aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir
diff options
context:
space:
mode:
authorAleksey Kladov <[email protected]>2019-11-27 14:46:02 +0000
committerAleksey Kladov <[email protected]>2019-11-27 18:16:00 +0000
commita87579500a2c35597071efd0ad6983927f0c1815 (patch)
tree9805b3dcbf8d767b2fc0623f42794068f3660d44 /crates/ra_hir
parent368653081558ab389c6543d6b5027859e26beb3b (diff)
Move Ty
Diffstat (limited to 'crates/ra_hir')
-rw-r--r--crates/ra_hir/src/code_model.rs47
-rw-r--r--crates/ra_hir/src/db.rs117
-rw-r--r--crates/ra_hir/src/diagnostics.rs91
-rw-r--r--crates/ra_hir/src/expr.rs146
-rw-r--r--crates/ra_hir/src/lib.rs9
-rw-r--r--crates/ra_hir/src/marks.rs9
-rw-r--r--crates/ra_hir/src/source_binder.rs22
-rw-r--r--crates/ra_hir/src/test_db.rs123
-rw-r--r--crates/ra_hir/src/ty.rs1111
-rw-r--r--crates/ra_hir/src/ty/autoderef.rs108
-rw-r--r--crates/ra_hir/src/ty/display.rs93
-rw-r--r--crates/ra_hir/src/ty/infer.rs723
-rw-r--r--crates/ra_hir/src/ty/infer/coerce.rs357
-rw-r--r--crates/ra_hir/src/ty/infer/expr.rs689
-rw-r--r--crates/ra_hir/src/ty/infer/pat.rs189
-rw-r--r--crates/ra_hir/src/ty/infer/path.rs273
-rw-r--r--crates/ra_hir/src/ty/infer/unify.rs166
-rw-r--r--crates/ra_hir/src/ty/lower.rs755
-rw-r--r--crates/ra_hir/src/ty/method_resolution.rs362
-rw-r--r--crates/ra_hir/src/ty/op.rs50
-rw-r--r--crates/ra_hir/src/ty/primitive.rs3
-rw-r--r--crates/ra_hir/src/ty/tests.rs4896
-rw-r--r--crates/ra_hir/src/ty/tests/coercion.rs369
-rw-r--r--crates/ra_hir/src/ty/tests/never_type.rs246
-rw-r--r--crates/ra_hir/src/ty/traits.rs328
-rw-r--r--crates/ra_hir/src/ty/traits/chalk.rs906
-rw-r--r--crates/ra_hir/src/ty/utils.rs75
-rw-r--r--crates/ra_hir/src/util.rs12
28 files changed, 46 insertions, 12229 deletions
diff --git a/crates/ra_hir/src/code_model.rs b/crates/ra_hir/src/code_model.rs
index 52ad4e5d1..87c78d98e 100644
--- a/crates/ra_hir/src/code_model.rs
+++ b/crates/ra_hir/src/code_model.rs
@@ -6,8 +6,10 @@ use std::sync::Arc;
6 6
7use hir_def::{ 7use hir_def::{
8 adt::VariantData, 8 adt::VariantData,
9 body::{Body, BodySourceMap},
9 builtin_type::BuiltinType, 10 builtin_type::BuiltinType,
10 docs::Documentation, 11 docs::Documentation,
12 expr::{BindingAnnotation, Pat, PatId},
11 per_ns::PerNs, 13 per_ns::PerNs,
12 resolver::HasResolver, 14 resolver::HasResolver,
13 type_ref::{Mutability, TypeRef}, 15 type_ref::{Mutability, TypeRef},
@@ -20,12 +22,12 @@ use hir_expand::{
20 name::{self, AsName}, 22 name::{self, AsName},
21 AstId, MacroDefId, 23 AstId, MacroDefId,
22}; 24};
25use hir_ty::expr::ExprValidator;
23use ra_db::{CrateId, Edition, FileId, FilePosition}; 26use ra_db::{CrateId, Edition, FileId, FilePosition};
24use ra_syntax::{ast, AstNode, SyntaxNode}; 27use ra_syntax::{ast, AstNode, SyntaxNode};
25 28
26use crate::{ 29use crate::{
27 db::{DefDatabase, HirDatabase}, 30 db::{DefDatabase, HirDatabase},
28 expr::{BindingAnnotation, Body, BodySourceMap, ExprValidator, Pat, PatId},
29 ty::display::HirFormatter, 31 ty::display::HirFormatter,
30 ty::{ 32 ty::{
31 self, InEnvironment, InferenceResult, TraitEnvironment, TraitRef, Ty, TyDefId, TypeCtor, 33 self, InEnvironment, InferenceResult, TraitEnvironment, TraitRef, Ty, TyDefId, TypeCtor,
@@ -353,8 +355,8 @@ impl Struct {
353 .map(|(id, _)| StructField { parent: self.into(), id }) 355 .map(|(id, _)| StructField { parent: self.into(), id })
354 } 356 }
355 357
356 pub fn ty(self, db: &impl HirDatabase) -> Ty { 358 pub fn ty(self, db: &impl HirDatabase) -> Type {
357 db.ty(self.id.into()) 359 Type::from_def(db, self.id.module(db).krate, self.id)
358 } 360 }
359 361
360 pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty { 362 pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty {
@@ -380,8 +382,8 @@ impl Union {
380 Module { id: self.id.module(db) } 382 Module { id: self.id.module(db) }
381 } 383 }
382 384
383 pub fn ty(self, db: &impl HirDatabase) -> Ty { 385 pub fn ty(self, db: &impl HirDatabase) -> Type {
384 db.ty(self.id.into()) 386 Type::from_def(db, self.id.module(db).krate, self.id)
385 } 387 }
386 388
387 pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> { 389 pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
@@ -441,8 +443,8 @@ impl Enum {
441 .map(|(id, _)| EnumVariant { parent: self, id }) 443 .map(|(id, _)| EnumVariant { parent: self, id })
442 } 444 }
443 445
444 pub fn ty(self, db: &impl HirDatabase) -> Ty { 446 pub fn ty(self, db: &impl HirDatabase) -> Type {
445 db.ty(self.id.into()) 447 Type::from_def(db, self.id.module(db).krate, self.id)
446 } 448 }
447} 449}
448 450
@@ -640,7 +642,7 @@ impl Function {
640 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) { 642 pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
641 let infer = self.infer(db); 643 let infer = self.infer(db);
642 infer.add_diagnostics(db, self.id, sink); 644 infer.add_diagnostics(db, self.id, sink);
643 let mut validator = ExprValidator::new(self, infer, sink); 645 let mut validator = ExprValidator::new(self.id, infer, sink);
644 validator.validate_body(db); 646 validator.validate_body(db);
645 } 647 }
646} 648}
@@ -946,13 +948,12 @@ impl ImplBlock {
946 db.impl_data(self.id).target_type.clone() 948 db.impl_data(self.id).target_type.clone()
947 } 949 }
948 950
949 pub fn target_ty(&self, db: &impl HirDatabase) -> Ty { 951 pub fn target_ty(&self, db: &impl HirDatabase) -> Type {
950 Ty::from_hir(db, &self.id.resolver(db), &self.target_type(db)) 952 let impl_data = db.impl_data(self.id);
951 } 953 let resolver = self.id.resolver(db);
952 954 let environment = TraitEnvironment::lower(db, &resolver);
953 pub fn target_trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> { 955 let ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
954 let target_ty = self.target_ty(db); 956 Type { krate: self.id.module(db).krate, ty: InEnvironment { value: ty, environment } }
955 TraitRef::from_hir(db, &self.id.resolver(db), &self.target_trait(db)?, Some(target_ty))
956 } 957 }
957 958
958 pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> { 959 pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> {
@@ -1130,6 +1131,22 @@ impl Type {
1130 Some(adt.into()) 1131 Some(adt.into())
1131 } 1132 }
1132 1133
1134 // FIXME: provide required accessors such that it becomes implementable from outside.
1135 pub fn is_equal_for_find_impls(&self, other: &Type) -> bool {
1136 match (&self.ty.value, &other.ty.value) {
1137 (Ty::Apply(a_original_ty), Ty::Apply(ty::ApplicationTy { ctor, parameters })) => {
1138 match ctor {
1139 TypeCtor::Ref(..) => match parameters.as_single() {
1140 Ty::Apply(a_ty) => a_original_ty.ctor == a_ty.ctor,
1141 _ => false,
1142 },
1143 _ => a_original_ty.ctor == *ctor,
1144 }
1145 }
1146 _ => false,
1147 }
1148 }
1149
1133 fn derived(&self, ty: Ty) -> Type { 1150 fn derived(&self, ty: Ty) -> Type {
1134 Type { 1151 Type {
1135 krate: self.krate, 1152 krate: self.krate,
diff --git a/crates/ra_hir/src/db.rs b/crates/ra_hir/src/db.rs
index e192c8f47..bfae3660b 100644
--- a/crates/ra_hir/src/db.rs
+++ b/crates/ra_hir/src/db.rs
@@ -1,18 +1,5 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2 2
3use std::sync::Arc;
4
5use hir_def::{DefWithBodyId, GenericDefId, ImplId, LocalStructFieldId, TraitId, VariantId};
6use ra_arena::map::ArenaMap;
7use ra_db::{salsa, CrateId};
8
9use crate::ty::{
10 method_resolution::CrateImplBlocks,
11 traits::{AssocTyValue, Impl},
12 CallableDef, FnSig, GenericPredicate, InferenceResult, Substs, Ty, TyDefId, TypeCtor,
13 ValueTyDefId,
14};
15
16pub use hir_def::db::{ 3pub use hir_def::db::{
17 BodyQuery, BodyWithSourceMapQuery, ConstDataQuery, CrateDefMapQuery, CrateLangItemsQuery, 4 BodyQuery, BodyWithSourceMapQuery, ConstDataQuery, CrateDefMapQuery, CrateLangItemsQuery,
18 DefDatabase, DefDatabaseStorage, DocumentationQuery, EnumDataQuery, ExprScopesQuery, 5 DefDatabase, DefDatabaseStorage, DocumentationQuery, EnumDataQuery, ExprScopesQuery,
@@ -24,104 +11,12 @@ pub use hir_expand::db::{
24 AstDatabase, AstDatabaseStorage, AstIdMapQuery, MacroArgQuery, MacroDefQuery, MacroExpandQuery, 11 AstDatabase, AstDatabaseStorage, AstIdMapQuery, MacroArgQuery, MacroDefQuery, MacroExpandQuery,
25 ParseMacroQuery, 12 ParseMacroQuery,
26}; 13};
27 14pub use hir_ty::db::{
28#[salsa::query_group(HirDatabaseStorage)] 15 AssociatedTyDataQuery, CallableItemSignatureQuery, FieldTypesQuery, GenericDefaultsQuery,
29#[salsa::requires(salsa::Database)] 16 GenericPredicatesQuery, HirDatabase, HirDatabaseStorage, ImplDatumQuery, ImplsForTraitQuery,
30pub trait HirDatabase: DefDatabase { 17 ImplsInCrateQuery, InferQuery, StructDatumQuery, TraitDatumQuery, TraitSolveQuery, TyQuery,
31 #[salsa::invoke(crate::ty::infer_query)] 18 ValueTyQuery,
32 fn infer(&self, def: DefWithBodyId) -> Arc<InferenceResult>; 19};
33
34 #[salsa::invoke(crate::ty::ty_query)]
35 fn ty(&self, def: TyDefId) -> Ty;
36
37 #[salsa::invoke(crate::ty::value_ty_query)]
38 fn value_ty(&self, def: ValueTyDefId) -> Ty;
39
40 #[salsa::invoke(crate::ty::field_types_query)]
41 fn field_types(&self, var: VariantId) -> Arc<ArenaMap<LocalStructFieldId, Ty>>;
42
43 #[salsa::invoke(crate::ty::callable_item_sig)]
44 fn callable_item_signature(&self, def: CallableDef) -> FnSig;
45
46 #[salsa::invoke(crate::ty::generic_predicates_for_param_query)]
47 fn generic_predicates_for_param(
48 &self,
49 def: GenericDefId,
50 param_idx: u32,
51 ) -> Arc<[GenericPredicate]>;
52
53 #[salsa::invoke(crate::ty::generic_predicates_query)]
54 fn generic_predicates(&self, def: GenericDefId) -> Arc<[GenericPredicate]>;
55
56 #[salsa::invoke(crate::ty::generic_defaults_query)]
57 fn generic_defaults(&self, def: GenericDefId) -> Substs;
58
59 #[salsa::invoke(crate::ty::method_resolution::CrateImplBlocks::impls_in_crate_query)]
60 fn impls_in_crate(&self, krate: CrateId) -> Arc<CrateImplBlocks>;
61
62 #[salsa::invoke(crate::ty::traits::impls_for_trait_query)]
63 fn impls_for_trait(&self, krate: CrateId, trait_: TraitId) -> Arc<[ImplId]>;
64
65 /// This provides the Chalk trait solver instance. Because Chalk always
66 /// works from a specific crate, this query is keyed on the crate; and
67 /// because Chalk does its own internal caching, the solver is wrapped in a
68 /// Mutex and the query does an untracked read internally, to make sure the
69 /// cached state is thrown away when input facts change.
