()
4538 [202; 206) 'self': S
4539 [254; 258) 'self': S
4540 [260; 261) 'x': T
4541 [266; 267) 'f': F
4542 [277; 279) '{}': ()
4543 [317; 321) 'self': S
4544 [323; 324) 'f': F
4545 [329; 330) 'x': T
4546 [340; 342) '{}': ()
4547 [356; 515) '{ ... S); }': ()
4548 [366; 368) 'x1': u64
4549 [371; 375) 'foo1': fn foo1<S, u64, |S| -> u64>(T, F) -> U
4550 [371; 394) 'foo1(S...hod())': u64
4551 [376; 377) 'S': S
4552 [379; 393) '|s| s.method()': |S| -> u64
4553 [380; 381) 's': S
4554 [383; 384) 's': S
4555 [383; 393) 's.method()': u64
4556 [404; 406) 'x2': u64
4557 [409; 413) 'foo2': fn foo2<S, u64, |S| -> u64>(F, T) -> U
4558 [409; 432) 'foo2(|...(), S)': u64
4559 [414; 428) '|s| s.method()': |S| -> u64
4560 [415; 416) 's': S
4561 [418; 419) 's': S
4562 [418; 428) 's.method()': u64
4563 [430; 431) 'S': S
4564 [442; 444) 'x3': u64
4565 [447; 448) 'S': S
4566 [447; 472) 'S.foo1...hod())': u64
4567 [454; 455) 'S': S
4568 [457; 471) '|s| s.method()': |S| -> u64
4569 [458; 459) 's': S
4570 [461; 462) 's': S
4571 [461; 471) 's.method()': u64
4572 [482; 484) 'x4': u64
4573 [487; 488) 'S': S
4574 [487; 512) 'S.foo2...(), S)': u64
4575 [494; 508) '|s| s.method()': |S| -> u64
4576 [495; 496) 's': S
4577 [498; 499) 's': S
4578 [498; 508) 's.method()': u64
4579 [510; 511) 'S': S
4580 "###
4581 );
4582}
4583
4584#[test]
4585fn unselected_projection_in_trait_env_1() {
4586 let t = type_at(
4587 r#"
4588//- /main.rs
4589trait Trait {
4590 type Item;
4591}
4592
4593trait Trait2 {
4594 fn foo(&self) -> u32;
4595}
4596
4597fn test<T: Trait>() where T::Item: Trait2 {
4598 let x: T::Item = no_matter;
4599 x.foo()<|>;
4600}
4601"#,
4602 );
4603 assert_eq!(t, "u32");
4604}
4605
4606#[test]
4607fn unselected_projection_in_trait_env_2() {
4608 let t = type_at(
4609 r#"
4610//- /main.rs
4611trait Trait<T> {
4612 type Item;
4613}
4614
4615trait Trait2 {
4616 fn foo(&self) -> u32;
4617}
4618
4619fn test<T, U>() where T::Item: Trait2, T: Trait<U::Item>, U: Trait<()> {
4620 let x: T::Item = no_matter;
4621 x.foo()<|>;
4622}
4623"#,
4624 );
4625 assert_eq!(t, "u32");
4626}
4627
4628#[test]
4629// FIXME this is currently a Salsa panic; it would be nicer if it just returned
4630// in Unknown, and we should be able to do that once Salsa allows us to handle
4631// the cycle. But at least it doesn't overflow for now.
4632#[should_panic]
4633fn unselected_projection_in_trait_env_cycle_1() {
4634 let t = type_at(
4635 r#"
4636//- /main.rs
4637trait Trait {
4638 type Item;
4639}
4640
4641trait Trait2<T> {}
4642
4643fn test<T: Trait>() where T: Trait2<T::Item> {
4644 let x: T::Item = no_matter<|>;
4645}
4646"#,
4647 );
4648 // this is a legitimate cycle
4649 assert_eq!(t, "{unknown}");
4650}
4651
4652#[test]
4653// FIXME this is currently a Salsa panic; it would be nicer if it just returned
4654// in Unknown, and we should be able to do that once Salsa allows us to handle
4655// the cycle. But at least it doesn't overflow for now.
4656#[should_panic]
4657fn unselected_projection_in_trait_env_cycle_2() {
4658 let t = type_at(
4659 r#"
4660//- /main.rs
4661trait Trait<T> {
4662 type Item;
4663}
4664
4665fn test<T, U>() where T: Trait<U::Item>, U: Trait<T::Item> {
4666 let x: T::Item = no_matter<|>;
4667}
4668"#,
4669 );
4670 // this is a legitimate cycle
4671 assert_eq!(t, "{unknown}");
4672}
4673
4674fn type_at_pos(db: &TestDB, pos: FilePosition) -> String {
4675 let file = db.parse(pos.file_id).ok().unwrap();
4676 let expr = algo::find_node_at_offset::<ast::Expr>(file.syntax(), pos.offset).unwrap();
4677 let analyzer =
4678 SourceAnalyzer::new(db, Source::new(pos.file_id.into(), expr.syntax()), Some(pos.offset));
4679 let ty = analyzer.type_of(db, &expr).unwrap();
4680 ty.display(db).to_string()
4681}
4682
4683fn type_at(content: &str) -> String {
4684 let (db, file_pos) = TestDB::with_position(content);
4685 type_at_pos(&db, file_pos)
4686}
4687
4688fn infer(content: &str) -> String {
4689 let (db, file_id) = TestDB::with_single_file(content);
4690 let source_file = db.parse(file_id).ok().unwrap();
4691
4692 let mut acc = String::new();
4693
4694 let mut infer_def = |inference_result: Arc<InferenceResult>,
4695 body_source_map: Arc<BodySourceMap>| {
4696 let mut types = Vec::new();
4697
4698 for (pat, ty) in inference_result.type_of_pat.iter() {
4699 let syntax_ptr = match body_source_map.pat_syntax(pat) {
4700 Some(sp) => {
4701 sp.map(|ast| ast.either(|it| it.syntax_node_ptr(), |it| it.syntax_node_ptr()))
4702 }
4703 None => continue,
4704 };
4705 types.push((syntax_ptr, ty));
4706 }
4707
4708 for (expr, ty) in inference_result.type_of_expr.iter() {
4709 let syntax_ptr = match body_source_map.expr_syntax(expr) {
4710 Some(sp) => {
4711 sp.map(|ast| ast.either(|it| it.syntax_node_ptr(), |it| it.syntax_node_ptr()))
4712 }
4713 None => continue,
4714 };
4715 types.push((syntax_ptr, ty));
4716 }
4717
4718 // sort ranges for consistency
4719 types.sort_by_key(|(src_ptr, _)| {
4720 (src_ptr.value.range().start(), src_ptr.value.range().end())
4721 });
4722 for (src_ptr, ty) in &types {
4723 let node = src_ptr.value.to_node(&src_ptr.file_syntax(&db));
4724
4725 let (range, text) = if let Some(self_param) = ast::SelfParam::cast(node.clone()) {
4726 (self_param.self_kw_token().text_range(), "self".to_string())
4727 } else {
4728 (src_ptr.value.range(), node.text().to_string().replace("\n", " "))
4729 };
4730 let macro_prefix = if src_ptr.file_id != file_id.into() { "!" } else { "" };
4731 write!(
4732 acc,
4733 "{}{} '{}': {}\n",
4734 macro_prefix,
4735 range,
4736 ellipsize(text, 15),
4737 ty.display(&db)
4738 )
4739 .unwrap();
4740 }
4741 };
4742
4743 let mut analyzed = FxHashSet::default();
4744 for node in source_file.syntax().descendants() {
4745 if node.kind() == FN_DEF || node.kind() == CONST_DEF || node.kind() == STATIC_DEF {
4746 let analyzer = SourceAnalyzer::new(&db, Source::new(file_id.into(), &node), None);
4747 if analyzed.insert(analyzer.analyzed_declaration()) {
4748 infer_def(analyzer.inference_result(), analyzer.body_source_map());
4749 }
4750 }
4751 }
4752
4753 acc.truncate(acc.trim_end().len());
4754 acc
4755}
4756
4757fn ellipsize(mut text: String, max_len: usize) -> String {
4758 if text.len() <= max_len {
4759 return text;
4760 }
4761 let ellipsis = "...";
4762 let e_len = ellipsis.len();
4763 let mut prefix_len = (max_len - e_len) / 2;
4764 while !text.is_char_boundary(prefix_len) {
4765 prefix_len += 1;
4766 }
4767 let mut suffix_len = max_len - e_len - prefix_len;
4768 while !text.is_char_boundary(text.len() - suffix_len) {
4769 suffix_len += 1;
4770 }
4771 text.replace_range(prefix_len..text.len() - suffix_len, ellipsis);
4772 text
4773}
4774
4775#[test]
4776fn typing_whitespace_inside_a_function_should_not_invalidate_types() {
4777 let (mut db, pos) = TestDB::with_position(
4778 "
4779 //- /lib.rs
4780 fn foo() -> i32 {
4781 <|>1 + 1
4782 }
4783 ",
4784 );
4785 {
4786 let file = db.parse(pos.file_id).ok().unwrap();
4787 let node = file.syntax().token_at_offset(pos.offset).right_biased().unwrap().parent();
4788 let events = db.log_executed(|| {
4789 SourceAnalyzer::new(&db, Source::new(pos.file_id.into(), &node), None);
4790 });
4791 assert!(format!("{:?}", events).contains("infer"))
4792 }
4793
4794 let new_text = "
4795 fn foo() -> i32 {
4796 1
4797 +
4798 1
4799 }
4800 "
4801 .to_string();
4802
4803 db.query_mut(ra_db::FileTextQuery).set(pos.file_id, Arc::new(new_text));
4804
4805 {
4806 let file = db.parse(pos.file_id).ok().unwrap();
4807 let node = file.syntax().token_at_offset(pos.offset).right_biased().unwrap().parent();
4808 let events = db.log_executed(|| {
4809 SourceAnalyzer::new(&db, Source::new(pos.file_id.into(), &node), None);
4810 });
4811 assert!(!format!("{:?}", events).contains("infer"), "{:#?}", events)
4812 }
4813}
4814
4815#[test]
4816fn no_such_field_diagnostics() {
4817 let diagnostics = TestDB::with_files(
4818 r"
4819 //- /lib.rs
4820 struct S { foo: i32, bar: () }
4821 impl S {
4822 fn new() -> S {
4823 S {
4824 foo: 92,
4825 baz: 62,
4826 }
4827 }
4828 }
4829 ",
4830 )
4831 .diagnostics();
4832
4833 assert_snapshot!(diagnostics, @r###"
4834 "baz: 62": no such field
4835 "{\n foo: 92,\n baz: 62,\n }": fill structure fields
4836 "###
4837 );
4838}
4839
4840#[test]
4841fn infer_builtin_macros_line() {
4842 assert_snapshot!(
4843 infer(r#"
4844#[rustc_builtin_macro]
4845macro_rules! line {() => {}}
4846
4847fn main() {
4848 let x = line!();
4849}
4850"#),
4851 @r###"
4852 ![0; 1) '6': i32
4853 [64; 88) '{ ...!(); }': ()
4854 [74; 75) 'x': i32
4855 "###
4856 );
4857}
4858
4859#[test]
4860fn infer_builtin_macros_file() {
4861 assert_snapshot!(
4862 infer(r#"
4863#[rustc_builtin_macro]
4864macro_rules! file {() => {}}
4865
4866fn main() {
4867 let x = file!();
4868}
4869"#),
4870 @r###"
4871 ![0; 2) '""': &str
4872 [64; 88) '{ ...!(); }': ()
4873 [74; 75) 'x': &str
4874 "###
4875 );
4876}
4877
4878#[test]
4879fn infer_builtin_macros_column() {
4880 assert_snapshot!(
4881 infer(r#"
4882#[rustc_builtin_macro]
4883macro_rules! column {() => {}}
4884
4885fn main() {
4886 let x = column!();
4887}
4888"#),
4889 @r###"
4890 ![0; 2) '13': i32
4891 [66; 92) '{ ...!(); }': ()
4892 [76; 77) 'x': i32
4893 "###
4894 );
4895}
diff --git a/crates/ra_hir/src/ty/tests/coercion.rs b/crates/ra_hir/src/ty/tests/coercion.rs
deleted file mode 100644
index 1530fcc63..000000000
--- a/crates/ra_hir/src/ty/tests/coercion.rs
+++ /dev/null
@@ -1,369 +0,0 @@
1use insta::assert_snapshot;
2use test_utils::covers;
3
4// Infer with some common definitions and impls.