70 #[salsa::invoke(crate::ty::traits::trait_solver_query)]
71 fn trait_solver(&self, krate: CrateId) -> crate::ty::traits::TraitSolver;
72
73 // Interned IDs for Chalk integration
74 #[salsa::interned]
75 fn intern_type_ctor(&self, type_ctor: TypeCtor) -> crate::ty::TypeCtorId;
76 #[salsa::interned]
77 fn intern_chalk_impl(&self, impl_: Impl) -> crate::ty::traits::GlobalImplId;
78 #[salsa::interned]
79 fn intern_assoc_ty_value(
80 &self,
81 assoc_ty_value: AssocTyValue,
82 ) -> crate::ty::traits::AssocTyValueId;
83
84 #[salsa::invoke(crate::ty::traits::chalk::associated_ty_data_query)]
85 fn associated_ty_data(
86 &self,
87 id: chalk_ir::TypeId,
88 ) -> Arc<chalk_rust_ir::AssociatedTyDatum<chalk_ir::family::ChalkIr>>;
89
90 #[salsa::invoke(crate::ty::traits::chalk::trait_datum_query)]
91 fn trait_datum(
92 &self,
93 krate: CrateId,
94 trait_id: chalk_ir::TraitId,
95 ) -> Arc<chalk_rust_ir::TraitDatum<chalk_ir::family::ChalkIr>>;
96
97 #[salsa::invoke(crate::ty::traits::chalk::struct_datum_query)]
98 fn struct_datum(
99 &self,
100 krate: CrateId,
101 struct_id: chalk_ir::StructId,
102 ) -> Arc<chalk_rust_ir::StructDatum<chalk_ir::family::ChalkIr>>;
103
104 #[salsa::invoke(crate::ty::traits::chalk::impl_datum_query)]
105 fn impl_datum(
106 &self,
107 krate: CrateId,
108 impl_id: chalk_ir::ImplId,
109 ) -> Arc<chalk_rust_ir::ImplDatum<chalk_ir::family::ChalkIr>>;
110
111 #[salsa::invoke(crate::ty::traits::chalk::associated_ty_value_query)]
112 fn associated_ty_value(
113 &self,
114 krate: CrateId,
115 id: chalk_rust_ir::AssociatedTyValueId,
116 ) -> Arc<chalk_rust_ir::AssociatedTyValue<chalk_ir::family::ChalkIr>>;
117
118 #[salsa::invoke(crate::ty::traits::trait_solve_query)]
119 fn trait_solve(
120 &self,
121 krate: CrateId,
122 goal: crate::ty::Canonical<crate::ty::InEnvironment<crate::ty::Obligation>>,
123 ) -> Option<crate::ty::traits::Solution>;
124}
125 20
126#[test] 21#[test]
127fn hir_database_is_object_safe() { 22fn hir_database_is_object_safe() {
diff --git a/crates/ra_hir/src/diagnostics.rs b/crates/ra_hir/src/diagnostics.rs
index 6db499e06..a9040ea3d 100644
--- a/crates/ra_hir/src/diagnostics.rs
+++ b/crates/ra_hir/src/diagnostics.rs
@@ -1,93 +1,4 @@
1//! FIXME: write short doc here 1//! FIXME: write short doc here
2
3use std::any::Any;
4
5use hir_expand::HirFileId;
6use ra_syntax::{ast, AstNode, AstPtr, SyntaxNodePtr};
7
8use crate::{db::AstDatabase, Name, Source};
9
10pub use hir_def::diagnostics::UnresolvedModule; 2pub use hir_def::diagnostics::UnresolvedModule;
11pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink}; 3pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink};
12 4pub use hir_ty::diagnostics::{MissingFields, MissingOkInTailExpr, NoSuchField};
13#[derive(Debug)]
14pub struct NoSuchField {
15 pub file: HirFileId,
16 pub field: AstPtr<ast::RecordField>,
17}
18
19impl Diagnostic for NoSuchField {
20 fn message(&self) -> String {
21 "no such field".to_string()
22 }
23
24 fn source(&self) -> Source<SyntaxNodePtr> {
25 Source { file_id: self.file, value: self.field.into() }
26 }
27
28 fn as_any(&self) -> &(dyn Any + Send + 'static) {
29 self
30 }
31}
32
33#[derive(Debug)]
34pub struct MissingFields {
35 pub file: HirFileId,
36 pub field_list: AstPtr<ast::RecordFieldList>,
37 pub missed_fields: Vec<Name>,
38}
39
40impl Diagnostic for MissingFields {
41 fn message(&self) -> String {
42 use std::fmt::Write;
43 let mut message = String::from("Missing structure fields:\n");
44 for field in &self.missed_fields {
45 write!(message, "- {}\n", field).unwrap();
46 }
47 message
48 }
49 fn source(&self) -> Source<SyntaxNodePtr> {
50 Source { file_id: self.file, value: self.field_list.into() }
51 }
52 fn as_any(&self) -> &(dyn Any + Send + 'static) {
53 self
54 }
55}
56
57impl AstDiagnostic for MissingFields {
58 type AST = ast::RecordFieldList;
59
60 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
61 let root = db.parse_or_expand(self.source().file_id).unwrap();
62 let node = self.source().value.to_node(&root);
63 ast::RecordFieldList::cast(node).unwrap()
64 }
65}
66
67#[derive(Debug)]
68pub struct MissingOkInTailExpr {
69 pub file: HirFileId,
70 pub expr: AstPtr<ast::Expr>,
71}
72
73impl Diagnostic for MissingOkInTailExpr {
74 fn message(&self) -> String {
75 "wrap return expression in Ok".to_string()
76 }
77 fn source(&self) -> Source<SyntaxNodePtr> {
78 Source { file_id: self.file, value: self.expr.into() }
79 }
80 fn as_any(&self) -> &(dyn Any + Send + 'static) {
81 self
82 }
83}
84
85impl AstDiagnostic for MissingOkInTailExpr {
86 type AST = ast::Expr;
87
88 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
89 let root = db.parse_or_expand(self.file).unwrap();
90 let node = self.source().value.to_node(&root);
91 ast::Expr::cast(node).unwrap()
92 }
93}
diff --git a/crates/ra_hir/src/expr.rs b/crates/ra_hir/src/expr.rs
deleted file mode 100644
index 5c82c23d6..000000000
--- a/crates/ra_hir/src/expr.rs
+++ /dev/null
@@ -1,146 +0,0 @@
1//! FIXME: write short doc here
2
3use std::sync::Arc;
4
5use hir_def::{path::known, resolver::HasResolver, AdtId};
6use hir_expand::diagnostics::DiagnosticSink;
7use ra_syntax::ast;
8use ra_syntax::AstPtr;
9use rustc_hash::FxHashSet;
10
11use crate::{
12 db::HirDatabase,
13 diagnostics::{MissingFields, MissingOkInTailExpr},
14 ty::{ApplicationTy, InferenceResult, Ty, TypeCtor},
15 Function, Name, Path, Struct,
16};
17
18pub use hir_def::{
19 body::{
20 scope::{ExprScopes, ScopeEntry, ScopeId},
21 Body, BodySourceMap, ExprPtr, ExprSource, PatPtr, PatSource,
22 },
23 expr::{
24 ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
25 MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp,
26 },
27};
28
29pub(crate) struct ExprValidator<'a, 'b: 'a> {
30 func: Function,
31 infer: Arc<InferenceResult>,
32 sink: &'a mut DiagnosticSink<'b>,
33}
34
35impl<'a, 'b> ExprValidator<'a, 'b> {
36 pub(crate) fn new(
37 func: Function,
38 infer: Arc<InferenceResult>,
39 sink: &'a mut DiagnosticSink<'b>,
40 ) -> ExprValidator<'a, 'b> {
41 ExprValidator { func, infer, sink }
42 }
43
44 pub(crate) fn validate_body(&mut self, db: &impl HirDatabase) {
45 let body = self.func.body(db);
46
47 for e in body.exprs.iter() {
48 if let (id, Expr::RecordLit { path, fields, spread }) = e {
49 self.validate_record_literal(id, path, fields, *spread, db);
50 }
51 }
52
53 let body_expr = &body[body.body_expr];
54 if let Expr::Block { statements: _, tail: Some(t) } = body_expr {
55 self.validate_results_in_tail_expr(body.body_expr, *t, db);
56 }
57 }
58
59 fn validate_record_literal(
60 &mut self,
61 id: ExprId,
62 _path: &Option<Path>,
63 fields: &[RecordLitField],
64 spread: Option<ExprId>,
65 db: &impl HirDatabase,
66 ) {
67 if spread.is_some() {
68 return;
69 }
70
71 let struct_def = match self.infer[id].as_adt() {
72 Some((AdtId::StructId(s), _)) => Struct::from(s),
73 _ => return,
74 };
75
76 let lit_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect();
77 let missed_fields: Vec<Name> = struct_def
78 .fields(db)
79 .iter()
80 .filter_map(|f| {
81 let name = f.name(db);
82 if lit_fields.contains(&name) {
83 None
84 } else {
85 Some(name)
86 }
87 })
88 .collect();
89 if missed_fields.is_empty() {
90 return;
91 }
92 let source_map = self.func.body_source_map(db);
93
94 if let Some(source_ptr) = source_map.expr_syntax(id) {
95 if let Some(expr) = source_ptr.value.a() {
96 let root = source_ptr.file_syntax(db);
97 if let ast::Expr::RecordLit(record_lit) = expr.to_node(&root) {
98 if let Some(field_list) = record_lit.record_field_list() {
99 self.sink.push(MissingFields {
100 file: source_ptr.file_id,
101 field_list: AstPtr::new(&field_list),
102 missed_fields,
103 })
104 }
105 }
106 }
107 }
108 }
109
110 fn validate_results_in_tail_expr(
111 &mut self,
112 body_id: ExprId,
113 id: ExprId,
114 db: &impl HirDatabase,
115 ) {
116 // the mismatch will be on the whole block currently
117 let mismatch = match self.infer.type_mismatch_for_expr(body_id) {
118 Some(m) => m,
119 None => return,
120 };
121
122 let std_result_path = known::std_result_result();
123
124 let resolver = self.func.id.resolver(db);
125 let std_result_enum = match resolver.resolve_known_enum(db, &std_result_path) {
126 Some(it) => it,
127 _ => return,
128 };
129
130 let std_result_ctor = TypeCtor::Adt(AdtId::EnumId(std_result_enum));
131 let params = match &mismatch.expected {
132 Ty::Apply(ApplicationTy { ctor, parameters }) if ctor == &std_result_ctor => parameters,
133 _ => return,
134 };
135
136 if params.len() == 2 && &params[0] == &mismatch.actual {
137 let source_map = self.func.body_source_map(db);
138
139 if let Some(source_ptr) = source_map.expr_syntax(id) {
140 if let Some(expr) = source_ptr.value.a() {
141 self.sink.push(MissingOkInTailExpr { file: source_ptr.file_id, expr });
142 }
143 }
144 }
145 }
146}
diff --git a/crates/ra_hir/src/lib.rs b/crates/ra_hir/src/lib.rs
index b88e4c745..3c12c61f0 100644
--- a/crates/ra_hir/src/lib.rs
+++ b/crates/ra_hir/src/lib.rs
@@ -32,20 +32,13 @@ pub mod db;
32pub mod source_binder; 32pub mod source_binder;
33 33
34mod ty; 34mod ty;
35mod expr;
36pub mod diagnostics; 35pub mod diagnostics;
37mod util;
38 36
39mod from_id; 37mod from_id;
40mod code_model; 38mod code_model;
41 39
42pub mod from_source; 40pub mod from_source;
43 41
44#[cfg(test)]
45mod test_db;
46#[cfg(test)]
47mod marks;
48
49pub use crate::{ 42pub use crate::{
50 code_model::{ 43 code_model::{
51 src::HasSource, Adt, AssocItem, AttrDef, Const, Container, Crate, CrateDependency, 44 src::HasSource, Adt, AssocItem, AttrDef, Const, Container, Crate, CrateDependency,
@@ -53,7 +46,6 @@ pub use crate::{
53 HasAttrs, ImplBlock, Import, Local, MacroDef, Module, ModuleDef, ModuleSource, ScopeDef, 46 HasAttrs, ImplBlock, Import, Local, MacroDef, Module, ModuleDef, ModuleSource, ScopeDef,
54 Static, Struct, StructField, Trait, Type, TypeAlias, Union, VariantDef, 47 Static, Struct, StructField, Trait, Type, TypeAlias, Union, VariantDef,
55 }, 48 },
56 expr::ExprScopes,
57 from_source::FromSource, 49 from_source::FromSource,
58 source_binder::{PathResolution, ScopeEntryWithSyntax, SourceAnalyzer}, 50 source_binder::{PathResolution, ScopeEntryWithSyntax, SourceAnalyzer},
59 ty::{ 51 ty::{
@@ -64,6 +56,7 @@ pub use crate::{
64}; 56};
65 57
66pub use hir_def::{ 58pub use hir_def::{
59 body::scope::ExprScopes,
67 builtin_type::BuiltinType, 60 builtin_type::BuiltinType,
68 docs::Documentation, 61 docs::Documentation,
69 path::{Path, PathKind}, 62 path::{Path, PathKind},
diff --git a/crates/ra_hir/src/marks.rs b/crates/ra_hir/src/marks.rs
deleted file mode 100644
index 0f754eb9c..000000000
--- a/crates/ra_hir/src/marks.rs
+++ /dev/null
@@ -1,9 +0,0 @@
1//! See test_utils/src/marks.rs
2
3test_utils::marks!(
4 type_var_cycles_resolve_completely
5 type_var_cycles_resolve_as_possible
6 type_var_resolves_to_int_var
7 match_ergonomics_ref
8 coerce_merge_fail_fallback
9);
diff --git a/crates/ra_hir/src/source_binder.rs b/crates/ra_hir/src/source_binder.rs
index 05f5bca57..76c493f1a 100644
--- a/crates/ra_hir/src/source_binder.rs
+++ b/crates/ra_hir/src/source_binder.rs
@@ -8,6 +8,10 @@
8use std::sync::Arc; 8use std::sync::Arc;
9 9
10use hir_def::{ 10use hir_def::{
11 body::{
12 scope::{ExprScopes, ScopeId},
13 BodySourceMap,
14 },
11 expr::{ExprId, PatId}, 15 expr::{ExprId, PatId},
12 path::known, 16 path::known,
13 resolver::{self, resolver_for_scope, HasResolver, Resolver, TypeNs, ValueNs}, 17 resolver::{self, resolver_for_scope, HasResolver, Resolver, TypeNs, ValueNs},
@@ -25,7 +29,6 @@ use ra_syntax::{
25 29
26use crate::{ 30use crate::{
27 db::HirDatabase, 31 db::HirDatabase,
28 expr::{BodySourceMap, ExprScopes, ScopeId},
29 ty::{ 32 ty::{
30 method_resolution::{self, implements_trait}, 33 method_resolution::{self, implements_trait},
31 InEnvironment, TraitEnvironment, Ty, 34 InEnvironment, TraitEnvironment, Ty,
@@ -91,7 +94,7 @@ pub struct SourceAnalyzer {
91 body_owner: Option<DefWithBody>, 94 body_owner: Option<DefWithBody>,
92 body_source_map: Option<Arc<BodySourceMap>>, 95 body_source_map: Option<Arc<BodySourceMap>>,
93 infer: Option<Arc<crate::ty::InferenceResult>>, 96 infer: Option<Arc<crate::ty::InferenceResult>>,
94 scopes: Option<Arc<crate::expr::ExprScopes>>, 97 scopes: Option<Arc<ExprScopes>>,
95} 98}
96 99
97#[derive(Debug, Clone, PartialEq, Eq)] 100#[derive(Debug, Clone, PartialEq, Eq)]
@@ -455,21 +458,6 @@ impl SourceAnalyzer {
455 macro_file_kind: to_macro_file_kind(macro_call.value), 458 macro_file_kind: to_macro_file_kind(macro_call.value),
456 }) 459 })
457 } 460 }
458
459 #[cfg(test)]
460 pub(crate) fn body_source_map(&self) -> Arc<BodySourceMap> {
461 self.body_source_map.clone().unwrap()
462 }
463
464 #[cfg(test)]
465 pub(crate) fn inference_result(&self) -> Arc<crate::ty::InferenceResult> {
466 self.infer.clone().unwrap()
467 }
468
469 #[cfg(test)]
470 pub(crate) fn analyzed_declaration(&self) -> Option<DefWithBody> {
471 self.body_owner
472 }
473} 461}
474 462
475fn scope_for( 463fn scope_for(
diff --git a/crates/ra_hir/src/test_db.rs b/crates/ra_hir/src/test_db.rs
deleted file mode 100644
index a2071f71c..000000000
--- a/crates/ra_hir/src/test_db.rs
+++ /dev/null
@@ -1,123 +0,0 @@
1//! Database used for testing `hir`.
2
3use std::{panic, sync::Arc};
4
5use hir_def::{db::DefDatabase, ModuleId};
6use hir_expand::diagnostics::DiagnosticSink;
7use parking_lot::Mutex;
8use ra_db::{salsa, CrateId, FileId, FileLoader, FileLoaderDelegate, RelativePath, SourceDatabase};
9
10use crate::{db, debug::HirDebugHelper};
11
12#[salsa::database(
13 ra_db::SourceDatabaseExtStorage,
14 ra_db::SourceDatabaseStorage,
15 db::InternDatabaseStorage,
16 db::AstDatabaseStorage,
17 db::DefDatabaseStorage,
18 db::HirDatabaseStorage
19)]
20#[derive(Debug, Default)]
21pub struct TestDB {
22 events: Mutex<Option<Vec<salsa::Event<TestDB>>>>,
23 runtime: salsa::Runtime<TestDB>,
24}
25
26impl salsa::Database for TestDB {
27 fn salsa_runtime(&self) -> &salsa::Runtime<TestDB> {
28 &self.runtime
29 }
30
31 fn salsa_runtime_mut(&mut self) -> &mut salsa::Runtime<Self> {
32 &mut self.runtime
33 }
34
35 fn salsa_event(&self, event: impl Fn() -> salsa::Event<TestDB>) {
36 let mut events = self.events.lock();
37 if let Some(events) = &mut *events {
38 events.push(event());
39 }
40 }
41}
42
43impl salsa::ParallelDatabase for TestDB {
44 fn snapshot(&self) -> salsa::Snapshot<TestDB> {
45 salsa::Snapshot::new(TestDB {
46 events: Default::default(),
47 runtime: self.runtime.snapshot(self),
48 })
49 }
50}
51
52impl panic::RefUnwindSafe for TestDB {}
53
54impl FileLoader for TestDB {
55 fn file_text(&self, file_id: FileId) -> Arc<String> {
56 FileLoaderDelegate(self).file_text(file_id)
57 }
58 fn resolve_relative_path(
59 &self,
60 anchor: FileId,
61 relative_path: &RelativePath,
62 ) -> Option<FileId> {
63 FileLoaderDelegate(self).resolve_relative_path(anchor, relative_path)
64 }
65 fn relevant_crates(&self, file_id: FileId) -> Arc<Vec<CrateId>> {
66 FileLoaderDelegate(self).relevant_crates(file_id)
67 }
68}
69
70// FIXME: improve `WithFixture` to bring useful hir debugging back
71impl HirDebugHelper for TestDB {
72 fn crate_name(&self, _krate: CrateId) -> Option<String> {
73 None
74 }
75
76 fn file_path(&self, _file_id: FileId) -> Option<String> {
77 None
78 }
79}
80
81impl TestDB {
82 pub fn diagnostics(&self) -> String {
83 let mut buf = String::new();
84 let crate_graph = self.crate_graph();
85 for krate in crate_graph.iter().next() {
86 let crate_def_map = self.crate_def_map(krate);
87 for (module_id, _) in crate_def_map.modules.iter() {
88 let module_id = ModuleId { krate, module_id };
89 let module = crate::Module::from(module_id);
90 module.diagnostics(
91 self,
92 &mut DiagnosticSink::new(|d| {
93 buf += &format!("{:?}: {}\n", d.syntax_node(self).text(), d.message());
94 }),
95 )
96 }
97 }
98 buf
99 }
100}
101
102impl TestDB {
103 pub fn log(&self, f: impl FnOnce()) -> Vec<salsa::Event<TestDB>> {
104 *self.events.lock() = Some(Vec::new());
105 f();
106 self.events.lock().take().unwrap()
107 }
108
109 pub fn log_executed(&self, f: impl FnOnce()) -> Vec<String> {
110 let events = self.log(f);
111 events
112 .into_iter()
113 .filter_map(|e| match e.kind {
114 // This pretty horrible, but `Debug` is the only way to inspect
115 // QueryDescriptor at the moment.
116 salsa::EventKind::WillExecute { database_key } => {
117 Some(format!("{:?}", database_key))
118 }
119 _ => None,
120 })
121 .collect()
122 }
123}
diff --git a/crates/ra_hir/src/ty.rs b/crates/ra_hir/src/ty.rs
index e4ba8afa6..4ed69c00d 100644
--- a/crates/ra_hir/src/ty.rs
+++ b/crates/ra_hir/src/ty.rs
@@ -1,1113 +1,4 @@
1//! The type system. We currently use this to infer types for completion, hover 1//! The type system. We currently use this to infer types for completion, hover
2//! information and various assists. 2//! information and various assists.
3 3
4mod autoderef; 4pub use hir_ty::*;
5pub(crate) mod primitive;
6pub(crate) mod traits;
7pub(crate) mod method_resolution;
8mod op;
9mod lower;
10mod infer;
11pub(crate) mod display;
12pub(crate) mod utils;
13
14#[cfg(test)]
15mod tests;
16
17use std::ops::Deref;
18use std::sync::Arc;
19use std::{fmt, iter, mem};
20
21use hir_def::{
22 expr::ExprId, generics::GenericParams, type_ref::Mutability, AdtId, ContainerId, DefWithBodyId,
23 GenericDefId, HasModule, Lookup, TraitId, TypeAliasId,
24};
25use hir_expand::name::Name;
26use ra_db::{impl_intern_key, salsa, CrateId};
27
28use crate::{
29 db::HirDatabase,
30 ty::primitive::{FloatTy, IntTy, Uncertain},
31 util::make_mut_slice,
32};
33use display::{HirDisplay, HirFormatter};
34
35pub(crate) use autoderef::autoderef;
36pub(crate) use infer::{infer_query, InferTy, InferenceResult};
37pub use lower::CallableDef;
38pub(crate) use lower::{
39 callable_item_sig, field_types_query, generic_defaults_query,
40 generic_predicates_for_param_query, generic_predicates_query, ty_query, value_ty_query,
41 TyDefId, ValueTyDefId,
42};
43pub(crate) use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
44
45/// A type constructor or type name: this might be something like the primitive
46/// type `bool`, a struct like `Vec`, or things like function pointers or
47/// tuples.
48#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
49pub enum TypeCtor {
50 /// The primitive boolean type. Written as `bool`.
51 Bool,
52
53 /// The primitive character type; holds a Unicode scalar value
54 /// (a non-surrogate code point). Written as `char`.
55 Char,
56
57 /// A primitive integer type. For example, `i32`.
58 Int(Uncertain<IntTy>),
59
60 /// A primitive floating-point type. For example, `f64`.
61 Float(Uncertain<FloatTy>),
62
63 /// Structures, enumerations and unions.
64 Adt(AdtId),
65
66 /// The pointee of a string slice. Written as `str`.
67 Str,
68
69 /// The pointee of an array slice. Written as `[T]`.
70 Slice,
71
72 /// An array with the given length. Written as `[T; n]`.
73 Array,
74
75 /// A raw pointer. Written as `*mut T` or `*const T`
76 RawPtr(Mutability),
77
78 /// A reference; a pointer with an associated lifetime. Written as
79 /// `&'a mut T` or `&'a T`.
80 Ref(Mutability),
81
82 /// The anonymous type of a function declaration/definition. Each
83 /// function has a unique type, which is output (for a function
84 /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
85 ///
86 /// This includes tuple struct / enum variant constructors as well.
87 ///
88 /// For example the type of `bar` here:
89 ///
90 /// ```
91 /// fn foo() -> i32 { 1 }
92 /// let bar = foo; // bar: fn() -> i32 {foo}
93 /// ```
94 FnDef(CallableDef),
95
96 /// A pointer to a function. Written as `fn() -> i32`.
97 ///
98 /// For example the type of `bar` here:
99 ///
100 /// ```
101 /// fn foo() -> i32 { 1 }
102 /// let bar: fn() -> i32 = foo;
103 /// ```
104 FnPtr { num_args: u16 },
105
106 /// The never type `!`.
107 Never,
108
109 /// A tuple type. For example, `(i32, bool)`.
110 Tuple { cardinality: u16 },
111
112 /// Represents an associated item like `Iterator::Item`. This is used
113 /// when we have tried to normalize a projection like `T::Item` but
114 /// couldn't find a better representation. In that case, we generate
115 /// an **application type** like `(Iterator::Item)<T>`.
116 AssociatedType(TypeAliasId),
117
118 /// The type of a specific closure.
119 ///
120 /// The closure signature is stored in a `FnPtr` type in the first type
121 /// parameter.
122 Closure { def: DefWithBodyId, expr: ExprId },
123}
124
125/// This exists just for Chalk, because Chalk just has a single `StructId` where
126/// we have different kinds of ADTs, primitive types and special type
127/// constructors like tuples and function pointers.
128#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
129pub struct TypeCtorId(salsa::InternId);
130impl_intern_key!(TypeCtorId);
131
132impl TypeCtor {
133 pub fn num_ty_params(self, db: &impl HirDatabase) -> usize {
134 match self {
135 TypeCtor::Bool
136 | TypeCtor::Char
137 | TypeCtor::Int(_)
138 | TypeCtor::Float(_)
139 | TypeCtor::Str
140 | TypeCtor::Never => 0,
141 TypeCtor::Slice
142 | TypeCtor::Array
143 | TypeCtor::RawPtr(_)
144 | TypeCtor::Ref(_)
145 | TypeCtor::Closure { .. } // 1 param representing the signature of the closure
146 => 1,
147 TypeCtor::Adt(adt) => {
148 let generic_params = db.generic_params(AdtId::from(adt).into());
149 generic_params.count_params_including_parent()
150 }
151 TypeCtor::FnDef(callable) => {
152 let generic_params = db.generic_params(callable.into());
153 generic_params.count_params_including_parent()
154 }
155 TypeCtor::AssociatedType(type_alias) => {
156 let generic_params = db.generic_params(type_alias.into());
157 generic_params.count_params_including_parent()
158 }
159 TypeCtor::FnPtr { num_args } => num_args as usize + 1,
160 TypeCtor::Tuple { cardinality } => cardinality as usize,
161 }
162 }
163
164 pub fn krate(self, db: &impl HirDatabase) -> Option<CrateId> {
165 match self {
166 TypeCtor::Bool
167 | TypeCtor::Char
168 | TypeCtor::Int(_)
169 | TypeCtor::Float(_)
170 | TypeCtor::Str
171 | TypeCtor::Never
172 | TypeCtor::Slice
173 | TypeCtor::Array
174 | TypeCtor::RawPtr(_)
175 | TypeCtor::Ref(_)
176 | TypeCtor::FnPtr { .. }
177 | TypeCtor::Tuple { .. } => None,
178 // Closure's krate is irrelevant for coherence I would think?
179 TypeCtor::Closure { .. } => None,
180 TypeCtor::Adt(adt) => Some(adt.module(db).krate),
181 TypeCtor::FnDef(callable) => Some(callable.krate(db)),
182 TypeCtor::AssociatedType(type_alias) => Some(type_alias.lookup(db).module(db).krate),
183 }
184 }
185
186 pub fn as_generic_def(self) -> Option<GenericDefId> {
187 match self {
188 TypeCtor::Bool
189 | TypeCtor::Char
190 | TypeCtor::Int(_)
191 | TypeCtor::Float(_)
192 | TypeCtor::Str
193 | TypeCtor::Never
194 | TypeCtor::Slice
195 | TypeCtor::Array
196 | TypeCtor::RawPtr(_)
197 | TypeCtor::Ref(_)
198 | TypeCtor::FnPtr { .. }
199 | TypeCtor::Tuple { .. }
200 | TypeCtor::Closure { .. } => None,
201 TypeCtor::Adt(adt) => Some(adt.into()),
202 TypeCtor::FnDef(callable) => Some(callable.into()),
203 TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
204 }
205 }
206}
207
208/// A nominal type with (maybe 0) type parameters. This might be a primitive
209/// type like `bool`, a struct, tuple, function pointer, reference or
210/// several other things.
211#[derive(Clone, PartialEq, Eq, Debug, Hash)]
212pub struct ApplicationTy {
213 pub ctor: TypeCtor,
214 pub parameters: Substs,
215}
216
217/// A "projection" type corresponds to an (unnormalized)
218/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
219/// trait and all its parameters are fully known.
220#[derive(Clone, PartialEq, Eq, Debug, Hash)]
221pub struct ProjectionTy {
222 pub associated_ty: TypeAliasId,
223 pub parameters: Substs,
224}
225
226impl ProjectionTy {
227 pub fn trait_ref(&self, db: &impl HirDatabase) -> TraitRef {
228 TraitRef { trait_: self.trait_(db).into(), substs: self.parameters.clone() }
229 }
230
231 fn trait_(&self, db: &impl HirDatabase) -> TraitId {
232 match self.associated_ty.lookup(db).container {
233 ContainerId::TraitId(it) => it,
234 _ => panic!("projection ty without parent trait"),
235 }
236 }
237}
238
239impl TypeWalk for ProjectionTy {
240 fn walk(&self, f: &mut impl FnMut(&Ty)) {
241 self.parameters.walk(f);
242 }
243
244 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
245 self.parameters.walk_mut_binders(f, binders);
246 }
247}
248
249/// A type.
250///
251/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
252/// the same thing (but in a different way).
253///
254/// This should be cheap to clone.
255#[derive(Clone, PartialEq, Eq, Debug, Hash)]
256pub enum Ty {
257 /// A nominal type with (maybe 0) type parameters. This might be a primitive
258 /// type like `bool`, a struct, tuple, function pointer, reference or
259 /// several other things.
260 Apply(ApplicationTy),
261
262 /// A "projection" type corresponds to an (unnormalized)
263 /// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
264 /// trait and all its parameters are fully known.
265 Projection(ProjectionTy),
266
267 /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
268 Param {
269 /// The index of the parameter (starting with parameters from the
270 /// surrounding impl, then the current function).
271 idx: u32,
272 /// The name of the parameter, for displaying.
273 // FIXME get rid of this
274 name: Name,
275 },
276
277 /// A bound type variable. Used during trait resolution to represent Chalk
278 /// variables, and in `Dyn` and `Opaque` bounds to represent the `Self` type.
279 Bound(u32),
280
281 /// A type variable used during type checking. Not to be confused with a
282 /// type parameter.
283 Infer(InferTy),
284
285 /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
286 ///
287 /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
288 /// represents the `Self` type inside the bounds. This is currently
289 /// implicit; Chalk has the `Binders` struct to make it explicit, but it
290 /// didn't seem worth the overhead yet.
291 Dyn(Arc<[GenericPredicate]>),
292
293 /// An opaque type (`impl Trait`).
294 ///
295 /// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
296 /// more.
297 Opaque(Arc<[GenericPredicate]>),
298
299 /// A placeholder for a type which could not be computed; this is propagated
300 /// to avoid useless error messages. Doubles as a placeholder where type
301 /// variables are inserted before type checking, since we want to try to
302 /// infer a better type here anyway -- for the IDE use case, we want to try
303 /// to infer as much as possible even in the presence of type errors.