5fn infer(source: &str) -> String {
6 let defs = r#"
7 #[lang = "sized"]
8 pub trait Sized {}
9 #[lang = "unsize"]
10 pub trait Unsize<T: ?Sized> {}
11 #[lang = "coerce_unsized"]
12 pub trait CoerceUnsized<T> {}
13
14 impl<'a, 'b: 'a, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b T {}
15 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for *mut T {}
16 "#;
17
18 // Append to the end to keep positions unchanged.
19 super::infer(&format!("{}{}", source, defs))
20}
21
22#[test]
23fn infer_block_expr_type_mismatch() {
24 assert_snapshot!(
25 infer(r#"
26fn test() {
27 let a: i32 = { 1i64 };
28}
29"#),
30 @r###"
31 [11; 41) '{ ...4 }; }': ()
32 [21; 22) 'a': i32
33 [30; 38) '{ 1i64 }': i64
34 [32; 36) '1i64': i64
35 "###);
36}
37
38#[test]
39fn coerce_places() {
40 assert_snapshot!(
41 infer(r#"
42struct S<T> { a: T }
43
44fn f<T>(_: &[T]) -> T { loop {} }
45fn g<T>(_: S<&[T]>) -> T { loop {} }
46
47fn gen<T>() -> *mut [T; 2] { loop {} }
48fn test1<U>() -> *mut [U] {
49 gen()
50}
51
52fn test2() {
53 let arr: &[u8; 1] = &[1];
54
55 let a: &[_] = arr;
56 let b = f(arr);
57 let c: &[_] = { arr };
58 let d = g(S { a: arr });
59 let e: [&[_]; 1] = [arr];
60 let f: [&[_]; 2] = [arr; 2];
61 let g: (&[_], &[_]) = (arr, arr);
62}
63"#),
64 @r###"
65 [31; 32) '_': &[T]
66 [45; 56) '{ loop {} }': T
67 [47; 54) 'loop {}': !
68 [52; 54) '{}': ()
69 [65; 66) '_': S<&[T]>
70 [82; 93) '{ loop {} }': T
71 [84; 91) 'loop {}': !
72 [89; 91) '{}': ()
73 [122; 133) '{ loop {} }': *mut [T;_]
74 [124; 131) 'loop {}': !
75 [129; 131) '{}': ()
76 [160; 173) '{ gen() }': *mut [U]
77 [166; 169) 'gen': fn gen<U>() -> *mut [T;_]
78 [166; 171) 'gen()': *mut [U;_]
79 [186; 420) '{ ...rr); }': ()
80 [196; 199) 'arr': &[u8;_]
81 [212; 216) '&[1]': &[u8;_]
82 [213; 216) '[1]': [u8;_]
83 [214; 215) '1': u8
84 [227; 228) 'a': &[u8]
85 [237; 240) 'arr': &[u8;_]
86 [250; 251) 'b': u8
87 [254; 255) 'f': fn f<u8>(&[T]) -> T
88 [254; 260) 'f(arr)': u8
89 [256; 259) 'arr': &[u8;_]
90 [270; 271) 'c': &[u8]
91 [280; 287) '{ arr }': &[u8]
92 [282; 285) 'arr': &[u8;_]
93 [297; 298) 'd': u8
94 [301; 302) 'g': fn g<u8>(S<&[T]>) -> T
95 [301; 316) 'g(S { a: arr })': u8
96 [303; 315) 'S { a: arr }': S<&[u8]>
97 [310; 313) 'arr': &[u8;_]
98 [326; 327) 'e': [&[u8];_]
99 [341; 346) '[arr]': [&[u8];_]
100 [342; 345) 'arr': &[u8;_]
101 [356; 357) 'f': [&[u8];_]
102 [371; 379) '[arr; 2]': [&[u8];_]
103 [372; 375) 'arr': &[u8;_]
104 [377; 378) '2': usize
105 [389; 390) 'g': (&[u8], &[u8])
106 [407; 417) '(arr, arr)': (&[u8], &[u8])
107 [408; 411) 'arr': &[u8;_]
108 [413; 416) 'arr': &[u8;_]
109 "###
110 );
111}
112
113#[test]
114fn infer_let_stmt_coerce() {
115 assert_snapshot!(
116 infer(r#"
117fn test() {
118 let x: &[i32] = &[1];
119}
120"#),
121 @r###"
122 [11; 40) '{ ...[1]; }': ()
123 [21; 22) 'x': &[i32]
124 [33; 37) '&[1]': &[i32;_]
125 [34; 37) '[1]': [i32;_]
126 [35; 36) '1': i32
127 "###);
128}
129
130#[test]
131fn infer_custom_coerce_unsized() {
132 assert_snapshot!(
133 infer(r#"
134struct A<T: ?Sized>(*const T);
135struct B<T: ?Sized>(*const T);
136struct C<T: ?Sized> { inner: *const T }
137
138impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<B<U>> for B<T> {}
139impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<C<U>> for C<T> {}
140
141fn foo1<T>(x: A<[T]>) -> A<[T]> { x }
142fn foo2<T>(x: B<[T]>) -> B<[T]> { x }
143fn foo3<T>(x: C<[T]>) -> C<[T]> { x }
144
145fn test(a: A<[u8; 2]>, b: B<[u8; 2]>, c: C<[u8; 2]>) {
146 let d = foo1(a);
147 let e = foo2(b);
148 let f = foo3(c);
149}
150"#),
151 @r###"
152 [258; 259) 'x': A<[T]>
153 [279; 284) '{ x }': A<[T]>
154 [281; 282) 'x': A<[T]>
155 [296; 297) 'x': B<[T]>
156 [317; 322) '{ x }': B<[T]>
157 [319; 320) 'x': B<[T]>
158 [334; 335) 'x': C<[T]>
159 [355; 360) '{ x }': C<[T]>
160 [357; 358) 'x': C<[T]>
161 [370; 371) 'a': A<[u8;_]>
162 [385; 386) 'b': B<[u8;_]>
163 [400; 401) 'c': C<[u8;_]>
164 [415; 481) '{ ...(c); }': ()
165 [425; 426) 'd': A<[{unknown}]>
166 [429; 433) 'foo1': fn foo1<{unknown}>(A<[T]>) -> A<[T]>
167 [429; 436) 'foo1(a)': A<[{unknown}]>
168 [434; 435) 'a': A<[u8;_]>
169 [446; 447) 'e': B<[u8]>
170 [450; 454) 'foo2': fn foo2<u8>(B<[T]>) -> B<[T]>
171 [450; 457) 'foo2(b)': B<[u8]>
172 [455; 456) 'b': B<[u8;_]>
173 [467; 468) 'f': C<[u8]>
174 [471; 475) 'foo3': fn foo3<u8>(C<[T]>) -> C<[T]>
175 [471; 478) 'foo3(c)': C<[u8]>
176 [476; 477) 'c': C<[u8;_]>
177 "###
178 );
179}
180
181#[test]
182fn infer_if_coerce() {
183 assert_snapshot!(
184 infer(r#"
185fn foo<T>(x: &[T]) -> &[T] { loop {} }
186fn test() {
187 let x = if true {
188 foo(&[1])
189 } else {
190 &[1]
191 };
192}
193"#),
194 @r###"
195 [11; 12) 'x': &[T]
196 [28; 39) '{ loop {} }': &[T]
197 [30; 37) 'loop {}': !