304 Unknown,
305}
306
307/// A list of substitutions for generic parameters.
308#[derive(Clone, PartialEq, Eq, Debug, Hash)]
309pub struct Substs(Arc<[Ty]>);
310
311impl TypeWalk for Substs {
312 fn walk(&self, f: &mut impl FnMut(&Ty)) {
313 for t in self.0.iter() {
314 t.walk(f);
315 }
316 }
317
318 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
319 for t in make_mut_slice(&mut self.0) {
320 t.walk_mut_binders(f, binders);
321 }
322 }
323}
324
325impl Substs {
326 pub fn empty() -> Substs {
327 Substs(Arc::new([]))
328 }
329
330 pub fn single(ty: Ty) -> Substs {
331 Substs(Arc::new([ty]))
332 }
333
334 pub fn prefix(&self, n: usize) -> Substs {
335 Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
336 }
337
338 pub fn as_single(&self) -> &Ty {
339 if self.0.len() != 1 {
340 panic!("expected substs of len 1, got {:?}", self);
341 }
342 &self.0[0]
343 }
344
345 /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
346 pub fn identity(generic_params: &GenericParams) -> Substs {
347 Substs(
348 generic_params
349 .params_including_parent()
350 .into_iter()
351 .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() })
352 .collect(),
353 )
354 }
355
356 /// Return Substs that replace each parameter by a bound variable.
357 pub fn bound_vars(generic_params: &GenericParams) -> Substs {
358 Substs(
359 generic_params
360 .params_including_parent()
361 .into_iter()
362 .map(|p| Ty::Bound(p.idx))
363 .collect(),
364 )
365 }
366
367 pub fn build_for_def(db: &impl HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
368 let def = def.into();
369 let params = db.generic_params(def);
370 let param_count = params.count_params_including_parent();
371 Substs::builder(param_count)
372 }
373
374 pub fn build_for_generics(generic_params: &GenericParams) -> SubstsBuilder {
375 Substs::builder(generic_params.count_params_including_parent())
376 }
377
378 pub fn build_for_type_ctor(db: &impl HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
379 Substs::builder(type_ctor.num_ty_params(db))
380 }
381
382 fn builder(param_count: usize) -> SubstsBuilder {
383 SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
384 }
385}
386
387#[derive(Debug, Clone)]
388pub struct SubstsBuilder {
389 vec: Vec<Ty>,
390 param_count: usize,
391}
392
393impl SubstsBuilder {
394 pub fn build(self) -> Substs {
395 assert_eq!(self.vec.len(), self.param_count);
396 Substs(self.vec.into())
397 }
398
399 pub fn push(mut self, ty: Ty) -> Self {
400 self.vec.push(ty);
401 self
402 }
403
404 fn remaining(&self) -> usize {
405 self.param_count - self.vec.len()
406 }
407
408 pub fn fill_with_bound_vars(self, starting_from: u32) -> Self {
409 self.fill((starting_from..).map(Ty::Bound))
410 }
411
412 pub fn fill_with_params(self) -> Self {
413 let start = self.vec.len() as u32;
414 self.fill((start..).map(|idx| Ty::Param { idx, name: Name::missing() }))
415 }
416
417 pub fn fill_with_unknown(self) -> Self {
418 self.fill(iter::repeat(Ty::Unknown))
419 }
420
421 pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
422 self.vec.extend(filler.take(self.remaining()));
423 assert_eq!(self.remaining(), 0);
424 self
425 }
426
427 pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
428 assert!(self.vec.is_empty());
429 assert!(parent_substs.len() <= self.param_count);
430 self.vec.extend(parent_substs.iter().cloned());
431 self
432 }
433}
434
435impl Deref for Substs {
436 type Target = [Ty];
437
438 fn deref(&self) -> &[Ty] {
439 &self.0
440 }
441}
442
443/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
444/// Name to be bikeshedded: TraitBound? TraitImplements?
445#[derive(Clone, PartialEq, Eq, Debug, Hash)]
446pub struct TraitRef {
447 /// FIXME name?
448 pub trait_: TraitId,
449 pub substs: Substs,
450}
451
452impl TraitRef {
453 pub fn self_ty(&self) -> &Ty {
454 &self.substs[0]
455 }
456}
457
458impl TypeWalk for TraitRef {
459 fn walk(&self, f: &mut impl FnMut(&Ty)) {
460 self.substs.walk(f);
461 }
462
463 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
464 self.substs.walk_mut_binders(f, binders);
465 }
466}
467
468/// Like `generics::WherePredicate`, but with resolved types: A condition on the
469/// parameters of a generic item.
470#[derive(Debug, Clone, PartialEq, Eq, Hash)]
471pub enum GenericPredicate {
472 /// The given trait needs to be implemented for its type parameters.
473 Implemented(TraitRef),
474 /// An associated type bindings like in `Iterator<Item = T>`.
475 Projection(ProjectionPredicate),
476 /// We couldn't resolve the trait reference. (If some type parameters can't
477 /// be resolved, they will just be Unknown).
478 Error,
479}
480
481impl GenericPredicate {
482 pub fn is_error(&self) -> bool {
483 match self {
484 GenericPredicate::Error => true,
485 _ => false,
486 }
487 }
488
489 pub fn is_implemented(&self) -> bool {
490 match self {
491 GenericPredicate::Implemented(_) => true,
492 _ => false,
493 }
494 }
495
496 pub fn trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> {
497 match self {
498 GenericPredicate::Implemented(tr) => Some(tr.clone()),
499 GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
500 GenericPredicate::Error => None,
501 }
502 }
503}
504
505impl TypeWalk for GenericPredicate {
506 fn walk(&self, f: &mut impl FnMut(&Ty)) {
507 match self {
508 GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
509 GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
510 GenericPredicate::Error => {}
511 }
512 }
513
514 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
515 match self {
516 GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
517 GenericPredicate::Projection(projection_pred) => {
518 projection_pred.walk_mut_binders(f, binders)
519 }
520 GenericPredicate::Error => {}
521 }
522 }
523}
524
525/// Basically a claim (currently not validated / checked) that the contained
526/// type / trait ref contains no inference variables; any inference variables it
527/// contained have been replaced by bound variables, and `num_vars` tells us how
528/// many there are. This is used to erase irrelevant differences between types
529/// before using them in queries.
530#[derive(Debug, Clone, PartialEq, Eq, Hash)]
531pub struct Canonical<T> {
532 pub value: T,
533 pub num_vars: usize,
534}
535
536/// A function signature as seen by type inference: Several parameter types and
537/// one return type.
538#[derive(Clone, PartialEq, Eq, Debug)]
539pub struct FnSig {
540 params_and_return: Arc<[Ty]>,
541}
542
543impl FnSig {
544 pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
545 params.push(ret);
546 FnSig { params_and_return: params.into() }
547 }
548
549 pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
550 FnSig { params_and_return: Arc::clone(&substs.0) }
551 }
552
553 pub fn params(&self) -> &[Ty] {
554 &self.params_and_return[0..self.params_and_return.len() - 1]
555 }
556
557 pub fn ret(&self) -> &Ty {
558 &self.params_and_return[self.params_and_return.len() - 1]
559 }
560}
561
562impl TypeWalk for FnSig {
563 fn walk(&self, f: &mut impl FnMut(&Ty)) {
564 for t in self.params_and_return.iter() {
565 t.walk(f);
566 }
567 }
568
569 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
570 for t in make_mut_slice(&mut self.params_and_return) {
571 t.walk_mut_binders(f, binders);
572 }
573 }
574}
575
576impl Ty {
577 pub fn simple(ctor: TypeCtor) -> Ty {
578 Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
579 }
580 pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
581 Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
582 }
583 pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
584 Ty::Apply(ApplicationTy { ctor, parameters })
585 }
586 pub fn unit() -> Self {
587 Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
588 }
589
590 pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
591 match self {
592 Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
593 Some((parameters.as_single(), *mutability))
594 }
595 _ => None,
596 }
597 }
598
599 pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
600 match self {
601 Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
602 Some((*adt_def, parameters))
603 }
604 _ => None,
605 }
606 }
607
608 pub fn as_tuple(&self) -> Option<&Substs> {
609 match self {
610 Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
611 Some(parameters)
612 }
613 _ => None,
614 }
615 }
616
617 pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
618 match self {
619 Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
620 Some((*callable_def, parameters))
621 }
622 _ => None,
623 }
624 }
625
626 fn builtin_deref(&self) -> Option<Ty> {
627 match self {
628 Ty::Apply(a_ty) => match a_ty.ctor {
629 TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
630 TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
631 _ => None,
632 },
633 _ => None,
634 }
635 }
636
637 fn callable_sig(&self, db: &impl HirDatabase) -> Option<FnSig> {
638 match self {
639 Ty::Apply(a_ty) => match a_ty.ctor {
640 TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
641 TypeCtor::FnDef(def) => {
642 let sig = db.callable_item_signature(def);
643 Some(sig.subst(&a_ty.parameters))
644 }
645 TypeCtor::Closure { .. } => {
646 let sig_param = &a_ty.parameters[0];
647 sig_param.callable_sig(db)
648 }
649 _ => None,
650 },
651 _ => None,
652 }
653 }
654
655 /// If this is a type with type parameters (an ADT or function), replaces
656 /// the `Substs` for these type parameters with the given ones. (So e.g. if
657 /// `self` is `Option<_>` and the substs contain `u32`, we'll have
658 /// `Option<u32>` afterwards.)
659 pub fn apply_substs(self, substs: Substs) -> Ty {
660 match self {
661 Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
662 assert_eq!(previous_substs.len(), substs.len());
663 Ty::Apply(ApplicationTy { ctor, parameters: substs })
664 }
665 _ => self,
666 }
667 }
668
669 /// Returns the type parameters of this type if it has some (i.e. is an ADT
670 /// or function); so if `self` is `Option<u32>`, this returns the `u32`.
671 pub fn substs(&self) -> Option<Substs> {
672 match self {
673 Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
674 _ => None,
675 }
676 }
677
678 /// If this is an `impl Trait` or `dyn Trait`, returns that trait.
679 pub fn inherent_trait(&self) -> Option<TraitId> {
680 match self {
681 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
682 predicates.iter().find_map(|pred| match pred {
683 GenericPredicate::Implemented(tr) => Some(tr.trait_),
684 _ => None,
685 })
686 }
687 _ => None,
688 }
689 }
690}
691
692/// This allows walking structures that contain types to do something with those
693/// types, similar to Chalk's `Fold` trait.
694pub trait TypeWalk {
695 fn walk(&self, f: &mut impl FnMut(&Ty));
696 fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
697 self.walk_mut_binders(&mut |ty, _binders| f(ty), 0);
698 }
699 /// Walk the type, counting entered binders.
700 ///
701 /// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
702 /// to the innermost binder, 1 to the next, etc.. So when we want to
703 /// substitute a certain bound variable, we can't just walk the whole type
704 /// and blindly replace each instance of a certain index; when we 'enter'
705 /// things that introduce new bound variables, we have to keep track of
706 /// that. Currently, the only thing that introduces bound variables on our
707 /// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
708 /// variable for the self type.
709 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize);
710
711 fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
712 where
713 Self: Sized,
714 {
715 self.walk_mut(&mut |ty_mut| {
716 let ty = mem::replace(ty_mut, Ty::Unknown);
717 *ty_mut = f(ty);
718 });
719 self
720 }
721
722 /// Replaces type parameters in this type using the given `Substs`. (So e.g.
723 /// if `self` is `&[T]`, where type parameter T has index 0, and the
724 /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
725 fn subst(self, substs: &Substs) -> Self
726 where
727 Self: Sized,
728 {
729 self.fold(&mut |ty| match ty {
730 Ty::Param { idx, name } => {
731 substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name })
732 }
733 ty => ty,
734 })
735 }
736
737 /// Substitutes `Ty::Bound` vars (as opposed to type parameters).
738 fn subst_bound_vars(mut self, substs: &Substs) -> Self
739 where
740 Self: Sized,
741 {
742 self.walk_mut_binders(
743 &mut |ty, binders| match ty {
744 &mut Ty::Bound(idx) => {
745 if idx as usize >= binders && (idx as usize - binders) < substs.len() {
746 *ty = substs.0[idx as usize - binders].clone();
747 }
748 }
749 _ => {}
750 },
751 0,
752 );
753 self
754 }
755
756 /// Shifts up `Ty::Bound` vars by `n`.
757 fn shift_bound_vars(self, n: i32) -> Self
758 where
759 Self: Sized,
760 {
761 self.fold(&mut |ty| match ty {
762 Ty::Bound(idx) => {
763 assert!(idx as i32 >= -n);
764 Ty::Bound((idx as i32 + n) as u32)
765 }
766 ty => ty,
767 })
768 }
769}
770
771impl TypeWalk for Ty {
772 fn walk(&self, f: &mut impl FnMut(&Ty)) {
773 match self {
774 Ty::Apply(a_ty) => {
775 for t in a_ty.parameters.iter() {
776 t.walk(f);
777 }
778 }
779 Ty::Projection(p_ty) => {
780 for t in p_ty.parameters.iter() {
781 t.walk(f);
782 }
783 }
784 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
785 for p in predicates.iter() {
786 p.walk(f);
787 }
788 }
789 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
790 }
791 f(self);
792 }
793
794 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
795 match self {
796 Ty::Apply(a_ty) => {
797 a_ty.parameters.walk_mut_binders(f, binders);
798 }
799 Ty::Projection(p_ty) => {
800 p_ty.parameters.walk_mut_binders(f, binders);
801 }
802 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
803 for p in make_mut_slice(predicates) {
804 p.walk_mut_binders(f, binders + 1);
805 }
806 }
807 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
808 }
809 f(self, binders);
810 }
811}
812
813impl HirDisplay for &Ty {
814 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
815 HirDisplay::hir_fmt(*self, f)
816 }
817}
818
819impl HirDisplay for ApplicationTy {
820 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
821 if f.should_truncate() {
822 return write!(f, "…");
823 }
824
825 match self.ctor {
826 TypeCtor::Bool => write!(f, "bool")?,
827 TypeCtor::Char => write!(f, "char")?,
828 TypeCtor::Int(t) => write!(f, "{}", t)?,
829 TypeCtor::Float(t) => write!(f, "{}", t)?,
830 TypeCtor::Str => write!(f, "str")?,
831 TypeCtor::Slice => {
832 let t = self.parameters.as_single();
833 write!(f, "[{}]", t.display(f.db))?;
834 }
835 TypeCtor::Array => {
836 let t = self.parameters.as_single();
837 write!(f, "[{};_]", t.display(f.db))?;
838 }
839 TypeCtor::RawPtr(m) => {
840 let t = self.parameters.as_single();
841 write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
842 }
843 TypeCtor::Ref(m) => {
844 let t = self.parameters.as_single();
845 write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?;
846 }
847 TypeCtor::Never => write!(f, "!")?,
848 TypeCtor::Tuple { .. } => {
849 let ts = &self.parameters;
850 if ts.len() == 1 {
851 write!(f, "({},)", ts[0].display(f.db))?;
852 } else {
853 write!(f, "(")?;
854 f.write_joined(&*ts.0, ", ")?;
855 write!(f, ")")?;
856 }
857 }
858 TypeCtor::FnPtr { .. } => {
859 let sig = FnSig::from_fn_ptr_substs(&self.parameters);
860 write!(f, "fn(")?;
861 f.write_joined(sig.params(), ", ")?;
862 write!(f, ") -> {}", sig.ret().display(f.db))?;
863 }
864 TypeCtor::FnDef(def) => {
865 let sig = f.db.callable_item_signature(def);
866 let name = match def {
867 CallableDef::FunctionId(ff) => f.db.function_data(ff).name.clone(),
868 CallableDef::StructId(s) => {
869 f.db.struct_data(s).name.clone().unwrap_or_else(Name::missing)
870 }
871 CallableDef::EnumVariantId(e) => {
872 let enum_data = f.db.enum_data(e.parent);
873 enum_data.variants[e.local_id].name.clone().unwrap_or_else(Name::missing)
874 }
875 };
876 match def {
877 CallableDef::FunctionId(_) => write!(f, "fn {}", name)?,
878 CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {
879 write!(f, "{}", name)?
880 }
881 }
882 if self.parameters.len() > 0 {
883 write!(f, "<")?;
884 f.write_joined(&*self.parameters.0, ", ")?;
885 write!(f, ">")?;
886 }
887 write!(f, "(")?;
888 f.write_joined(sig.params(), ", ")?;
889 write!(f, ") -> {}", sig.ret().display(f.db))?;
890 }
891 TypeCtor::Adt(def_id) => {
892 let name = match def_id {
893 AdtId::StructId(it) => f.db.struct_data(it).name.clone(),
894 AdtId::UnionId(it) => f.db.union_data(it).name.clone(),
895 AdtId::EnumId(it) => f.db.enum_data(it).name.clone(),
896 }
897 .unwrap_or_else(Name::missing);
898 write!(f, "{}", name)?;
899 if self.parameters.len() > 0 {
900 write!(f, "<")?;
901 f.write_joined(&*self.parameters.0, ", ")?;
902 write!(f, ">")?;
903 }
904 }
905 TypeCtor::AssociatedType(type_alias) => {
906 let trait_ = match type_alias.lookup(f.db).container {
907 ContainerId::TraitId(it) => it,
908 _ => panic!("not an associated type"),
909 };
910 let trait_name = f.db.trait_data(trait_).name.clone().unwrap_or_else(Name::missing);
911 let name = f.db.type_alias_data(type_alias).name.clone();
912 write!(f, "{}::{}", trait_name, name)?;
913 if self.parameters.len() > 0 {
914 write!(f, "<")?;
915 f.write_joined(&*self.parameters.0, ", ")?;
916 write!(f, ">")?;
917 }
918 }
919 TypeCtor::Closure { .. } => {
920 let sig = self.parameters[0]
921 .callable_sig(f.db)
922 .expect("first closure parameter should contain signature");
923 write!(f, "|")?;
924 f.write_joined(sig.params(), ", ")?;
925 write!(f, "| -> {}", sig.ret().display(f.db))?;
926 }
927 }
928 Ok(())
929 }
930}
931
932impl HirDisplay for ProjectionTy {
933 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
934 if f.should_truncate() {
935 return write!(f, "…");
936 }
937
938 let trait_name =
939 f.db.trait_data(self.trait_(f.db)).name.clone().unwrap_or_else(Name::missing);
940 write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_name,)?;
941 if self.parameters.len() > 1 {
942 write!(f, "<")?;
943 f.write_joined(&self.parameters[1..], ", ")?;
944 write!(f, ">")?;
945 }
946 write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?;
947 Ok(())
948 }
949}
950
951impl HirDisplay for Ty {
952 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
953 if f.should_truncate() {
954 return write!(f, "…");
955 }
956
957 match self {
958 Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
959 Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
960 Ty::Param { name, .. } => write!(f, "{}", name)?,
961 Ty::Bound(idx) => write!(f, "?{}", idx)?,
962 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
963 match self {
964 Ty::Dyn(_) => write!(f, "dyn ")?,
965 Ty::Opaque(_) => write!(f, "impl ")?,
966 _ => unreachable!(),
967 };
968 // Note: This code is written to produce nice results (i.e.
969 // corresponding to surface Rust) for types that can occur in
970 // actual Rust. It will have weird results if the predicates
971 // aren't as expected (i.e. self types = $0, projection
972 // predicates for a certain trait come after the Implemented
973 // predicate for that trait).
974 let mut first = true;
975 let mut angle_open = false;
976 for p in predicates.iter() {
977 match p {
978 GenericPredicate::Implemented(trait_ref) => {
979 if angle_open {
980 write!(f, ">")?;
981 }
982 if !first {
983 write!(f, " + ")?;
984 }
985 // We assume that the self type is $0 (i.e. the
986 // existential) here, which is the only thing that's
987 // possible in actual Rust, and hence don't print it
988 write!(
989 f,
990 "{}",
991 f.db.trait_data(trait_ref.trait_)
992 .name
993 .clone()
994 .unwrap_or_else(Name::missing)
995 )?;
996 if trait_ref.substs.len() > 1 {
997 write!(f, "<")?;
998 f.write_joined(&trait_ref.substs[1..], ", ")?;
999 // there might be assoc type bindings, so we leave the angle brackets open
1000 angle_open = true;
1001 }
1002 }
1003 GenericPredicate::Projection(projection_pred) => {
1004 // in types in actual Rust, these will always come
1005 // after the corresponding Implemented predicate
1006 if angle_open {
1007 write!(f, ", ")?;
1008 } else {
1009 write!(f, "<")?;
1010 angle_open = true;
1011 }
1012 let name =
1013 f.db.type_alias_data(projection_pred.projection_ty.associated_ty)
1014 .name
1015 .clone();
1016 write!(f, "{} = ", name)?;
1017 projection_pred.ty.hir_fmt(f)?;
1018 }
1019 GenericPredicate::Error => {
1020 if angle_open {
1021 // impl Trait<X, {error}>
1022 write!(f, ", ")?;
1023 } else if !first {
1024 // impl Trait + {error}
1025 write!(f, " + ")?;
1026 }
1027 p.hir_fmt(f)?;
1028 }
1029 }
1030 first = false;
1031 }
1032 if angle_open {
1033 write!(f, ">")?;
1034 }
1035 }
1036 Ty::Unknown => write!(f, "{{unknown}}")?,
1037 Ty::Infer(..) => write!(f, "_")?,
1038 }
1039 Ok(())
1040 }
1041}
1042
1043impl TraitRef {
1044 fn hir_fmt_ext(&self, f: &mut HirFormatter<impl HirDatabase>, use_as: bool) -> fmt::Result {
1045 if f.should_truncate() {
1046 return write!(f, "…");
1047 }
1048
1049 self.substs[0].hir_fmt(f)?;
1050 if use_as {
1051 write!(f, " as ")?;
1052 } else {
1053 write!(f, ": ")?;
1054 }
1055 write!(f, "{}", f.db.trait_data(self.trait_).name.clone().unwrap_or_else(Name::missing))?;
1056 if self.substs.len() > 1 {
1057 write!(f, "<")?;
1058 f.write_joined(&self.substs[1..], ", ")?;
1059 write!(f, ">")?;
1060 }
1061 Ok(())
1062 }
1063}
1064
1065impl HirDisplay for TraitRef {
1066 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1067 self.hir_fmt_ext(f, false)
1068 }
1069}
1070
1071impl HirDisplay for &GenericPredicate {
1072 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1073 HirDisplay::hir_fmt(*self, f)
1074 }
1075}
1076
1077impl HirDisplay for GenericPredicate {
1078 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1079 if f.should_truncate() {
1080 return write!(f, "…");
1081 }
1082
1083 match self {
1084 GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
1085 GenericPredicate::Projection(projection_pred) => {
1086 write!(f, "<")?;
1087 projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
1088 write!(
1089 f,
1090 ">::{} = {}",
1091 f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name,
1092 projection_pred.ty.display(f.db)
1093 )?;
1094 }
1095 GenericPredicate::Error => write!(f, "{{error}}")?,
1096 }
1097 Ok(())
1098 }
1099}
1100
1101impl HirDisplay for Obligation {
1102 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1103 match self {
1104 Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)),
1105 Obligation::Projection(proj) => write!(
1106 f,
1107 "Normalize({} => {})",
1108 proj.projection_ty.display(f.db),
1109 proj.ty.display(f.db)
1110 ),
1111 }
1112 }
1113}
diff --git a/crates/ra_hir/src/ty/autoderef.rs b/crates/ra_hir/src/ty/autoderef.rs
deleted file mode 100644
index ae68234ac..000000000
--- a/crates/ra_hir/src/ty/autoderef.rs
+++ /dev/null
@@ -1,108 +0,0 @@
1//! In certain situations, rust automatically inserts derefs as necessary: for
2//! example, field accesses `foo.bar` still work when `foo` is actually a
3//! reference to a type with the field `bar`. This is an approximation of the
4//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
5
6use std::iter::successors;
7
8use hir_def::lang_item::LangItemTarget;
9use hir_expand::name;
10use log::{info, warn};
11use ra_db::CrateId;
12
13use crate::db::HirDatabase;
14
15use super::{
16 traits::{InEnvironment, Solution},
17 Canonical, Substs, Ty, TypeWalk,
18};
19
20const AUTODEREF_RECURSION_LIMIT: usize = 10;
21
22pub(crate) fn autoderef<'a>(
23 db: &'a impl HirDatabase,
24 krate: Option<CrateId>,
25 ty: InEnvironment<Canonical<Ty>>,
26) -> impl Iterator<Item = Canonical<Ty>> + 'a {
27 let InEnvironment { value: ty, environment } = ty;
28 successors(Some(ty), move |ty| {
29 deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() })
30 })
31 .take(AUTODEREF_RECURSION_LIMIT)
32}
33
34pub(crate) fn deref(
35 db: &impl HirDatabase,
36 krate: CrateId,
37 ty: InEnvironment<&Canonical<Ty>>,
38) -> Option<Canonical<Ty>> {
39 if let Some(derefed) = ty.value.value.builtin_deref() {
40 Some(Canonical { value: derefed, num_vars: ty.value.num_vars })
41 } else {
42 deref_by_trait(db, krate, ty)
43 }
44}
45
46fn deref_by_trait(
47 db: &impl HirDatabase,
48 krate: CrateId,
49 ty: InEnvironment<&Canonical<Ty>>,
50) -> Option<Canonical<Ty>> {
51 let deref_trait = match db.lang_item(krate.into(), "deref".into())? {
52 LangItemTarget::TraitId(it) => it,
53 _ => return None,
54 };
55 let target = db.trait_data(deref_trait).associated_type_by_name(&name::TARGET_TYPE)?;
56
57 let generic_params = db.generic_params(target.into());
58 if generic_params.count_params_including_parent() != 1 {
59 // the Target type + Deref trait should only have one generic parameter,
60 // namely Deref's Self type
61 return None;
62 }
63
64 // FIXME make the Canonical handling nicer
65
66 let parameters = Substs::build_for_generics(&generic_params)
67 .push(ty.value.value.clone().shift_bound_vars(1))
68 .build();
69
70 let projection = super::traits::ProjectionPredicate {
71 ty: Ty::Bound(0),
72 projection_ty: super::ProjectionTy { associated_ty: target, parameters },
73 };
74
75 let obligation = super::Obligation::Projection(projection);
76
77 let in_env = InEnvironment { value: obligation, environment: ty.environment };
78
79 let canonical = super::Canonical { num_vars: 1 + ty.value.num_vars, value: in_env };
80
81 let solution = db.trait_solve(krate.into(), canonical)?;
82
83 match &solution {
84 Solution::Unique(vars) => {
85 // FIXME: vars may contain solutions for any inference variables
86 // that happened to be inside ty. To correctly handle these, we
87 // would have to pass the solution up to the inference context, but
88 // that requires a larger refactoring (especially if the deref
89 // happens during method resolution). So for the moment, we just
90 // check that we're not in the situation we're we would actually
91 // need to handle the values of the additional variables, i.e.
92 // they're just being 'passed through'. In the 'standard' case where
93 // we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
94 // the case.
95 for i in 1..vars.0.num_vars {
96 if vars.0.value[i] != Ty::Bound((i - 1) as u32) {
97 warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution);
98 return None;
99 }
100 }
101 Some(Canonical { value: vars.0.value[0].clone(), num_vars: vars.0.num_vars })
102 }
103 Solution::Ambig(_) => {
104 info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution);
105 None
106 }
107 }
108}
diff --git a/crates/ra_hir/src/ty/display.rs b/crates/ra_hir/src/ty/display.rs
deleted file mode 100644
index 9bb3ece6c..000000000
--- a/crates/ra_hir/src/ty/display.rs
+++ /dev/null
@@ -1,93 +0,0 @@
1//! FIXME: write short doc here
2
3use std::fmt;
4
5use crate::db::HirDatabase;
6
7pub struct HirFormatter<'a, 'b, DB> {
8 pub db: &'a DB,
9 fmt: &'a mut fmt::Formatter<'b>,
10 buf: String,
11 curr_size: usize,
12 max_size: Option<usize>,
13}
14
15pub trait HirDisplay {
16 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result;
17
18 fn display<'a, DB>(&'a self, db: &'a DB) -> HirDisplayWrapper<'a, DB, Self>
19 where
20 Self: Sized,
21 {
22 HirDisplayWrapper(db, self, None)
23 }
24
25 fn display_truncated<'a, DB>(
26 &'a self,
27 db: &'a DB,
28 max_size: Option<usize>,
29 ) -> HirDisplayWrapper<'a, DB, Self>
30 where
31 Self: Sized,
32 {
33 HirDisplayWrapper(db, self, max_size)
34 }
35}
36
37impl<'a, 'b, DB> HirFormatter<'a, 'b, DB>
38where
39 DB: HirDatabase,
40{
41 pub fn write_joined<T: HirDisplay>(
42 &mut self,
43 iter: impl IntoIterator<Item = T>,
44 sep: &str,
45 ) -> fmt::Result {
46 let mut first = true;
47 for e in iter {
48 if !first {
49 write!(self, "{}", sep)?;
50 }
51 first = false;
52 e.hir_fmt(self)?;
53 }
54 Ok(())
55 }
56
57 /// This allows using the `write!` macro directly with a `HirFormatter`.