198 [35; 37) '{}': ()
199 [50; 126) '{ ... }; }': ()
200 [60; 61) 'x': &[i32]
201 [64; 123) 'if tru... }': &[i32]
202 [67; 71) 'true': bool
203 [72; 97) '{ ... }': &[i32]
204 [82; 85) 'foo': fn foo<i32>(&[T]) -> &[T]
205 [82; 91) 'foo(&[1])': &[i32]
206 [86; 90) '&[1]': &[i32;_]
207 [87; 90) '[1]': [i32;_]
208 [88; 89) '1': i32
209 [103; 123) '{ ... }': &[i32;_]
210 [113; 117) '&[1]': &[i32;_]
211 [114; 117) '[1]': [i32;_]
212 [115; 116) '1': i32
213 "###
214 );
215}
216
217#[test]
218fn infer_if_else_coerce() {
219 assert_snapshot!(
220 infer(r#"
221fn foo<T>(x: &[T]) -> &[T] { loop {} }
222fn test() {
223 let x = if true {
224 &[1]
225 } else {
226 foo(&[1])
227 };
228}
229"#),
230 @r###"
231 [11; 12) 'x': &[T]
232 [28; 39) '{ loop {} }': &[T]
233 [30; 37) 'loop {}': !
234 [35; 37) '{}': ()
235 [50; 126) '{ ... }; }': ()
236 [60; 61) 'x': &[i32]
237 [64; 123) 'if tru... }': &[i32]
238 [67; 71) 'true': bool
239 [72; 92) '{ ... }': &[i32;_]
240 [82; 86) '&[1]': &[i32;_]
241 [83; 86) '[1]': [i32;_]
242 [84; 85) '1': i32
243 [98; 123) '{ ... }': &[i32]
244 [108; 111) 'foo': fn foo<i32>(&[T]) -> &[T]
245 [108; 117) 'foo(&[1])': &[i32]
246 [112; 116) '&[1]': &[i32;_]
247 [113; 116) '[1]': [i32;_]
248 [114; 115) '1': i32
249 "###
250 );
251}
252
253#[test]
254fn infer_match_first_coerce() {
255 assert_snapshot!(
256 infer(r#"
257fn foo<T>(x: &[T]) -> &[T] { loop {} }
258fn test(i: i32) {
259 let x = match i {
260 2 => foo(&[2]),
261 1 => &[1],
262 _ => &[3],
263 };
264}
265"#),
266 @r###"
267 [11; 12) 'x': &[T]
268 [28; 39) '{ loop {} }': &[T]
269 [30; 37) 'loop {}': !
270 [35; 37) '{}': ()
271 [48; 49) 'i': i32
272 [56; 150) '{ ... }; }': ()
273 [66; 67) 'x': &[i32]
274 [70; 147) 'match ... }': &[i32]
275 [76; 77) 'i': i32
276 [88; 89) '2': i32
277 [93; 96) 'foo': fn foo<i32>(&[T]) -> &[T]
278 [93; 102) 'foo(&[2])': &[i32]
279 [97; 101) '&[2]': &[i32;_]
280 [98; 101) '[2]': [i32;_]
281 [99; 100) '2': i32
282 [112; 113) '1': i32
283 [117; 121) '&[1]': &[i32;_]
284 [118; 121) '[1]': [i32;_]
285 [119; 120) '1': i32
286 [131; 132) '_': i32
287 [136; 140) '&[3]': &[i32;_]
288 [137; 140) '[3]': [i32;_]
289 [138; 139) '3': i32
290 "###
291 );
292}
293
294#[test]
295fn infer_match_second_coerce() {
296 assert_snapshot!(
297 infer(r#"
298fn foo<T>(x: &[T]) -> &[T] { loop {} }
299fn test(i: i32) {
300 let x = match i {
301 1 => &[1],
302 2 => foo(&[2]),
303 _ => &[3],
304 };
305}
306"#),
307 @r###"
308 [11; 12) 'x': &[T]
309 [28; 39) '{ loop {} }': &[T]
310 [30; 37) 'loop {}': !
311 [35; 37) '{}': ()
312 [48; 49) 'i': i32
313 [56; 150) '{ ... }; }': ()
314 [66; 67) 'x': &[i32]
315 [70; 147) 'match ... }': &[i32]
316 [76; 77) 'i': i32
317 [88; 89) '1': i32
318 [93; 97) '&[1]': &[i32;_]
319 [94; 97) '[1]': [i32;_]
320 [95; 96) '1': i32
321 [107; 108) '2': i32
322 [112; 115) 'foo': fn foo<i32>(&[T]) -> &[T]
323 [112; 121) 'foo(&[2])': &[i32]
324 [116; 120) '&[2]': &[i32;_]
325 [117; 120) '[2]': [i32;_]
326 [118; 119) '2': i32
327 [131; 132) '_': i32
328 [136; 140) '&[3]': &[i32;_]
329 [137; 140) '[3]': [i32;_]
330 [138; 139) '3': i32
331 "###
332 );
333}
334
335#[test]
336fn coerce_merge_one_by_one1() {
337 covers!(coerce_merge_fail_fallback);
338
339 assert_snapshot!(
340 infer(r#"
341fn test() {
342 let t = &mut 1;
343 let x = match 1 {
344 1 => t as *mut i32,
345 2 => t as &i32,
346 _ => t as *const i32,
347 };
348}
349"#),
350 @r###"
351 [11; 145) '{ ... }; }': ()
352 [21; 22) 't': &mut i32
353 [25; 31) '&mut 1': &mut i32
354 [30; 31) '1': i32
355 [41; 42) 'x': *const i32
356 [45; 142) 'match ... }': *const i32
357 [51; 52) '1': i32
358 [63; 64) '1': i32
359 [68; 69) 't': &mut i32
360 [68; 81) 't as *mut i32': *mut i32
361 [91; 92) '2': i32
362 [96; 97) 't': &mut i32
363 [96; 105) 't as &i32': &i32
364 [115; 116) '_': i32
365 [120; 121) 't': &mut i32
366 [120; 135) 't as *const i32': *const i32
367 "###
368 );
369}
diff --git a/crates/ra_hir/src/ty/tests/never_type.rs b/crates/ra_hir/src/ty/tests/never_type.rs
deleted file mode 100644
index c202f545a..000000000
--- a/crates/ra_hir/src/ty/tests/never_type.rs
+++ /dev/null
@@ -1,246 +0,0 @@
1use super::type_at;
2
3#[test]
4fn infer_never1() {
5 let t = type_at(
6 r#"
7//- /main.rs
8fn test() {
9 let t = return;
10 t<|>;
11}
12"#,
13 );
14 assert_eq!(t, "!");
15}
16
17#[test]
18fn infer_never2() {
19 let t = type_at(
20 r#"
21//- /main.rs
22fn gen<T>() -> T { loop {} }
23
24fn test() {
25 let a = gen();
26 if false { a } else { loop {} };
27 a<|>;
28}
29"#,
30 );
31 assert_eq!(t, "!");
32}
33
34#[test]
35fn infer_never3() {
36 let t = type_at(
37 r#"
38//- /main.rs
39fn gen<T>() -> T { loop {} }
40
41fn test() {
42 let a = gen();
43 if false { loop {} } else { a };
44 a<|>;
45}
46"#,
47 );
48 assert_eq!(t, "!");
49}
50
51#[test]
52fn never_type_in_generic_args() {
53 let t = type_at(
54 r#"
55//- /main.rs
56enum Option<T> { None, Some(T) }
57
58fn test() {
59 let a = if true { Option::None } else { Option::Some(return) };
60 a<|>;
61}
62"#,
63 );
64 assert_eq!(t, "Option<!>");
65}
66
67#[test]
68fn never_type_can_be_reinferred1() {
69 let t = type_at(
70 r#"
71//- /main.rs
72fn gen<T>() -> T { loop {} }
73
74fn test() {
75 let a = gen();
76 if false { loop {} } else { a };
77 a<|>;
78 if false { a };
79}
80"#,
81 );
82 assert_eq!(t, "()");
83}
84
85#[test]
86fn never_type_can_be_reinferred2() {
87 let t = type_at(
88 r#"
89//- /main.rs
90enum Option<T> { None, Some(T) }
91
92fn test() {
93 let a = if true { Option::None } else { Option::Some(return) };
94 a<|>;
95 match 42 {
96 42 => a,
97 _ => Option::Some(42),
98 };
99}
100"#,
101 );
102 assert_eq!(t, "Option<i32>");
103}
104#[test]
105fn never_type_can_be_reinferred3() {
106 let t = type_at(
107 r#"
108//- /main.rs
109enum Option<T> { None, Some(T) }
110
111fn test() {
112 let a = if true { Option::None } else { Option::Some(return) };
113 a<|>;
114 match 42 {
115 42 => a,
116 _ => Option::Some("str"),
117 };
118}
119"#,
120 );
121 assert_eq!(t, "Option<&str>");
122}
123
124#[test]
125fn match_no_arm() {
126 let t = type_at(
127 r#"
128//- /main.rs
129enum Void {}
130
131fn test(a: Void) {
132 let t = match a {};
133 t<|>;
134}
135"#,
136 );
137 assert_eq!(t, "!");
138}
139
140#[test]
141fn if_never() {
142 let t = type_at(
143 r#"
144//- /main.rs
145fn test() {
146 let i = if true {
147 loop {}
148 } else {
149 3.0
150 };
151 i<|>;
152}
153"#,
154 );
155 assert_eq!(t, "f64");
156}
157
158#[test]
159fn if_else_never() {
160 let t = type_at(
161 r#"
162//- /main.rs
163fn test(input: bool) {
164 let i = if input {
165 2.0
166 } else {
167 return
168 };
169 i<|>;
170}
171"#,
172 );
173 assert_eq!(t, "f64");
174}
175
176#[test]
177fn match_first_arm_never() {
178 let t = type_at(
179 r#"
180//- /main.rs
181fn test(a: i32) {
182 let i = match a {
183 1 => return,
184 2 => 2.0,
185 3 => loop {},
186 _ => 3.0,
187 };
188 i<|>;
189}
190"#,
191 );
192 assert_eq!(t, "f64");
193}
194
195#[test]
196fn match_second_arm_never() {
197 let t = type_at(
198 r#"
199//- /main.rs
200fn test(a: i32) {
201 let i = match a {
202 1 => 3.0,
203 2 => loop {},
204 3 => 3.0,
205 _ => return,
206 };
207 i<|>;
208}
209"#,
210 );
211 assert_eq!(t, "f64");
212}
213
214#[test]
215fn match_all_arms_never() {
216 let t = type_at(
217 r#"
218//- /main.rs
219fn test(a: i32) {
220 let i = match a {
221 2 => return,
222 _ => loop {},
223 };
224 i<|>;
225}
226"#,
227 );
228 assert_eq!(t, "!");
229}
230
231#[test]
232fn match_no_never_arms() {
233 let t = type_at(
234 r#"
235//- /main.rs
236fn test(a: i32) {
237 let i = match a {
238 2 => 2.0,
239 _ => 3.0,
240 };
241 i<|>;
242}
243"#,
244 );
245 assert_eq!(t, "f64");
246}
diff --git a/crates/ra_hir/src/ty/traits.rs b/crates/ra_hir/src/ty/traits.rs
deleted file mode 100644
index 268fa09e4..000000000
--- a/crates/ra_hir/src/ty/traits.rs
+++ /dev/null
@@ -1,326 +0,0 @@
1//! Trait solving using Chalk.