58 pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
59 // We write to a buffer first to track output size
60 self.buf.clear();
61 fmt::write(&mut self.buf, args)?;
62 self.curr_size += self.buf.len();
63
64 // Then we write to the internal formatter from the buffer
65 self.fmt.write_str(&self.buf)
66 }
67
68 pub fn should_truncate(&self) -> bool {
69 if let Some(max_size) = self.max_size {
70 self.curr_size >= max_size
71 } else {
72 false
73 }
74 }
75}
76
77pub struct HirDisplayWrapper<'a, DB, T>(&'a DB, &'a T, Option<usize>);
78
79impl<'a, DB, T> fmt::Display for HirDisplayWrapper<'a, DB, T>
80where
81 DB: HirDatabase,
82 T: HirDisplay,
83{
84 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85 self.1.hir_fmt(&mut HirFormatter {
86 db: self.0,
87 fmt: f,
88 buf: String::with_capacity(20),
89 curr_size: 0,
90 max_size: self.2,
91 })
92 }
93}
diff --git a/crates/ra_hir/src/ty/infer.rs b/crates/ra_hir/src/ty/infer.rs
deleted file mode 100644
index 59e4e5f36..000000000
--- a/crates/ra_hir/src/ty/infer.rs
+++ /dev/null
@@ -1,723 +0,0 @@
1//! Type inference, i.e. the process of walking through the code and determining
2//! the type of each expression and pattern.
3//!
4//! For type inference, compare the implementations in rustc (the various
5//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
6//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
7//! inference here is the `infer` function, which infers the types of all
8//! expressions in a given function.
9//!
10//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
11//! which represent currently unknown types; as we walk through the expressions,
12//! we might determine that certain variables need to be equal to each other, or
13//! to certain types. To record this, we use the union-find implementation from
14//! the `ena` crate, which is extracted from rustc.
15
16use std::borrow::Cow;
17use std::mem;
18use std::ops::Index;
19use std::sync::Arc;
20
21use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
22use rustc_hash::FxHashMap;
23
24use hir_def::{
25 body::Body,
26 data::{ConstData, FunctionData},
27 expr::{BindingAnnotation, ExprId, PatId},
28 path::{known, Path},
29 resolver::{HasResolver, Resolver, TypeNs},
30 type_ref::{Mutability, TypeRef},
31 AdtId, AssocItemId, DefWithBodyId, FunctionId, StructFieldId, TypeAliasId, VariantId,
32};
33use hir_expand::{diagnostics::DiagnosticSink, name};
34use ra_arena::map::ArenaMap;
35use ra_prof::profile;
36use test_utils::tested_by;
37
38use super::{
39 primitive::{FloatTy, IntTy},
40 traits::{Guidance, Obligation, ProjectionPredicate, Solution},
41 ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor,
42 TypeWalk, Uncertain,
43};
44use crate::{db::HirDatabase, ty::infer::diagnostics::InferenceDiagnostic};
45
46macro_rules! ty_app {
47 ($ctor:pat, $param:pat) => {
48 crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
49 };
50 ($ctor:pat) => {
51 ty_app!($ctor, _)
52 };
53}
54
55mod unify;
56mod path;
57mod expr;
58mod pat;
59mod coerce;
60
61/// The entry point of type inference.
62pub fn infer_query(db: &impl HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
63 let _p = profile("infer_query");
64 let resolver = def.resolver(db);
65 let mut ctx = InferenceContext::new(db, def, resolver);
66
67 match def {
68 DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
69 DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)),
70 DefWithBodyId::StaticId(s) => ctx.collect_const(&db.static_data(s)),
71 }
72
73 ctx.infer_body();
74
75 Arc::new(ctx.resolve_all())
76}
77
78#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
79enum ExprOrPatId {
80 ExprId(ExprId),
81 PatId(PatId),
82}
83
84impl_froms!(ExprOrPatId: ExprId, PatId);
85
86/// Binding modes inferred for patterns.
87/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
88#[derive(Copy, Clone, Debug, Eq, PartialEq)]
89enum BindingMode {
90 Move,
91 Ref(Mutability),
92}
93
94impl BindingMode {
95 pub fn convert(annotation: BindingAnnotation) -> BindingMode {
96 match annotation {
97 BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
98 BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
99 BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
100 }
101 }
102}
103
104impl Default for BindingMode {
105 fn default() -> Self {
106 BindingMode::Move
107 }
108}
109
110/// A mismatch between an expected and an inferred type.
111#[derive(Clone, PartialEq, Eq, Debug, Hash)]
112pub struct TypeMismatch {
113 pub expected: Ty,
114 pub actual: Ty,
115}
116
117/// The result of type inference: A mapping from expressions and patterns to types.
118#[derive(Clone, PartialEq, Eq, Debug, Default)]
119pub struct InferenceResult {
120 /// For each method call expr, records the function it resolves to.
121 method_resolutions: FxHashMap<ExprId, FunctionId>,
122 /// For each field access expr, records the field it resolves to.
123 field_resolutions: FxHashMap<ExprId, StructFieldId>,
124 /// For each field in record literal, records the field it resolves to.
125 record_field_resolutions: FxHashMap<ExprId, StructFieldId>,
126 /// For each struct literal, records the variant it resolves to.
127 variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
128 /// For each associated item record what it resolves to
129 assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
130 diagnostics: Vec<InferenceDiagnostic>,
131 pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
132 pub(super) type_of_pat: ArenaMap<PatId, Ty>,
133 pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
134}
135
136impl InferenceResult {
137 pub fn method_resolution(&self, expr: ExprId) -> Option<FunctionId> {
138 self.method_resolutions.get(&expr).copied()
139 }
140 pub fn field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
141 self.field_resolutions.get(&expr).copied()
142 }
143 pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
144 self.record_field_resolutions.get(&expr).copied()
145 }
146 pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
147 self.variant_resolutions.get(&id.into()).copied()
148 }
149 pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
150 self.variant_resolutions.get(&id.into()).copied()
151 }
152 pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
153 self.assoc_resolutions.get(&id.into()).copied()
154 }
155 pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
156 self.assoc_resolutions.get(&id.into()).copied()
157 }
158 pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
159 self.type_mismatches.get(expr)
160 }
161 pub(crate) fn add_diagnostics(
162 &self,
163 db: &impl HirDatabase,
164 owner: FunctionId,
165 sink: &mut DiagnosticSink,
166 ) {
167 self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
168 }
169}
170
171impl Index<ExprId> for InferenceResult {
172 type Output = Ty;
173
174 fn index(&self, expr: ExprId) -> &Ty {
175 self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
176 }
177}
178
179impl Index<PatId> for InferenceResult {
180 type Output = Ty;
181
182 fn index(&self, pat: PatId) -> &Ty {
183 self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
184 }
185}
186
187/// The inference context contains all information needed during type inference.
188#[derive(Clone, Debug)]
189struct InferenceContext<'a, D: HirDatabase> {
190 db: &'a D,
191 owner: DefWithBodyId,
192 body: Arc<Body>,
193 resolver: Resolver,
194 var_unification_table: InPlaceUnificationTable<TypeVarId>,
195 trait_env: Arc<TraitEnvironment>,
196 obligations: Vec<Obligation>,
197 result: InferenceResult,
198 /// The return type of the function being inferred.
199 return_ty: Ty,
200
201 /// Impls of `CoerceUnsized` used in coercion.
202 /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
203 // FIXME: Use trait solver for this.
204 // Chalk seems unable to work well with builtin impl of `Unsize` now.
205 coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
206}
207
208impl<'a, D: HirDatabase> InferenceContext<'a, D> {
209 fn new(db: &'a D, owner: DefWithBodyId, resolver: Resolver) -> Self {
210 InferenceContext {
211 result: InferenceResult::default(),
212 var_unification_table: InPlaceUnificationTable::new(),
213 obligations: Vec::default(),
214 return_ty: Ty::Unknown, // set in collect_fn_signature
215 trait_env: TraitEnvironment::lower(db, &resolver),
216 coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
217 db,
218 owner,
219 body: db.body(owner.into()),
220 resolver,
221 }
222 }
223
224 fn resolve_all(mut self) -> InferenceResult {
225 // FIXME resolve obligations as well (use Guidance if necessary)
226 let mut result = mem::replace(&mut self.result, InferenceResult::default());
227 let mut tv_stack = Vec::new();
228 for ty in result.type_of_expr.values_mut() {
229 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
230 *ty = resolved;
231 }
232 for ty in result.type_of_pat.values_mut() {
233 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
234 *ty = resolved;
235 }
236 result
237 }
238
239 fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
240 self.result.type_of_expr.insert(expr, ty);
241 }
242
243 fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId) {
244 self.result.method_resolutions.insert(expr, func);
245 }
246
247 fn write_field_resolution(&mut self, expr: ExprId, field: StructFieldId) {
248 self.result.field_resolutions.insert(expr, field);
249 }
250
251 fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
252 self.result.variant_resolutions.insert(id, variant);
253 }
254
255 fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
256 self.result.assoc_resolutions.insert(id, item.into());
257 }
258
259 fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
260 self.result.type_of_pat.insert(pat, ty);
261 }
262
263 fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
264 self.result.diagnostics.push(diagnostic);
265 }
266
267 fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
268 let ty = Ty::from_hir(
269 self.db,
270 // FIXME use right resolver for block
271 &self.resolver,
272 type_ref,
273 );
274 let ty = self.insert_type_vars(ty);
275 self.normalize_associated_types_in(ty)
276 }
277
278 fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
279 substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
280 }
281
282 fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
283 self.unify_inner(ty1, ty2, 0)
284 }
285
286 fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
287 if depth > 1000 {
288 // prevent stackoverflows
289 panic!("infinite recursion in unification");
290 }
291 if ty1 == ty2 {
292 return true;
293 }
294 // try to resolve type vars first
295 let ty1 = self.resolve_ty_shallow(ty1);
296 let ty2 = self.resolve_ty_shallow(ty2);
297 match (&*ty1, &*ty2) {
298 (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
299 self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
300 }
301 _ => self.unify_inner_trivial(&ty1, &ty2),
302 }
303 }
304
305 fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
306 match (ty1, ty2) {
307 (Ty::Unknown, _) | (_, Ty::Unknown) => true,
308
309 (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
310 | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
311 | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
312 | (
313 Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
314 Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
315 ) => {
316 // both type vars are unknown since we tried to resolve them
317 self.var_unification_table.union(*tv1, *tv2);
318 true
319 }
320
321 // The order of MaybeNeverTypeVar matters here.
322 // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
323 // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
324 (Ty::Infer(InferTy::TypeVar(tv)), other)
325 | (other, Ty::Infer(InferTy::TypeVar(tv)))
326 | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
327 | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
328 | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
329 | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
330 | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
331 | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
332 // the type var is unknown since we tried to resolve it
333 self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
334 true
335 }
336
337 _ => false,
338 }
339 }
340
341 fn new_type_var(&mut self) -> Ty {
342 Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
343 }
344
345 fn new_integer_var(&mut self) -> Ty {
346 Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
347 }
348
349 fn new_float_var(&mut self) -> Ty {
350 Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
351 }
352
353 fn new_maybe_never_type_var(&mut self) -> Ty {
354 Ty::Infer(InferTy::MaybeNeverTypeVar(
355 self.var_unification_table.new_key(TypeVarValue::Unknown),
356 ))
357 }
358
359 /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
360 fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
361 match ty {
362 Ty::Unknown => self.new_type_var(),
363 Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
364 self.new_integer_var()
365 }
366 Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
367 self.new_float_var()
368 }
369 _ => ty,
370 }
371 }
372
373 fn insert_type_vars(&mut self, ty: Ty) -> Ty {
374 ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
375 }
376
377 fn resolve_obligations_as_possible(&mut self) {
378 let obligations = mem::replace(&mut self.obligations, Vec::new());
379 for obligation in obligations {
380 let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
381 let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
382 let solution = self
383 .db
384 .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
385
386 match solution {
387 Some(Solution::Unique(substs)) => {
388 canonicalized.apply_solution(self, substs.0);
389 }
390 Some(Solution::Ambig(Guidance::Definite(substs))) => {
391 canonicalized.apply_solution(self, substs.0);
392 self.obligations.push(obligation);
393 }
394 Some(_) => {
395 // FIXME use this when trying to resolve everything at the end
396 self.obligations.push(obligation);
397 }
398 None => {
399 // FIXME obligation cannot be fulfilled => diagnostic
400 }
401 };
402 }
403 }
404
405 /// Resolves the type as far as currently possible, replacing type variables
406 /// by their known types. All types returned by the infer_* functions should
407 /// be resolved as far as possible, i.e. contain no type variables with
408 /// known type.
409 fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
410 self.resolve_obligations_as_possible();
411
412 ty.fold(&mut |ty| match ty {
413 Ty::Infer(tv) => {
414 let inner = tv.to_inner();
415 if tv_stack.contains(&inner) {
416 tested_by!(type_var_cycles_resolve_as_possible);
417 // recursive type
418 return tv.fallback_value();
419 }
420 if let Some(known_ty) =
421 self.var_unification_table.inlined_probe_value(inner).known()
422 {
423 // known_ty may contain other variables that are known by now
424 tv_stack.push(inner);
425 let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
426 tv_stack.pop();
427 result
428 } else {
429 ty
430 }
431 }
432 _ => ty,
433 })
434 }
435
436 /// If `ty` is a type variable with known type, returns that type;
437 /// otherwise, return ty.
438 fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
439 let mut ty = Cow::Borrowed(ty);
440 // The type variable could resolve to a int/float variable. Hence try
441 // resolving up to three times; each type of variable shouldn't occur
442 // more than once
443 for i in 0..3 {
444 if i > 0 {
445 tested_by!(type_var_resolves_to_int_var);
446 }
447 match &*ty {
448 Ty::Infer(tv) => {
449 let inner = tv.to_inner();
450 match self.var_unification_table.inlined_probe_value(inner).known() {
451 Some(known_ty) => {
452 // The known_ty can't be a type var itself
453 ty = Cow::Owned(known_ty.clone());
454 }
455 _ => return ty,
456 }
457 }
458 _ => return ty,
459 }
460 }
461 log::error!("Inference variable still not resolved: {:?}", ty);
462 ty
463 }
464
465 /// Recurses through the given type, normalizing associated types mentioned
466 /// in it by replacing them by type variables and registering obligations to
467 /// resolve later. This should be done once for every type we get from some
468 /// type annotation (e.g. from a let type annotation, field type or function
469 /// call). `make_ty` handles this already, but e.g. for field types we need
470 /// to do it as well.
471 fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
472 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
473 ty.fold(&mut |ty| match ty {
474 Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
475 _ => ty,
476 })
477 }
478
479 fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
480 let var = self.new_type_var();
481 let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
482 let obligation = Obligation::Projection(predicate);
483 self.obligations.push(obligation);
484 var
485 }
486
487 /// Resolves the type completely; type variables without known type are
488 /// replaced by Ty::Unknown.
489 fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
490 ty.fold(&mut |ty| match ty {
491 Ty::Infer(tv) => {
492 let inner = tv.to_inner();
493 if tv_stack.contains(&inner) {
494 tested_by!(type_var_cycles_resolve_completely);
495 // recursive type
496 return tv.fallback_value();
497 }
498 if let Some(known_ty) =
499 self.var_unification_table.inlined_probe_value(inner).known()
500 {
501 // known_ty may contain other variables that are known by now
502 tv_stack.push(inner);
503 let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
504 tv_stack.pop();
505 result
506 } else {
507 tv.fallback_value()
508 }
509 }
510 _ => ty,
511 })
512 }
513
514 fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantId>) {
515 let path = match path {
516 Some(path) => path,
517 None => return (Ty::Unknown, None),
518 };
519 let resolver = &self.resolver;
520 // FIXME: this should resolve assoc items as well, see this example:
521 // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
522 match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
523 Some(TypeNs::AdtId(AdtId::StructId(strukt))) => {
524 let substs = Ty::substs_from_path(self.db, resolver, path, strukt.into());
525 let ty = self.db.ty(strukt.into());
526 let ty = self.insert_type_vars(ty.apply_substs(substs));
527 (ty, Some(strukt.into()))
528 }
529 Some(TypeNs::EnumVariantId(var)) => {
530 let substs = Ty::substs_from_path(self.db, resolver, path, var.into());
531 let ty = self.db.ty(var.parent.into());
532 let ty = self.insert_type_vars(ty.apply_substs(substs));
533 (ty, Some(var.into()))
534 }
535 Some(_) | None => (Ty::Unknown, None),
536 }
537 }
538
539 fn collect_const(&mut self, data: &ConstData) {
540 self.return_ty = self.make_ty(&data.type_ref);
541 }
542
543 fn collect_fn(&mut self, data: &FunctionData) {
544 let body = Arc::clone(&self.body); // avoid borrow checker problem
545 for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
546 let ty = self.make_ty(type_ref);
547
548 self.infer_pat(*pat, &ty, BindingMode::default());
549 }
550 self.return_ty = self.make_ty(&data.ret_type);
551 }
552
553 fn infer_body(&mut self) {
554 self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
555 }
556
557 fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
558 let path = known::std_iter_into_iterator();
559 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
560 self.db.trait_data(trait_).associated_type_by_name(&name::ITEM_TYPE)
561 }
562
563 fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
564 let path = known::std_ops_try();
565 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
566 self.db.trait_data(trait_).associated_type_by_name(&name::OK_TYPE)
567 }
568
569 fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
570 let path = known::std_future_future();
571 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
572 self.db.trait_data(trait_).associated_type_by_name(&name::OUTPUT_TYPE)
573 }
574
575 fn resolve_boxed_box(&self) -> Option<AdtId> {
576 let path = known::std_boxed_box();
577 let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
578 Some(struct_.into())
579 }
580}
581
582/// The ID of a type variable.
583#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
584pub struct TypeVarId(pub(super) u32);
585
586impl UnifyKey for TypeVarId {
587 type Value = TypeVarValue;
588
589 fn index(&self) -> u32 {
590 self.0
591 }
592
593 fn from_index(i: u32) -> Self {
594 TypeVarId(i)
595 }
596
597 fn tag() -> &'static str {
598 "TypeVarId"
599 }
600}
601
602/// The value of a type variable: either we already know the type, or we don't
603/// know it yet.
604#[derive(Clone, PartialEq, Eq, Debug)]
605pub enum TypeVarValue {
606 Known(Ty),
607 Unknown,
608}
609
610impl TypeVarValue {
611 fn known(&self) -> Option<&Ty> {
612 match self {
613 TypeVarValue::Known(ty) => Some(ty),
614 TypeVarValue::Unknown => None,
615 }
616 }
617}
618
619impl UnifyValue for TypeVarValue {
620 type Error = NoError;
621
622 fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
623 match (value1, value2) {
624 // We should never equate two type variables, both of which have
625 // known types. Instead, we recursively equate those types.
626 (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
627 "equating two type variables, both of which have known types: {:?} and {:?}",
628 t1, t2
629 ),
630
631 // If one side is known, prefer that one.
632 (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
633 (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
634
635 (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
636 }
637 }
638}
639
640/// The kinds of placeholders we need during type inference. There's separate
641/// values for general types, and for integer and float variables. The latter
642/// two are used for inference of literal values (e.g. `100` could be one of
643/// several integer types).
644#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
645pub enum InferTy {
646 TypeVar(TypeVarId),
647 IntVar(TypeVarId),
648 FloatVar(TypeVarId),
649 MaybeNeverTypeVar(TypeVarId),
650}
651
652impl InferTy {
653 fn to_inner(self) -> TypeVarId {
654 match self {
655 InferTy::TypeVar(ty)
656 | InferTy::IntVar(ty)
657 | InferTy::FloatVar(ty)
658 | InferTy::MaybeNeverTypeVar(ty) => ty,
659 }
660 }
661
662 fn fallback_value(self) -> Ty {
663 match self {
664 InferTy::TypeVar(..) => Ty::Unknown,
665 InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
666 InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
667 InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
668 }
669 }
670}
671
672/// When inferring an expression, we propagate downward whatever type hint we
673/// are able in the form of an `Expectation`.
674#[derive(Clone, PartialEq, Eq, Debug)]
675struct Expectation {
676 ty: Ty,
677 // FIXME: In some cases, we need to be aware whether the expectation is that
678 // the type match exactly what we passed, or whether it just needs to be
679 // coercible to the expected type. See Expectation::rvalue_hint in rustc.
680}
681
682impl Expectation {
683 /// The expectation that the type of the expression needs to equal the given
684 /// type.
685 fn has_type(ty: Ty) -> Self {
686 Expectation { ty }
687 }
688
689 /// This expresses no expectation on the type.
690 fn none() -> Self {
691 Expectation { ty: Ty::Unknown }
692 }
693}
694
695mod diagnostics {
696 use hir_def::{expr::ExprId, FunctionId, HasSource, Lookup};
697 use hir_expand::diagnostics::DiagnosticSink;
698
699 use crate::{db::HirDatabase, diagnostics::NoSuchField};
700
701 #[derive(Debug, PartialEq, Eq, Clone)]
702 pub(super) enum InferenceDiagnostic {
703 NoSuchField { expr: ExprId, field: usize },
704 }
705
706 impl InferenceDiagnostic {
707 pub(super) fn add_to(
708 &self,
709 db: &impl HirDatabase,
710 owner: FunctionId,
711 sink: &mut DiagnosticSink,
712 ) {
713 match self {
714 InferenceDiagnostic::NoSuchField { expr, field } => {
715 let file = owner.lookup(db).source(db).file_id;
716 let (_, source_map) = db.body_with_source_map(owner.into());
717 let field = source_map.field_syntax(*expr, *field);
718 sink.push(NoSuchField { file, field })
719 }
720 }
721 }
722 }
723}
diff --git a/crates/ra_hir/src/ty/infer/coerce.rs b/crates/ra_hir/src/ty/infer/coerce.rs
deleted file mode 100644
index 3fb5d8a83..000000000
--- a/crates/ra_hir/src/ty/infer/coerce.rs
+++ /dev/null
@@ -1,357 +0,0 @@
1//! Coercion logic. Coercions are certain type conversions that can implicitly
2//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
3//! like going from `&Vec<T>` to `&[T]`.
4//!
5//! See: https://doc.rust-lang.org/nomicon/coercions.html
6
7use hir_def::{
8 lang_item::LangItemTarget,
9 resolver::{HasResolver, Resolver},
10 type_ref::Mutability,
11 AdtId,
12};
13use rustc_hash::FxHashMap;
14use test_utils::tested_by;
15
16use crate::{
17 db::HirDatabase,
18 ty::{autoderef, Substs, TraitRef, Ty, TypeCtor, TypeWalk},
19};
20
21use super::{InEnvironment, InferTy, InferenceContext, TypeVarValue};
22
23impl<'a, D: HirDatabase> InferenceContext<'a, D> {
24 /// Unify two types, but may coerce the first one to the second one
25 /// using "implicit coercion rules" if needed.
26 pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
27 let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
28 let to_ty = self.resolve_ty_shallow(to_ty);
29 self.coerce_inner(from_ty, &to_ty)
30 }
31
32 /// Merge two types from different branches, with possible implicit coerce.
33 ///
34 /// Note that it is only possible that one type are coerced to another.
35 /// Coercing both types to another least upper bound type is not possible in rustc,
36 /// which will simply result in "incompatible types" error.
37 pub(super) fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
38 if self.coerce(ty1, ty2) {
39 ty2.clone()
40 } else if self.coerce(ty2, ty1) {
41 ty1.clone()
42 } else {
43 tested_by!(coerce_merge_fail_fallback);
44 // For incompatible types, we use the latter one as result
45 // to be better recovery for `if` without `else`.
46 ty2.clone()
47 }
48 }
49
50 pub(super) fn init_coerce_unsized_map(
51 db: &'a D,
52 resolver: &Resolver,
53 ) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
54 let krate = resolver.krate().unwrap();
55 let impls = match db.lang_item(krate.into(), "coerce_unsized".into()) {
56 Some(LangItemTarget::TraitId(trait_)) => {
57 db.impls_for_trait(krate.into(), trait_.into())
58 }
59 _ => return FxHashMap::default(),
60 };
61
62 impls
63 .iter()
64 .filter_map(|&impl_id| {
65 let impl_data = db.impl_data(impl_id);
66 let resolver = impl_id.resolver(db);
67 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
68
69 // `CoerseUnsized` has one generic parameter for the target type.
70 let trait_ref = TraitRef::from_hir(
71 db,
72 &resolver,
73 impl_data.target_trait.as_ref()?,
74 Some(target_ty),
75 )?;
76 let cur_from_ty = trait_ref.substs.0.get(0)?;
77 let cur_to_ty = trait_ref.substs.0.get(1)?;
78
79 match (&cur_from_ty, cur_to_ty) {
80 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
81 // FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
82 // This works for smart-pointer-like coercion, which covers all impls from std.
83 st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
84 match (ty1, ty2) {
85 (Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
86 if p1 != p2 =>
87 {
88 Some(((*ctor1, *ctor2), i))
89 }
90 _ => None,
91 }
92 })
93 }
94 _ => None,
95 }
96 })
97 .collect()
98 }
99
100 fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
101 match (&from_ty, to_ty) {
102 // Never type will make type variable to fallback to Never Type instead of Unknown.
103 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
104 let var = self.new_maybe_never_type_var();
105 self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
106 return true;
107 }
108 (ty_app!(TypeCtor::Never), _) => return true,
109
110 // Trivial cases, this should go after `never` check to
111 // avoid infer result type to be never
112 _ => {
113 if self.unify_inner_trivial(&from_ty, &to_ty) {
114 return true;
115 }
116 }
117 }
118
119 // Pointer weakening and function to pointer
120 match (&mut from_ty, to_ty) {
121 // `*mut T`, `&mut T, `&T`` -> `*const T`
122 // `&mut T` -> `&T`
123 // `&mut T` -> `*mut T`
124 (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
125 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
126 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
127 | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
128 *c1 = *c2;
129 }
130
131 // Illegal mutablity conversion
132 (
133 ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
134 ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
135 )
136 | (
137 ty_app!(TypeCtor::Ref(Mutability::Shared)),
138 ty_app!(TypeCtor::Ref(Mutability::Mut)),
139 ) => return false,
140
141 // `{function_type}` -> `fn()`
142 (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
143 match from_ty.callable_sig(self.db) {
144 None => return false,
145 Some(sig) => {
146 let num_args = sig.params_and_return.len() as u16 - 1;
147 from_ty =
148 Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
149 }
150 }
151 }
152
153 _ => {}
154 }
155
156 if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
157 return ret;
158 }
159
160 // Auto Deref if cannot coerce
161 match (&from_ty, to_ty) {
162 // FIXME: DerefMut
163 (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
164 self.unify_autoderef_behind_ref(&st1[0], &st2[0])
165 }
166
167 // Otherwise, normal unify
168 _ => self.unify(&from_ty, to_ty),
169 }
170 }
171
172 /// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
173 ///
174 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
175 fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
176 let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
177 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
178 _ => return None,
179 };
180
181 let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
182
183 // Check `Unsize` first
184 match self.check_unsize_and_coerce(
185 st1.0.get(coerce_generic_index)?,
186 st2.0.get(coerce_generic_index)?,
187 0,
188 ) {
189 Some(true) => {}
190 ret => return ret,
191 }
192
193 let ret = st1
194 .iter()
195 .zip(st2.iter())
196 .enumerate()
197 .filter(|&(idx, _)| idx != coerce_generic_index)
198 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
199
200 Some(ret)
201 }
202
203 /// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
204 ///
205 /// It should not be directly called. It is only used by `try_coerce_unsized`.
206 ///
207 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
208 fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
209 if depth > 1000 {
210 panic!("Infinite recursion in coercion");
211 }
212
213 match (&from_ty, &to_ty) {
214 // `[T; N]` -> `[T]`
215 (ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
216 Some(self.unify(&st1[0], &st2[0]))
217 }
218
219 // `T` -> `dyn Trait` when `T: Trait`
220 (_, Ty::Dyn(_)) => {
221 // FIXME: Check predicates
222 Some(true)
223 }
224
225 // `(..., T)` -> `(..., U)` when `T: Unsize<U>`
226 (
227 ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
228 ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
229 ) => {
230 if len1 != len2 || *len1 == 0 {
231 return None;
232 }
233
234 match self.check_unsize_and_coerce(
235 st1.last().unwrap(),
236 st2.last().unwrap(),
237 depth + 1,
238 ) {
239 Some(true) => {}
240 ret => return ret,
241 }
242
243 let ret = st1[..st1.len() - 1]
244 .iter()
245 .zip(&st2[..st2.len() - 1])
246 .all(|(ty1, ty2)| self.unify(ty1, ty2));
247
248 Some(ret)
249 }
250
251 // Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
252 // - T: Unsize<U>
253 // - Foo is a struct
254 // - Only the last field of Foo has a type involving T
255 // - T is not part of the type of any other fields
256 // - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
257 (
258 ty_app!(TypeCtor::Adt(AdtId::StructId(struct1)), st1),
259 ty_app!(TypeCtor::Adt(AdtId::StructId(struct2)), st2),
260 ) if struct1 == struct2 => {
261 let field_tys = self.db.field_types((*struct1).into());
262 let struct_data = self.db.struct_data(*struct1);
263
264 let mut fields = struct_data.variant_data.fields().iter();
265 let (last_field_id, _data) = fields.next_back()?;
266
267 // Get the generic parameter involved in the last field.
268 let unsize_generic_index = {
269 let mut index = None;
270 let mut multiple_param = false;
271 field_tys[last_field_id].walk(&mut |ty| match ty {
272 &Ty::Param { idx, .. } => {
273 if index.is_none() {
274 index = Some(idx);
275 } else if Some(idx) != index {
276 multiple_param = true;
277 }
278 }
279 _ => {}
280 });
281
282 if multiple_param {
283 return None;
284 }
285 index?
286 };
287
288 // Check other fields do not involve it.
289 let mut multiple_used = false;
290 fields.for_each(|(field_id, _data)| {
291 field_tys[field_id].walk(&mut |ty| match ty {
292 &Ty::Param { idx, .. } if idx == unsize_generic_index => {
293 multiple_used = true
294 }
295 _ => {}
296 })
297 });
298 if multiple_used {
299 return None;
300 }
301
302 let unsize_generic_index = unsize_generic_index as usize;
303
304 // Check `Unsize` first
305 match self.check_unsize_and_coerce(
306 st1.get(unsize_generic_index)?,
307 st2.get(unsize_generic_index)?,
308 depth + 1,
309 ) {
310 Some(true) => {}
311 ret => return ret,
312 }
313
314 // Then unify other parameters
315 let ret = st1
316 .iter()
317 .zip(st2.iter())
318 .enumerate()
319 .filter(|&(idx, _)| idx != unsize_generic_index)
320 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
321
322 Some(ret)
323 }
324
325 _ => None,
326 }
327 }
328
329 /// Unify `from_ty` to `to_ty` with optional auto Deref
330 ///
331 /// Note that the parameters are already stripped the outer reference.