2use std::sync::{Arc, Mutex};
3
4use chalk_ir::{cast::Cast, family::ChalkIr};
5use log::debug;
6use ra_db::{impl_intern_key, salsa};
7use ra_prof::profile;
8use rustc_hash::FxHashSet;
9
10use super::{Canonical, GenericPredicate, HirDisplay, ProjectionTy, TraitRef, Ty, TypeWalk};
11use crate::{db::HirDatabase, expr::ExprId, Crate, DefWithBody, ImplBlock, Trait, TypeAlias};
12
13use self::chalk::{from_chalk, ToChalk};
14
15pub(crate) mod chalk;
16
17#[derive(Debug, Clone)]
18pub struct TraitSolver {
19 krate: Crate,
20 inner: Arc<Mutex<chalk_solve::Solver<ChalkIr>>>,
21}
22
23/// We need eq for salsa
24impl PartialEq for TraitSolver {
25 fn eq(&self, other: &TraitSolver) -> bool {
26 Arc::ptr_eq(&self.inner, &other.inner)
27 }
28}
29
30impl Eq for TraitSolver {}
31
32impl TraitSolver {
33 fn solve(
34 &self,
35 db: &impl HirDatabase,
36 goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal<ChalkIr>>>,
37 ) -> Option<chalk_solve::Solution<ChalkIr>> {
38 let context = ChalkContext { db, krate: self.krate };
39 debug!("solve goal: {:?}", goal);
40 let mut solver = match self.inner.lock() {
41 Ok(it) => it,
42 // Our cancellation works via unwinding, but, as chalk is not
43 // panic-safe, we need to make sure to propagate the cancellation.
44 // Ideally, we should also make chalk panic-safe.
45 Err(_) => ra_db::Canceled::throw(),
46 };
47 let solution = solver.solve(&context, goal);
48 debug!("solve({:?}) => {:?}", goal, solution);
49 solution
50 }
51}
52
53/// This controls the maximum size of types Chalk considers. If we set this too
54/// high, we can run into slow edge cases; if we set it too low, Chalk won't
55/// find some solutions.
56const CHALK_SOLVER_MAX_SIZE: usize = 4;
57
58#[derive(Debug, Copy, Clone)]
59struct ChalkContext<'a, DB> {
60 db: &'a DB,
61 krate: Crate,
62}
63
64pub(crate) fn trait_solver_query(
65 db: &(impl HirDatabase + salsa::Database),
66 krate: Crate,
67) -> TraitSolver {
68 db.salsa_runtime().report_untracked_read();
69 // krate parameter is just so we cache a unique solver per crate
70 let solver_choice = chalk_solve::SolverChoice::SLG { max_size: CHALK_SOLVER_MAX_SIZE };
71 debug!("Creating new solver for crate {:?}", krate);
72 TraitSolver { krate, inner: Arc::new(Mutex::new(solver_choice.into_solver())) }
73}
74
75/// Collects impls for the given trait in the whole dependency tree of `krate`.
76pub(crate) fn impls_for_trait_query(
77 db: &impl HirDatabase,
78 krate: Crate,
79 trait_: Trait,
80) -> Arc<[ImplBlock]> {
81 let mut impls = FxHashSet::default();
82 // We call the query recursively here. On the one hand, this means we can
83 // reuse results from queries for different crates; on the other hand, this
84 // will only ever get called for a few crates near the root of the tree (the
85 // ones the user is editing), so this may actually be a waste of memory. I'm
86 // doing it like this mainly for simplicity for now.
87 for dep in krate.dependencies(db) {
88 impls.extend(db.impls_for_trait(dep.krate, trait_).iter());
89 }
90 let crate_impl_blocks = db.impls_in_crate(krate);
91 impls.extend(crate_impl_blocks.lookup_impl_blocks_for_trait(trait_));
92 impls.into_iter().collect()
93}
94
95/// A set of clauses that we assume to be true. E.g. if we are inside this function:
96/// ```rust
97/// fn foo<T: Default>(t: T) {}
98/// ```
99/// we assume that `T: Default`.
100#[derive(Clone, Debug, PartialEq, Eq, Hash)]
101pub struct TraitEnvironment {
102 pub predicates: Vec<GenericPredicate>,
103}
104
105impl TraitEnvironment {
106 /// Returns trait refs with the given self type which are supposed to hold
107 /// in this trait env. E.g. if we are in `foo<T: SomeTrait>()`, this will
108 /// find that `T: SomeTrait` if we call it for `T`.
109 pub(crate) fn trait_predicates_for_self_ty<'a>(
110 &'a self,
111 ty: &'a Ty,
112 ) -> impl Iterator<Item = &'a TraitRef> + 'a {
113 self.predicates.iter().filter_map(move |pred| match pred {
114 GenericPredicate::Implemented(tr) if tr.self_ty() == ty => Some(tr),
115 _ => None,
116 })
117 }
118}
119
120/// Something (usually a goal), along with an environment.
121#[derive(Clone, Debug, PartialEq, Eq, Hash)]
122pub struct InEnvironment<T> {
123 pub environment: Arc<TraitEnvironment>,
124 pub value: T,
125}
126
127impl<T> InEnvironment<T> {
128 pub fn new(environment: Arc<TraitEnvironment>, value: T) -> InEnvironment<T> {
129 InEnvironment { environment, value }
130 }
131}
132
133/// Something that needs to be proven (by Chalk) during type checking, e.g. that
134/// a certain type implements a certain trait. Proving the Obligation might
135/// result in additional information about inference variables.
136#[derive(Clone, Debug, PartialEq, Eq, Hash)]
137pub enum Obligation {
138 /// Prove that a certain type implements a trait (the type is the `Self` type
139 /// parameter to the `TraitRef`).
140 Trait(TraitRef),
141 Projection(ProjectionPredicate),
142}
143
144impl Obligation {
145 pub fn from_predicate(predicate: GenericPredicate) -> Option<Obligation> {
146 match predicate {
147 GenericPredicate::Implemented(trait_ref) => Some(Obligation::Trait(trait_ref)),
148 GenericPredicate::Projection(projection_pred) => {
149 Some(Obligation::Projection(projection_pred))
150 }
151 GenericPredicate::Error => None,
152 }
153 }
154}
155
156#[derive(Clone, Debug, PartialEq, Eq, Hash)]
157pub struct ProjectionPredicate {
158 pub projection_ty: ProjectionTy,
159 pub ty: Ty,
160}
161
162impl TypeWalk for ProjectionPredicate {
163 fn walk(&self, f: &mut impl FnMut(&Ty)) {
164 self.projection_ty.walk(f);
165 self.ty.walk(f);
166 }
167
168 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
169 self.projection_ty.walk_mut_binders(f, binders);
170 self.ty.walk_mut_binders(f, binders);
171 }
172}
173
174/// Solve a trait goal using Chalk.
175pub(crate) fn trait_solve_query(
176 db: &impl HirDatabase,
177 krate: Crate,
178 goal: Canonical<InEnvironment<Obligation>>,
179) -> Option<Solution> {
180 let _p = profile("trait_solve_query");
181 debug!("trait_solve_query({})", goal.value.value.display(db));
182
183 if let Obligation::Projection(pred) = &goal.value.value {
184 if let Ty::Bound(_) = &pred.projection_ty.parameters[0] {
185 // Hack: don't ask Chalk to normalize with an unknown self type, it'll say that's impossible
186 return Some(Solution::Ambig(Guidance::Unknown));
187 }
188 }
189
190 let canonical = goal.to_chalk(db).cast();
191
192 // We currently don't deal with universes (I think / hope they're not yet
193 // relevant for our use cases?)
194 let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
195 let solution = db.trait_solver(krate).solve(db, &u_canonical);
196 solution.map(|solution| solution_from_chalk(db, solution))
197}
198
199fn solution_from_chalk(
200 db: &impl HirDatabase,
201 solution: chalk_solve::Solution<ChalkIr>,
202) -> Solution {
203 let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution<ChalkIr>>| {
204 let value = subst
205 .value
206 .parameters
207 .into_iter()
208 .map(|p| {
209 let ty = match p {
210 chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
211 chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
212 };
213 ty
214 })
215 .collect();
216 let result = Canonical { value, num_vars: subst.binders.len() };
217 SolutionVariables(result)
218 };
219 match solution {
220 chalk_solve::Solution::Unique(constr_subst) => {
221 let subst = chalk_ir::Canonical {
222 value: constr_subst.value.subst,
223 binders: constr_subst.binders,
224 };
225 Solution::Unique(convert_subst(subst))
226 }
227 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
228 Solution::Ambig(Guidance::Definite(convert_subst(subst)))
229 }
230 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
231 Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
232 }
233 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
234 Solution::Ambig(Guidance::Unknown)
235 }
236 }
237}
238
239#[derive(Clone, Debug, PartialEq, Eq)]
240pub struct SolutionVariables(pub Canonical<Vec<Ty>>);
241
242#[derive(Clone, Debug, PartialEq, Eq)]
243/// A (possible) solution for a proposed goal.
244pub enum Solution {
245 /// The goal indeed holds, and there is a unique value for all existential
246 /// variables.
247 Unique(SolutionVariables),
248
249 /// The goal may be provable in multiple ways, but regardless we may have some guidance
250 /// for type inference. In this case, we don't return any lifetime
251 /// constraints, since we have not "committed" to any particular solution
252 /// yet.
253 Ambig(Guidance),
254}
255
256#[derive(Clone, Debug, PartialEq, Eq)]
257/// When a goal holds ambiguously (e.g., because there are multiple possible
258/// solutions), we issue a set of *guidance* back to type inference.
259pub enum Guidance {
260 /// The existential variables *must* have the given values if the goal is
261 /// ever to hold, but that alone isn't enough to guarantee the goal will
262 /// actually hold.
263 Definite(SolutionVariables),
264
265 /// There are multiple plausible values for the existentials, but the ones
266 /// here are suggested as the preferred choice heuristically. These should
267 /// be used for inference fallback only.
268 Suggested(SolutionVariables),
269
270 /// There's no useful information to feed back to type inference
271 Unknown,
272}
273
274#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
275pub enum FnTrait {
276 FnOnce,
277 FnMut,
278 Fn,
279}
280
281impl FnTrait {
282 fn lang_item_name(self) -> &'static str {
283 match self {
284 FnTrait::FnOnce => "fn_once",
285 FnTrait::FnMut => "fn_mut",
286 FnTrait::Fn => "fn",
287 }
288 }
289}
290
291#[derive(Debug, Clone, PartialEq, Eq, Hash)]
292pub struct ClosureFnTraitImplData {
293 def: DefWithBody,
294 expr: ExprId,
295 fn_trait: FnTrait,
296}
297
298/// An impl. Usually this comes from an impl block, but some built-in types get
299/// synthetic impls.
300#[derive(Debug, Clone, PartialEq, Eq, Hash)]
301pub enum Impl {
302 /// A normal impl from an impl block.
303 ImplBlock(ImplBlock),
304 /// Closure types implement the Fn traits synthetically.
305 ClosureFnTraitImpl(ClosureFnTraitImplData),
306}
307/// This exists just for Chalk, because our ImplIds are only unique per module.
308#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
309pub struct GlobalImplId(salsa::InternId);
310impl_intern_key!(GlobalImplId);
311
312/// An associated type value. Usually this comes from a `type` declaration
313/// inside an impl block, but for built-in impls we have to synthesize it.
314/// (We only need this because Chalk wants a unique ID for each of these.)
315#[derive(Debug, Clone, PartialEq, Eq, Hash)]
316pub enum AssocTyValue {
317 /// A normal assoc type value from an impl block.
318 TypeAlias(TypeAlias),
319 /// The output type of the Fn trait implementation.
320 ClosureFnTraitImplOutput(ClosureFnTraitImplData),
321}
322/// This exists just for Chalk, because it needs a unique ID for each associated
323/// type value in an impl (even synthetic ones).
324#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
325pub struct AssocTyValueId(salsa::InternId);
326impl_intern_key!(AssocTyValueId);
diff --git a/crates/ra_hir/src/ty/traits/chalk.rs b/crates/ra_hir/src/ty/traits/chalk.rs
deleted file mode 100644
index 1a93e5e50..000000000
--- a/crates/ra_hir/src/ty/traits/chalk.rs
+++ /dev/null
@@ -1,884 +0,0 @@
1//! Conversion code from/to Chalk.
2use std::sync::Arc;
3
4use log::debug;
5
6use chalk_ir::{
7 cast::Cast, family::ChalkIr, Identifier, ImplId, Parameter, PlaceholderIndex, TypeId,
8 TypeKindId, TypeName, UniverseIndex,
9};
10use chalk_rust_ir::{AssociatedTyDatum, AssociatedTyValue, ImplDatum, StructDatum, TraitDatum};
11
12use hir_def::lang_item::LangItemTarget;
13use hir_expand::name;
14
15use ra_db::salsa::{InternId, InternKey};
16
17use super::{AssocTyValue, Canonical, ChalkContext, Impl, Obligation};
18use crate::{
19 db::HirDatabase,
20 ty::display::HirDisplay,
21 ty::{ApplicationTy, GenericPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk},
22 Crate, GenericDef, ImplBlock, Trait, TypeAlias,
23};
24
25/// This represents a trait whose name we could not resolve.
26const UNKNOWN_TRAIT: chalk_ir::TraitId =
27 chalk_ir::TraitId(chalk_ir::RawId { index: u32::max_value() });
28
29pub(super) trait ToChalk {
30 type Chalk;
31 fn to_chalk(self, db: &impl HirDatabase) -> Self::Chalk;
32 fn from_chalk(db: &impl HirDatabase, chalk: Self::Chalk) -> Self;
33}
34
35pub(super) fn from_chalk<T, ChalkT>(db: &impl HirDatabase, chalk: ChalkT) -> T
36where
37 T: ToChalk<Chalk = ChalkT>,
38{
39 T::from_chalk(db, chalk)
40}
41
42impl ToChalk for Ty {
43 type Chalk = chalk_ir::Ty<ChalkIr>;
44 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Ty<ChalkIr> {
45 match self {
46 Ty::Apply(apply_ty) => {
47 let name = match apply_ty.ctor {
48 TypeCtor::AssociatedType(type_alias) => {
49 let type_id = type_alias.to_chalk(db);
50 TypeName::AssociatedType(type_id)
51 }
52 _ => {
53 // other TypeCtors get interned and turned into a chalk StructId
54 let struct_id = apply_ty.ctor.to_chalk(db);
55 TypeName::TypeKindId(struct_id.into())
56 }
57 };
58 let parameters = apply_ty.parameters.to_chalk(db);
59 chalk_ir::ApplicationTy { name, parameters }.cast().intern()
60 }
61 Ty::Projection(proj_ty) => {
62 let associated_ty_id = proj_ty.associated_ty.to_chalk(db);
63 let parameters = proj_ty.parameters.to_chalk(db);
64 chalk_ir::ProjectionTy { associated_ty_id, parameters }.cast().intern()
65 }
66 Ty::Param { idx, .. } => {
67 PlaceholderIndex { ui: UniverseIndex::ROOT, idx: idx as usize }.to_ty::<ChalkIr>()
68 }
69 Ty::Bound(idx) => chalk_ir::TyData::BoundVar(idx as usize).intern(),
70 Ty::Infer(_infer_ty) => panic!("uncanonicalized infer ty"),
71 Ty::Dyn(predicates) => {
72 let where_clauses = predicates.iter().cloned().map(|p| p.to_chalk(db)).collect();
73 chalk_ir::TyData::Dyn(make_binders(where_clauses, 1)).intern()
74 }
75 Ty::Opaque(predicates) => {
76 let where_clauses = predicates.iter().cloned().map(|p| p.to_chalk(db)).collect();
77 chalk_ir::TyData::Opaque(make_binders(where_clauses, 1)).intern()
78 }
79 Ty::Unknown => {
80 let parameters = Vec::new();
81 let name = TypeName::Error;
82 chalk_ir::ApplicationTy { name, parameters }.cast().intern()
83 }
84 }
85 }
86 fn from_chalk(db: &impl HirDatabase, chalk: chalk_ir::Ty<ChalkIr>) -> Self {
87 match chalk.data().clone() {
88 chalk_ir::TyData::Apply(apply_ty) => {
89 // FIXME this is kind of hacky due to the fact that
90 // TypeName::Placeholder is a Ty::Param on our side
91 match apply_ty.name {
92 TypeName::TypeKindId(TypeKindId::StructId(struct_id)) => {
93 let ctor = from_chalk(db, struct_id);
94 let parameters = from_chalk(db, apply_ty.parameters);
95 Ty::Apply(ApplicationTy { ctor, parameters })
96 }
97 TypeName::AssociatedType(type_id) => {
98 let ctor = TypeCtor::AssociatedType(from_chalk(db, type_id));
99 let parameters = from_chalk(db, apply_ty.parameters);
100 Ty::Apply(ApplicationTy { ctor, parameters })
101 }
102 TypeName::Error => Ty::Unknown,
103 // FIXME handle TypeKindId::Trait/Type here
104 TypeName::TypeKindId(_) => unimplemented!(),
105 TypeName::Placeholder(idx) => {
106 assert_eq!(idx.ui, UniverseIndex::ROOT);
107 Ty::Param { idx: idx.idx as u32, name: crate::Name::missing() }
108 }
109 }
110 }
111 chalk_ir::TyData::Projection(proj) => {
112 let associated_ty = from_chalk(db, proj.associated_ty_id);
113 let parameters = from_chalk(db, proj.parameters);
114 Ty::Projection(ProjectionTy { associated_ty, parameters })
115 }
116 chalk_ir::TyData::ForAll(_) => unimplemented!(),
117 chalk_ir::TyData::BoundVar(idx) => Ty::Bound(idx as u32),
118 chalk_ir::TyData::InferenceVar(_iv) => Ty::Unknown,
119 chalk_ir::TyData::Dyn(where_clauses) => {
120 assert_eq!(where_clauses.binders.len(), 1);
121 let predicates =
122 where_clauses.value.into_iter().map(|c| from_chalk(db, c)).collect();
123 Ty::Dyn(predicates)
124 }
125 chalk_ir::TyData::Opaque(where_clauses) => {
126 assert_eq!(where_clauses.binders.len(), 1);
127 let predicates =
128 where_clauses.value.into_iter().map(|c| from_chalk(db, c)).collect();
129 Ty::Opaque(predicates)
130 }
131 }
132 }
133}
134
135impl ToChalk for Substs {
136 type Chalk = Vec<chalk_ir::Parameter<ChalkIr>>;
137
138 fn to_chalk(self, db: &impl HirDatabase) -> Vec<Parameter<ChalkIr>> {
139 self.iter().map(|ty| ty.clone().to_chalk(db).cast()).collect()
140 }
141
142 fn from_chalk(db: &impl HirDatabase, parameters: Vec<chalk_ir::Parameter<ChalkIr>>) -> Substs {
143 let tys = parameters
144 .into_iter()
145 .map(|p| match p {
146 chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
147 chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
148 })
149 .collect();
150 Substs(tys)
151 }
152}
153
154impl ToChalk for TraitRef {
155 type Chalk = chalk_ir::TraitRef<ChalkIr>;
156
157 fn to_chalk(self: TraitRef, db: &impl HirDatabase) -> chalk_ir::TraitRef<ChalkIr> {
158 let trait_id = self.trait_.to_chalk(db);
159 let parameters = self.substs.to_chalk(db);
160 chalk_ir::TraitRef { trait_id, parameters }
161 }
162
163 fn from_chalk(db: &impl HirDatabase, trait_ref: chalk_ir::TraitRef<ChalkIr>) -> Self {
164 let trait_ = from_chalk(db, trait_ref.trait_id);
165 let substs = from_chalk(db, trait_ref.parameters);
166 TraitRef { trait_, substs }
167 }
168}
169
170impl ToChalk for Trait {
171 type Chalk = chalk_ir::TraitId;
172
173 fn to_chalk(self, _db: &impl HirDatabase) -> chalk_ir::TraitId {
174 chalk_ir::TraitId(id_to_chalk(self.id))
175 }
176
177 fn from_chalk(_db: &impl HirDatabase, trait_id: chalk_ir::TraitId) -> Trait {
178 Trait { id: id_from_chalk(trait_id.0) }
179 }
180}
181
182impl ToChalk for TypeCtor {
183 type Chalk = chalk_ir::StructId;
184
185 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::StructId {
186 db.intern_type_ctor(self).into()
187 }
188
189 fn from_chalk(db: &impl HirDatabase, struct_id: chalk_ir::StructId) -> TypeCtor {
190 db.lookup_intern_type_ctor(struct_id.into())
191 }
192}
193
194impl ToChalk for Impl {
195 type Chalk = chalk_ir::ImplId;
196
197 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::ImplId {
198 db.intern_chalk_impl(self).into()
199 }
200
201 fn from_chalk(db: &impl HirDatabase, impl_id: chalk_ir::ImplId) -> Impl {
202 db.lookup_intern_chalk_impl(impl_id.into())
203 }
204}
205
206impl ToChalk for TypeAlias {
207 type Chalk = chalk_ir::TypeId;
208
209 fn to_chalk(self, _db: &impl HirDatabase) -> chalk_ir::TypeId {
210 chalk_ir::TypeId(id_to_chalk(self.id))
211 }
212
213 fn from_chalk(_db: &impl HirDatabase, type_alias_id: chalk_ir::TypeId) -> TypeAlias {
214 TypeAlias { id: id_from_chalk(type_alias_id.0) }
215 }
216}
217
218impl ToChalk for AssocTyValue {
219 type Chalk = chalk_rust_ir::AssociatedTyValueId;
220
221 fn to_chalk(self, db: &impl HirDatabase) -> chalk_rust_ir::AssociatedTyValueId {
222 db.intern_assoc_ty_value(self).into()
223 }
224
225 fn from_chalk(
226 db: &impl HirDatabase,
227 assoc_ty_value_id: chalk_rust_ir::AssociatedTyValueId,
228 ) -> AssocTyValue {
229 db.lookup_intern_assoc_ty_value(assoc_ty_value_id.into())
230 }
231}
232
233impl ToChalk for GenericPredicate {
234 type Chalk = chalk_ir::QuantifiedWhereClause<ChalkIr>;
235
236 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::QuantifiedWhereClause<ChalkIr> {
237 match self {
238 GenericPredicate::Implemented(trait_ref) => {
239 make_binders(chalk_ir::WhereClause::Implemented(trait_ref.to_chalk(db)), 0)
240 }
241 GenericPredicate::Projection(projection_pred) => make_binders(
242 chalk_ir::WhereClause::ProjectionEq(chalk_ir::ProjectionEq {
243 projection: projection_pred.projection_ty.to_chalk(db),
244 ty: projection_pred.ty.to_chalk(db),
245 }),
246 0,
247 ),
248 GenericPredicate::Error => {
249 let impossible_trait_ref = chalk_ir::TraitRef {
250 trait_id: UNKNOWN_TRAIT,
251 parameters: vec![Ty::Unknown.to_chalk(db).cast()],
252 };
253 make_binders(chalk_ir::WhereClause::Implemented(impossible_trait_ref), 0)
254 }
255 }
256 }
257
258 fn from_chalk(
259 db: &impl HirDatabase,
260 where_clause: chalk_ir::QuantifiedWhereClause<ChalkIr>,
261 ) -> GenericPredicate {
262 match where_clause.value {
263 chalk_ir::WhereClause::Implemented(tr) => {
264 if tr.trait_id == UNKNOWN_TRAIT {
265 // FIXME we need an Error enum on the Chalk side to avoid this
266 return GenericPredicate::Error;
267 }
268 GenericPredicate::Implemented(from_chalk(db, tr))
269 }
270 chalk_ir::WhereClause::ProjectionEq(projection_eq) => {
271 let projection_ty = from_chalk(db, projection_eq.projection);
272 let ty = from_chalk(db, projection_eq.ty);
273 GenericPredicate::Projection(super::ProjectionPredicate { projection_ty, ty })
274 }
275 }
276 }
277}
278
279impl ToChalk for ProjectionTy {
280 type Chalk = chalk_ir::ProjectionTy<ChalkIr>;
281
282 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::ProjectionTy<ChalkIr> {
283 chalk_ir::ProjectionTy {
284 associated_ty_id: self.associated_ty.to_chalk(db),
285 parameters: self.parameters.to_chalk(db),
286 }
287 }
288
289 fn from_chalk(
290 db: &impl HirDatabase,
291 projection_ty: chalk_ir::ProjectionTy<ChalkIr>,
292 ) -> ProjectionTy {
293 ProjectionTy {
294 associated_ty: from_chalk(db, projection_ty.associated_ty_id),
295 parameters: from_chalk(db, projection_ty.parameters),
296 }
297 }
298}
299
300impl ToChalk for super::ProjectionPredicate {
301 type Chalk = chalk_ir::Normalize<ChalkIr>;
302
303 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Normalize<ChalkIr> {
304 chalk_ir::Normalize {
305 projection: self.projection_ty.to_chalk(db),
306 ty: self.ty.to_chalk(db),
307 }
308 }
309
310 fn from_chalk(_db: &impl HirDatabase, _normalize: chalk_ir::Normalize<ChalkIr>) -> Self {
311 unimplemented!()
312 }
313}
314
315impl ToChalk for Obligation {
316 type Chalk = chalk_ir::DomainGoal<ChalkIr>;
317
318 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::DomainGoal<ChalkIr> {
319 match self {
320 Obligation::Trait(tr) => tr.to_chalk(db).cast(),
321 Obligation::Projection(pr) => pr.to_chalk(db).cast(),
322 }
323 }
324
325 fn from_chalk(_db: &impl HirDatabase, _goal: chalk_ir::DomainGoal<ChalkIr>) -> Self {
326 unimplemented!()
327 }
328}
329
330impl<T> ToChalk for Canonical<T>
331where
332 T: ToChalk,
333{
334 type Chalk = chalk_ir::Canonical<T::Chalk>;
335
336 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Canonical<T::Chalk> {
337 let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT);
338 let value = self.value.to_chalk(db);
339 let canonical = chalk_ir::Canonical { value, binders: vec![parameter; self.num_vars] };
340 canonical
341 }
342
343 fn from_chalk(db: &impl HirDatabase, canonical: chalk_ir::Canonical<T::Chalk>) -> Canonical<T> {
344 Canonical { num_vars: canonical.binders.len(), value: from_chalk(db, canonical.value) }
345 }
346}
347
348impl ToChalk for Arc<super::TraitEnvironment> {
349 type Chalk = chalk_ir::Environment<ChalkIr>;
350
351 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Environment<ChalkIr> {
352 let mut clauses = Vec::new();
353 for pred in &self.predicates {
354 if pred.is_error() {
355 // for env, we just ignore errors
356 continue;
357 }
358 let program_clause: chalk_ir::ProgramClause<ChalkIr> = pred.clone().to_chalk(db).cast();
359 clauses.push(program_clause.into_from_env_clause());
360 }
361 chalk_ir::Environment::new().add_clauses(clauses)
362 }
363
364 fn from_chalk(
365 _db: &impl HirDatabase,
366 _env: chalk_ir::Environment<ChalkIr>,
367 ) -> Arc<super::TraitEnvironment> {
368 unimplemented!()
369 }
370}
371
372impl<T: ToChalk> ToChalk for super::InEnvironment<T>
373where
374 T::Chalk: chalk_ir::family::HasTypeFamily<TypeFamily = ChalkIr>,
375{
376 type Chalk = chalk_ir::InEnvironment<T::Chalk>;
377
378 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::InEnvironment<T::Chalk> {
379 chalk_ir::InEnvironment {
380 environment: self.environment.to_chalk(db),
381 goal: self.value.to_chalk(db),
382 }
383 }
384
385 fn from_chalk(
386 db: &impl HirDatabase,
387 in_env: chalk_ir::InEnvironment<T::Chalk>,
388 ) -> super::InEnvironment<T> {
389 super::InEnvironment {
390 environment: from_chalk(db, in_env.environment),
391 value: from_chalk(db, in_env.goal),
392 }
393 }
394}
395
396fn make_binders<T>(value: T, num_vars: usize) -> chalk_ir::Binders<T> {
397 chalk_ir::Binders {
398 value,
399 binders: std::iter::repeat(chalk_ir::ParameterKind::Ty(())).take(num_vars).collect(),
400 }
401}
402
403fn convert_where_clauses(
404 db: &impl HirDatabase,
405 def: GenericDef,
406 substs: &Substs,
407) -> Vec<chalk_ir::QuantifiedWhereClause<ChalkIr>> {
408 let generic_predicates = db.generic_predicates(def);
409 let mut result = Vec::with_capacity(generic_predicates.len());
410 for pred in generic_predicates.iter() {
411 if pred.is_error() {
412 // HACK: Return just the single predicate (which is always false
413 // anyway), otherwise Chalk can easily get into slow situations
414 return vec![pred.clone().subst(substs).to_chalk(db)];
415 }
416 result.push(pred.clone().subst(substs).to_chalk(db));
417 }
418 result
419}
420
421impl<'a, DB> chalk_solve::RustIrDatabase<ChalkIr> for ChalkContext<'a, DB>
422where
423 DB: HirDatabase,
424{
425 fn associated_ty_data(&self, id: TypeId) -> Arc<AssociatedTyDatum<ChalkIr>> {
426 self.db.associated_ty_data(id)
427 }
428 fn trait_datum(&self, trait_id: chalk_ir::TraitId) -> Arc<TraitDatum<ChalkIr>> {
429 self.db.trait_datum(self.krate, trait_id)
430 }
431 fn struct_datum(&self, struct_id: chalk_ir::StructId) -> Arc<StructDatum<ChalkIr>> {
432 self.db.struct_datum(self.krate, struct_id)
433 }
434 fn impl_datum(&self, impl_id: ImplId) -> Arc<ImplDatum<ChalkIr>> {
435 self.db.impl_datum(self.krate, impl_id)
436 }
437 fn impls_for_trait(
438 &self,
439 trait_id: chalk_ir::TraitId,
440 parameters: &[Parameter<ChalkIr>],
441 ) -> Vec<ImplId> {
442 debug!("impls_for_trait {:?}", trait_id);
443 if trait_id == UNKNOWN_TRAIT {
444 return Vec::new();
445 }
446 let trait_: Trait = from_chalk(self.db, trait_id);
447 let mut result: Vec<_> = self
448 .db
449 .impls_for_trait(self.krate, trait_)
450 .iter()
451 .copied()
452 .map(Impl::ImplBlock)
453 .map(|impl_| impl_.to_chalk(self.db))
454 .collect();
455
456 let ty: Ty = from_chalk(self.db, parameters[0].assert_ty_ref().clone());
457 if let Ty::Apply(ApplicationTy { ctor: TypeCtor::Closure { def, expr }, .. }) = ty {
458 for &fn_trait in
459 [super::FnTrait::FnOnce, super::FnTrait::FnMut, super::FnTrait::Fn].iter()
460 {
461 if let Some(actual_trait) = get_fn_trait(self.db, self.krate, fn_trait) {
462 if trait_ == actual_trait {
463 let impl_ = super::ClosureFnTraitImplData { def, expr, fn_trait };
464 result.push(Impl::ClosureFnTraitImpl(impl_).to_chalk(self.db));
465 }
466 }
467 }
468 }
469
470 debug!("impls_for_trait returned {} impls", result.len());
471 result
472 }
473 fn impl_provided_for(
474 &self,
475 auto_trait_id: chalk_ir::TraitId,
476 struct_id: chalk_ir::StructId,
477 ) -> bool {
478 debug!("impl_provided_for {:?}, {:?}", auto_trait_id, struct_id);
479 false // FIXME
480 }
481 fn type_name(&self, _id: TypeKindId) -> Identifier {
482 unimplemented!()
483 }
484 fn associated_ty_value(
485 &self,
486 id: chalk_rust_ir::AssociatedTyValueId,
487 ) -> Arc<AssociatedTyValue<ChalkIr>> {
488 self.db.associated_ty_value(self.krate, id)
489 }
490 fn custom_clauses(&self) -> Vec<chalk_ir::ProgramClause<ChalkIr>> {
491 vec![]
492 }
493 fn local_impls_to_coherence_check(
494 &self,
495 _trait_id: chalk_ir::TraitId,
496 ) -> Vec<chalk_ir::ImplId> {
497 // We don't do coherence checking (yet)
498 unimplemented!()
499 }
500}
501
502pub(crate) fn associated_ty_data_query(
503 db: &impl HirDatabase,
504 id: TypeId,
505) -> Arc<AssociatedTyDatum<ChalkIr>> {
506 debug!("associated_ty_data {:?}", id);
507 let type_alias: TypeAlias = from_chalk(db, id);
508 let trait_ = match type_alias.container(db) {
509 Some(crate::Container::Trait(t)) => t,
510 _ => panic!("associated type not in trait"),
511 };
512 let generic_params = db.generic_params(type_alias.id.into());
513 let bound_data = chalk_rust_ir::AssociatedTyDatumBound {
514 // FIXME add bounds and where clauses
515 bounds: vec![],
516 where_clauses: vec![],
517 };
518 let datum = AssociatedTyDatum {
519 trait_id: trait_.to_chalk(db),
520 id,
521 name: lalrpop_intern::intern(&type_alias.name(db).to_string()),
522 binders: make_binders(bound_data, generic_params.count_params_including_parent()),
523 };
524 Arc::new(datum)
525}
526
527pub(crate) fn trait_datum_query(
528 db: &impl HirDatabase,
529 krate: Crate,
530 trait_id: chalk_ir::TraitId,
531) -> Arc<TraitDatum<ChalkIr>> {
532 debug!("trait_datum {:?}", trait_id);
533 if trait_id == UNKNOWN_TRAIT {
534 let trait_datum_bound = chalk_rust_ir::TraitDatumBound { where_clauses: Vec::new() };
535
536 let flags = chalk_rust_ir::TraitFlags {
537 auto: false,
538 marker: false,
539 upstream: true,
540 fundamental: false,
541 non_enumerable: true,
542 coinductive: false,
543 };
544 return Arc::new(TraitDatum {
545 id: trait_id,
546 binders: make_binders(trait_datum_bound, 1),
547 flags,
548 associated_ty_ids: vec![],
549 });
550 }
551 let trait_: Trait = from_chalk(db, trait_id);
552 debug!("trait {:?} = {:?}", trait_id, trait_.name(db));
553 let generic_params = db.generic_params(trait_.id.into());
554 let bound_vars = Substs::bound_vars(&generic_params);
555 let flags = chalk_rust_ir::TraitFlags {
556 auto: trait_.is_auto(db),
557 upstream: trait_.module(db).krate() != krate,
558 non_enumerable: true,
559 coinductive: false, // only relevant for Chalk testing
560 // FIXME set these flags correctly
561 marker: false,
562 fundamental: false,
563 };
564 let where_clauses = convert_where_clauses(db, trait_.into(), &bound_vars);
565 let associated_ty_ids = trait_
566 .items(db)
567 .into_iter()
568 .filter_map(|trait_item| match trait_item {
569 crate::AssocItem::TypeAlias(type_alias) => Some(type_alias),
570 _ => None,
571 })
572 .map(|type_alias| type_alias.to_chalk(db))
573 .collect();
574 let trait_datum_bound = chalk_rust_ir::TraitDatumBound { where_clauses };
575 let trait_datum = TraitDatum {
576 id: trait_id,
577 binders: make_binders(trait_datum_bound, bound_vars.len()),
578 flags,
579 associated_ty_ids,
580 };
581 Arc::new(trait_datum)
582}
583
584pub(crate) fn struct_datum_query(
585 db: &impl HirDatabase,
586 krate: Crate,
587 struct_id: chalk_ir::StructId,
588) -> Arc<StructDatum<ChalkIr>> {
589 debug!("struct_datum {:?}", struct_id);
590 let type_ctor: TypeCtor = from_chalk(db, struct_id);
591 debug!("struct {:?} = {:?}", struct_id, type_ctor);
592 let num_params = type_ctor.num_ty_params(db);
593 let upstream = type_ctor.krate(db) != Some(krate);
594 let where_clauses = type_ctor
595 .as_generic_def()
596 .map(|generic_def| {
597 let generic_params = db.generic_params(generic_def.into());
598 let bound_vars = Substs::bound_vars(&generic_params);
599 convert_where_clauses(db, generic_def, &bound_vars)
600 })
601 .unwrap_or_else(Vec::new);
602 let flags = chalk_rust_ir::StructFlags {
603 upstream,
604 // FIXME set fundamental flag correctly
605 fundamental: false,
606 };
607 let struct_datum_bound = chalk_rust_ir::StructDatumBound {
608 fields: Vec::new(), // FIXME add fields (only relevant for auto traits)
609 where_clauses,
610 };
611 let struct_datum =
612 StructDatum { id: struct_id, binders: make_binders(struct_datum_bound, num_params), flags };
613 Arc::new(struct_datum)
614}
615
616pub(crate) fn impl_datum_query(
617 db: &impl HirDatabase,
618 krate: Crate,
619 impl_id: ImplId,
620) -> Arc<ImplDatum<ChalkIr>> {
621 let _p = ra_prof::profile("impl_datum");
622 debug!("impl_datum {:?}", impl_id);
623 let impl_: Impl = from_chalk(db, impl_id);
624 match impl_ {
625 Impl::ImplBlock(impl_block) => impl_block_datum(db, krate, impl_id, impl_block),
626 Impl::ClosureFnTraitImpl(data) => closure_fn_trait_impl_datum(db, krate, data),
627 }
628 .unwrap_or_else(invalid_impl_datum)
629}
630
631fn impl_block_datum(
632 db: &impl HirDatabase,
633 krate: Crate,
634 impl_id: ImplId,
635 impl_block: ImplBlock,
636) -> Option<Arc<ImplDatum<ChalkIr>>> {
637 let generic_params = db.generic_params(impl_block.id.into());
638 let bound_vars = Substs::bound_vars(&generic_params);
639 let trait_ref = impl_block.target_trait_ref(db)?.subst(&bound_vars);
640 let trait_ = trait_ref.trait_;
641 let impl_type = if impl_block.krate(db) == krate {
642 chalk_rust_ir::ImplType::Local
643 } else {
644 chalk_rust_ir::ImplType::External
645 };
646 let where_clauses = convert_where_clauses(db, impl_block.into(), &bound_vars);
647 let negative = impl_block.is_negative(db);
648 debug!(
649 "impl {:?}: {}{} where {:?}",
650 impl_id,
651 if negative { "!" } else { "" },
652 trait_ref.display(db),
653 where_clauses
654 );
655 let trait_ref = trait_ref.to_chalk(db);
656
657 let polarity = if negative {
658 chalk_rust_ir::Polarity::Negative
659 } else {
660 chalk_rust_ir::Polarity::Positive
661 };
662
663 let impl_datum_bound = chalk_rust_ir::ImplDatumBound { trait_ref, where_clauses };
664 let associated_ty_value_ids = impl_block
665 .items(db)
666 .into_iter()
667 .filter_map(|item| match item {
668 crate::AssocItem::TypeAlias(type_alias) => Some(type_alias),
669 _ => None,
670 })
671 .filter(|type_alias| {
672 // don't include associated types that don't exist in the trait
673 trait_.associated_type_by_name(db, &type_alias.name(db)).is_some()
674 })
675 .map(|type_alias| AssocTyValue::TypeAlias(type_alias).to_chalk(db))
676 .collect();
677 debug!("impl_datum: {:?}", impl_datum_bound);
678 let impl_datum = ImplDatum {
679 binders: make_binders(impl_datum_bound, bound_vars.len()),
680 impl_type,
681 polarity,
682 associated_ty_value_ids,
683 };
684 Some(Arc::new(impl_datum))
685}
686
687fn invalid_impl_datum() -> Arc<ImplDatum<ChalkIr>> {
688 let trait_ref = chalk_ir::TraitRef {
689 trait_id: UNKNOWN_TRAIT,
690 parameters: vec![chalk_ir::TyData::BoundVar(0).cast().intern().cast()],
691 };
692 let impl_datum_bound = chalk_rust_ir::ImplDatumBound { trait_ref, where_clauses: Vec::new() };
693 let impl_datum = ImplDatum {
694 binders: make_binders(impl_datum_bound, 1),
695 impl_type: chalk_rust_ir::ImplType::External,
696 polarity: chalk_rust_ir::Polarity::Positive,
697 associated_ty_value_ids: Vec::new(),
698 };
699 Arc::new(impl_datum)
700}
701
702fn closure_fn_trait_impl_datum(
703 db: &impl HirDatabase,
704 krate: Crate,
705 data: super::ClosureFnTraitImplData,
706) -> Option<Arc<ImplDatum<ChalkIr>>> {
707 // for some closure |X, Y| -> Z:
708 // impl<T, U, V> Fn<(T, U)> for closure<fn(T, U) -> V> { Output = V }
709
710 let trait_ = get_fn_trait(db, krate, data.fn_trait)?; // get corresponding fn trait
711
712 // validate FnOnce trait, since we need it in the assoc ty value definition
713 // and don't want to return a valid value only to find out later that FnOnce
714 // is broken
715 let fn_once_trait = get_fn_trait(db, krate, super::FnTrait::FnOnce)?;
716 fn_once_trait.associated_type_by_name(db, &name::OUTPUT_TYPE)?;
717
718 let num_args: u16 = match &db.body(data.def.into())[data.expr] {
719 crate::expr::Expr::Lambda { args, .. } => args.len() as u16,
720 _ => {
721 log::warn!("closure for closure type {:?} not found", data);
722 0
723 }
724 };
725
726 let arg_ty = Ty::apply(
727 TypeCtor::Tuple { cardinality: num_args },
728 Substs::builder(num_args as usize).fill_with_bound_vars(0).build(),
729 );
730 let sig_ty = Ty::apply(
731 TypeCtor::FnPtr { num_args },
732 Substs::builder(num_args as usize + 1).fill_with_bound_vars(0).build(),
733 );
734
735 let self_ty = Ty::apply_one(TypeCtor::Closure { def: data.def, expr: data.expr }, sig_ty);
736
737 let trait_ref = TraitRef {
738 trait_,
739 substs: Substs::build_for_def(db, trait_).push(self_ty).push(arg_ty).build(),
740 };
741
742 let output_ty_id = AssocTyValue::ClosureFnTraitImplOutput(data.clone()).to_chalk(db);
743
744 let impl_type = chalk_rust_ir::ImplType::External;
745
746 let impl_datum_bound = chalk_rust_ir::ImplDatumBound {
747 trait_ref: trait_ref.to_chalk(db),
748 where_clauses: Vec::new(),
749 };
750 let impl_datum = ImplDatum {
751 binders: make_binders(impl_datum_bound, num_args as usize + 1),
752 impl_type,
753 polarity: chalk_rust_ir::Polarity::Positive,
754 associated_ty_value_ids: vec![output_ty_id],
755 };
756 Some(Arc::new(impl_datum))
757}
758
759pub(crate) fn associated_ty_value_query(
760 db: &impl HirDatabase,
761 krate: Crate,
762 id: chalk_rust_ir::AssociatedTyValueId,
763) -> Arc<chalk_rust_ir::AssociatedTyValue<ChalkIr>> {
764 let data: AssocTyValue = from_chalk(db, id);
765 match data {
766 AssocTyValue::TypeAlias(type_alias) => {
767 type_alias_associated_ty_value(db, krate, type_alias)
768 }
769 AssocTyValue::ClosureFnTraitImplOutput(data) => {
770 closure_fn_trait_output_assoc_ty_value(db, krate, data)
771 }
772 }
773}
774
775fn type_alias_associated_ty_value(
776 db: &impl HirDatabase,
777 _krate: Crate,
778 type_alias: TypeAlias,
779) -> Arc<AssociatedTyValue<ChalkIr>> {
780 let impl_block = type_alias.impl_block(db).expect("assoc ty value should be in impl");
781 let impl_id = Impl::ImplBlock(impl_block).to_chalk(db);
782 let trait_ = impl_block
783 .target_trait_ref(db)
784 .expect("assoc ty value should not exist") // we don't return any assoc ty values if the impl'd trait can't be resolved
785 .trait_;
786 let assoc_ty = trait_
787 .associated_type_by_name(db, &type_alias.name(db))
788 .expect("assoc ty value should not exist"); // validated when building the impl data as well
789 let generic_params = db.generic_params(impl_block.id.into());
790 let bound_vars = Substs::bound_vars(&generic_params);
791 let ty = db.type_for_def(type_alias.into(), crate::ty::Namespace::Types).subst(&bound_vars);
792 let value_bound = chalk_rust_ir::AssociatedTyValueBound { ty: ty.to_chalk(db) };
793 let value = chalk_rust_ir::AssociatedTyValue {
794 impl_id,
795 associated_ty_id: assoc_ty.to_chalk(db),
796 value: make_binders(value_bound, bound_vars.len()),
797 };
798 Arc::new(value)
799}
800
801fn closure_fn_trait_output_assoc_ty_value(
802 db: &impl HirDatabase,
803 krate: Crate,
804 data: super::ClosureFnTraitImplData,
805) -> Arc<AssociatedTyValue<ChalkIr>> {
806 let impl_id = Impl::ClosureFnTraitImpl(data.clone()).to_chalk(db);
807
808 let num_args: u16 = match &db.body(data.def.into())[data.expr] {
809 crate::expr::Expr::Lambda { args, .. } => args.len() as u16,
810 _ => {
811 log::warn!("closure for closure type {:?} not found", data);
812 0
813 }
814 };
815
816 let output_ty = Ty::Bound(num_args.into());
817
818 let fn_once_trait =
819 get_fn_trait(db, krate, super::FnTrait::FnOnce).expect("assoc ty value should not exist");
820
821 let output_ty_id = fn_once_trait
822 .associated_type_by_name(db, &name::OUTPUT_TYPE)
823 .expect("assoc ty value should not exist");
824
825 let value_bound = chalk_rust_ir::AssociatedTyValueBound { ty: output_ty.to_chalk(db) };
826
827 let value = chalk_rust_ir::AssociatedTyValue {
828 associated_ty_id: output_ty_id.to_chalk(db),
829 impl_id,
830 value: make_binders(value_bound, num_args as usize + 1),
831 };
832 Arc::new(value)
833}
834
835fn get_fn_trait(db: &impl HirDatabase, krate: Crate, fn_trait: super::FnTrait) -> Option<Trait> {
836 let target = db.lang_item(krate.crate_id, fn_trait.lang_item_name().into())?;
837 match target {
838 LangItemTarget::TraitId(t) => Some(t.into()),
839 _ => None,
840 }
841}
842
843fn id_from_chalk<T: InternKey>(chalk_id: chalk_ir::RawId) -> T {
844 T::from_intern_id(InternId::from(chalk_id.index))
845}
846fn id_to_chalk<T: InternKey>(salsa_id: T) -> chalk_ir::RawId {
847 chalk_ir::RawId { index: salsa_id.as_intern_id().as_u32() }
848}
849
850impl From<chalk_ir::StructId> for crate::ty::TypeCtorId {
851 fn from(struct_id: chalk_ir::StructId) -> Self {
852 id_from_chalk(struct_id.0)
853 }
854}
855
856impl From<crate::ty::TypeCtorId> for chalk_ir::StructId {
857 fn from(type_ctor_id: crate::ty::TypeCtorId) -> Self {
858 chalk_ir::StructId(id_to_chalk(type_ctor_id))
859 }
860}
861
862impl From<chalk_ir::ImplId> for crate::ty::traits::GlobalImplId {
863 fn from(impl_id: chalk_ir::ImplId) -> Self {
864 id_from_chalk(impl_id.0)
865 }
866}
867
868impl From<crate::ty::traits::GlobalImplId> for chalk_ir::ImplId {
869 fn from(impl_id: crate::ty::traits::GlobalImplId) -> Self {
870 chalk_ir::ImplId(id_to_chalk(impl_id))
871 }
872}
873
874impl From<chalk_rust_ir::AssociatedTyValueId> for crate::ty::traits::AssocTyValueId {
875 fn from(id: chalk_rust_ir::AssociatedTyValueId) -> Self {
876 id_from_chalk(id.0)
877 }
878}
879
880impl From<crate::ty::traits::AssocTyValueId> for chalk_rust_ir::AssociatedTyValueId {
881 fn from(assoc_ty_value_id: crate::ty::traits::AssocTyValueId) -> Self {
882 chalk_rust_ir::AssociatedTyValueId(id_to_chalk(assoc_ty_value_id))
883 }
884}
diff --git a/crates/ra_hir/src/util.rs b/crates/ra_hir/src/util.rs
deleted file mode 100644
index 0095ee45d..000000000
--- a/crates/ra_hir/src/util.rs
+++ /dev/null
@@ -1,12 +0,0 @@
1//! Internal utility functions.
2
3use std::sync::Arc;
4
5/// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices).
6/// The underlying values are cloned if there are other strong references.
7pub(crate) fn make_mut_slice<T: Clone>(a: &mut Arc<[T]>) -> &mut [T] {
8 if Arc::get_mut(a).is_none() {
9 *a = a.iter().cloned().collect();
10 }
11 Arc::get_mut(a).unwrap()
12}