332 fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
333 let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
334 let to_ty = self.resolve_ty_shallow(&to_ty);
335 // FIXME: Auto DerefMut
336 for derefed_ty in autoderef::autoderef(
337 self.db,
338 self.resolver.krate(),
339 InEnvironment {
340 value: canonicalized.value.clone(),
341 environment: self.trait_env.clone(),
342 },
343 ) {
344 let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
345 match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
346 // Stop when constructor matches.
347 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
348 // It will not recurse to `coerce`.
349 return self.unify_substs(st1, st2, 0);
350 }
351 _ => {}
352 }
353 }
354
355 false
356 }
357}
diff --git a/crates/ra_hir/src/ty/infer/expr.rs b/crates/ra_hir/src/ty/infer/expr.rs
deleted file mode 100644
index f9ededa23..000000000
--- a/crates/ra_hir/src/ty/infer/expr.rs
+++ /dev/null
@@ -1,689 +0,0 @@
1//! Type inference for expressions.
2
3use std::iter::{repeat, repeat_with};
4use std::sync::Arc;
5
6use hir_def::{
7 builtin_type::Signedness,
8 expr::{Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
9 generics::GenericParams,
10 path::{GenericArg, GenericArgs},
11 resolver::resolver_for_expr,
12 AdtId, ContainerId, Lookup, StructFieldId,
13};
14use hir_expand::name::{self, Name};
15
16use crate::{
17 db::HirDatabase,
18 ty::{
19 autoderef, method_resolution, op, traits::InEnvironment, utils::variant_data, CallableDef,
20 InferTy, IntTy, Mutability, Obligation, ProjectionPredicate, ProjectionTy, Substs,
21 TraitRef, Ty, TypeCtor, TypeWalk, Uncertain,
22 },
23};
24
25use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
26
27impl<'a, D: HirDatabase> InferenceContext<'a, D> {
28 pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
29 let ty = self.infer_expr_inner(tgt_expr, expected);
30 let could_unify = self.unify(&ty, &expected.ty);
31 if !could_unify {
32 self.result.type_mismatches.insert(
33 tgt_expr,
34 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
35 );
36 }
37 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
38 ty
39 }
40
41 /// Infer type of expression with possibly implicit coerce to the expected type.
42 /// Return the type after possible coercion.
43 fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
44 let ty = self.infer_expr_inner(expr, &expected);
45 let ty = if !self.coerce(&ty, &expected.ty) {
46 self.result
47 .type_mismatches
48 .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
49 // Return actual type when type mismatch.
50 // This is needed for diagnostic when return type mismatch.
51 ty
52 } else if expected.ty == Ty::Unknown {
53 ty
54 } else {
55 expected.ty.clone()
56 };
57
58 self.resolve_ty_as_possible(&mut vec![], ty)
59 }
60
61 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
62 let body = Arc::clone(&self.body); // avoid borrow checker problem
63 let ty = match &body[tgt_expr] {
64 Expr::Missing => Ty::Unknown,
65 Expr::If { condition, then_branch, else_branch } => {
66 // if let is desugared to match, so this is always simple if
67 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
68
69 let then_ty = self.infer_expr_inner(*then_branch, &expected);
70 let else_ty = match else_branch {
71 Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
72 None => Ty::unit(),
73 };
74
75 self.coerce_merge_branch(&then_ty, &else_ty)
76 }
77 Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
78 Expr::TryBlock { body } => {
79 let _inner = self.infer_expr(*body, expected);
80 // FIXME should be std::result::Result<{inner}, _>
81 Ty::Unknown
82 }
83 Expr::Loop { body } => {
84 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
85 // FIXME handle break with value
86 Ty::simple(TypeCtor::Never)
87 }
88 Expr::While { condition, body } => {
89 // while let is desugared to a match loop, so this is always simple while
90 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
91 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
92 Ty::unit()
93 }
94 Expr::For { iterable, body, pat } => {
95 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
96
97 let pat_ty = match self.resolve_into_iter_item() {
98 Some(into_iter_item_alias) => {
99 let pat_ty = self.new_type_var();
100 let projection = ProjectionPredicate {
101 ty: pat_ty.clone(),
102 projection_ty: ProjectionTy {
103 associated_ty: into_iter_item_alias,
104 parameters: Substs::single(iterable_ty),
105 },
106 };
107 self.obligations.push(Obligation::Projection(projection));
108 self.resolve_ty_as_possible(&mut vec![], pat_ty)
109 }
110 None => Ty::Unknown,
111 };
112
113 self.infer_pat(*pat, &pat_ty, BindingMode::default());
114 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
115 Ty::unit()
116 }
117 Expr::Lambda { body, args, arg_types } => {
118 assert_eq!(args.len(), arg_types.len());
119
120 let mut sig_tys = Vec::new();
121
122 for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
123 let expected = if let Some(type_ref) = arg_type {
124 self.make_ty(type_ref)
125 } else {
126 Ty::Unknown
127 };
128 let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
129 sig_tys.push(arg_ty);
130 }
131
132 // add return type
133 let ret_ty = self.new_type_var();
134 sig_tys.push(ret_ty.clone());
135 let sig_ty = Ty::apply(
136 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
137 Substs(sig_tys.into()),
138 );
139 let closure_ty = Ty::apply_one(
140 TypeCtor::Closure { def: self.owner.into(), expr: tgt_expr },
141 sig_ty,
142 );
143
144 // Eagerly try to relate the closure type with the expected
145 // type, otherwise we often won't have enough information to
146 // infer the body.
147 self.coerce(&closure_ty, &expected.ty);
148
149 self.infer_expr(*body, &Expectation::has_type(ret_ty));
150 closure_ty
151 }
152 Expr::Call { callee, args } => {
153 let callee_ty = self.infer_expr(*callee, &Expectation::none());
154 let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
155 Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
156 None => {
157 // Not callable
158 // FIXME: report an error
159 (Vec::new(), Ty::Unknown)
160 }
161 };
162 self.register_obligations_for_call(&callee_ty);
163 self.check_call_arguments(args, &param_tys);
164 let ret_ty = self.normalize_associated_types_in(ret_ty);
165 ret_ty
166 }
167 Expr::MethodCall { receiver, args, method_name, generic_args } => self
168 .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
169 Expr::Match { expr, arms } => {
170 let input_ty = self.infer_expr(*expr, &Expectation::none());
171
172 let mut result_ty = self.new_maybe_never_type_var();
173
174 for arm in arms {
175 for &pat in &arm.pats {
176 let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
177 }
178 if let Some(guard_expr) = arm.guard {
179 self.infer_expr(
180 guard_expr,
181 &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
182 );
183 }
184
185 let arm_ty = self.infer_expr_inner(arm.expr, &expected);
186 result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
187 }
188
189 result_ty
190 }
191 Expr::Path(p) => {
192 // FIXME this could be more efficient...
193 let resolver = resolver_for_expr(self.db, self.owner.into(), tgt_expr);
194 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
195 }
196 Expr::Continue => Ty::simple(TypeCtor::Never),
197 Expr::Break { expr } => {
198 if let Some(expr) = expr {
199 // FIXME handle break with value
200 self.infer_expr(*expr, &Expectation::none());
201 }
202 Ty::simple(TypeCtor::Never)
203 }
204 Expr::Return { expr } => {
205 if let Some(expr) = expr {
206 self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
207 }
208 Ty::simple(TypeCtor::Never)
209 }
210 Expr::RecordLit { path, fields, spread } => {
211 let (ty, def_id) = self.resolve_variant(path.as_ref());
212 if let Some(variant) = def_id {
213 self.write_variant_resolution(tgt_expr.into(), variant);
214 }
215
216 self.unify(&ty, &expected.ty);
217
218 let substs = ty.substs().unwrap_or_else(Substs::empty);
219 let field_types =
220 def_id.map(|it| self.db.field_types(it.into())).unwrap_or_default();
221 let variant_data = def_id.map(|it| variant_data(self.db, it));
222 for (field_idx, field) in fields.iter().enumerate() {
223 let field_def =
224 variant_data.as_ref().and_then(|it| match it.field(&field.name) {
225 Some(local_id) => {
226 Some(StructFieldId { parent: def_id.unwrap(), local_id })
227 }
228 None => {
229 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
230 expr: tgt_expr,
231 field: field_idx,
232 });
233 None
234 }
235 });
236 if let Some(field_def) = field_def {
237 self.result.record_field_resolutions.insert(field.expr, field_def);
238 }
239 let field_ty = field_def
240 .map_or(Ty::Unknown, |it| field_types[it.local_id].clone())
241 .subst(&substs);
242 self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
243 }
244 if let Some(expr) = spread {
245 self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
246 }
247 ty
248 }
249 Expr::Field { expr, name } => {
250 let receiver_ty = self.infer_expr(*expr, &Expectation::none());
251 let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
252 let ty = autoderef::autoderef(
253 self.db,
254 self.resolver.krate(),
255 InEnvironment {
256 value: canonicalized.value.clone(),
257 environment: self.trait_env.clone(),
258 },
259 )
260 .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
261 Ty::Apply(a_ty) => match a_ty.ctor {
262 TypeCtor::Tuple { .. } => name
263 .as_tuple_index()
264 .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
265 TypeCtor::Adt(AdtId::StructId(s)) => {
266 self.db.struct_data(s).variant_data.field(name).map(|local_id| {
267 let field = StructFieldId { parent: s.into(), local_id }.into();
268 self.write_field_resolution(tgt_expr, field);
269 self.db.field_types(s.into())[field.local_id]
270 .clone()
271 .subst(&a_ty.parameters)
272 })
273 }
274 // FIXME:
275 TypeCtor::Adt(AdtId::UnionId(_)) => None,
276 _ => None,
277 },
278 _ => None,
279 })
280 .unwrap_or(Ty::Unknown);
281 let ty = self.insert_type_vars(ty);
282 self.normalize_associated_types_in(ty)
283 }
284 Expr::Await { expr } => {
285 let inner_ty = self.infer_expr(*expr, &Expectation::none());
286 let ty = match self.resolve_future_future_output() {
287 Some(future_future_output_alias) => {
288 let ty = self.new_type_var();
289 let projection = ProjectionPredicate {
290 ty: ty.clone(),
291 projection_ty: ProjectionTy {
292 associated_ty: future_future_output_alias,
293 parameters: Substs::single(inner_ty),
294 },
295 };
296 self.obligations.push(Obligation::Projection(projection));
297 self.resolve_ty_as_possible(&mut vec![], ty)
298 }
299 None => Ty::Unknown,
300 };
301 ty
302 }
303 Expr::Try { expr } => {
304 let inner_ty = self.infer_expr(*expr, &Expectation::none());
305 let ty = match self.resolve_ops_try_ok() {
306 Some(ops_try_ok_alias) => {
307 let ty = self.new_type_var();
308 let projection = ProjectionPredicate {
309 ty: ty.clone(),
310 projection_ty: ProjectionTy {
311 associated_ty: ops_try_ok_alias,
312 parameters: Substs::single(inner_ty),
313 },
314 };
315 self.obligations.push(Obligation::Projection(projection));
316 self.resolve_ty_as_possible(&mut vec![], ty)
317 }
318 None => Ty::Unknown,
319 };
320 ty
321 }
322 Expr::Cast { expr, type_ref } => {
323 let _inner_ty = self.infer_expr(*expr, &Expectation::none());
324 let cast_ty = self.make_ty(type_ref);
325 // FIXME check the cast...
326 cast_ty
327 }
328 Expr::Ref { expr, mutability } => {
329 let expectation =
330 if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
331 if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
332 // FIXME: throw type error - expected mut reference but found shared ref,
333 // which cannot be coerced
334 }
335 Expectation::has_type(Ty::clone(exp_inner))
336 } else {
337 Expectation::none()
338 };
339 // FIXME reference coercions etc.
340 let inner_ty = self.infer_expr(*expr, &expectation);
341 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
342 }
343 Expr::Box { expr } => {
344 let inner_ty = self.infer_expr(*expr, &Expectation::none());
345 if let Some(box_) = self.resolve_boxed_box() {
346 Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
347 } else {
348 Ty::Unknown
349 }
350 }
351 Expr::UnaryOp { expr, op } => {
352 let inner_ty = self.infer_expr(*expr, &Expectation::none());
353 match op {
354 UnaryOp::Deref => match self.resolver.krate() {
355 Some(krate) => {
356 let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
357 match autoderef::deref(
358 self.db,
359 krate,
360 InEnvironment {
361 value: &canonicalized.value,
362 environment: self.trait_env.clone(),
363 },
364 ) {
365 Some(derefed_ty) => {
366 canonicalized.decanonicalize_ty(derefed_ty.value)
367 }
368 None => Ty::Unknown,
369 }
370 }
371 None => Ty::Unknown,
372 },
373 UnaryOp::Neg => {
374 match &inner_ty {
375 Ty::Apply(a_ty) => match a_ty.ctor {
376 TypeCtor::Int(Uncertain::Unknown)
377 | TypeCtor::Int(Uncertain::Known(IntTy {
378 signedness: Signedness::Signed,
379 ..
380 }))
381 | TypeCtor::Float(..) => inner_ty,
382 _ => Ty::Unknown,
383 },
384 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
385 inner_ty
386 }
387 // FIXME: resolve ops::Neg trait
388 _ => Ty::Unknown,
389 }
390 }
391 UnaryOp::Not => {
392 match &inner_ty {
393 Ty::Apply(a_ty) => match a_ty.ctor {
394 TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
395 _ => Ty::Unknown,
396 },
397 Ty::Infer(InferTy::IntVar(..)) => inner_ty,
398 // FIXME: resolve ops::Not trait for inner_ty
399 _ => Ty::Unknown,
400 }
401 }
402 }
403 }
404 Expr::BinaryOp { lhs, rhs, op } => match op {
405 Some(op) => {
406 let lhs_expectation = match op {
407 BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
408 _ => Expectation::none(),
409 };
410 let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
411 // FIXME: find implementation of trait corresponding to operation
412 // symbol and resolve associated `Output` type
413 let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
414 let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
415
416 // FIXME: similar as above, return ty is often associated trait type
417 op::binary_op_return_ty(*op, rhs_ty)
418 }
419 _ => Ty::Unknown,
420 },
421 Expr::Index { base, index } => {
422 let _base_ty = self.infer_expr(*base, &Expectation::none());
423 let _index_ty = self.infer_expr(*index, &Expectation::none());
424 // FIXME: use `std::ops::Index::Output` to figure out the real return type
425 Ty::Unknown
426 }
427 Expr::Tuple { exprs } => {
428 let mut tys = match &expected.ty {
429 ty_app!(TypeCtor::Tuple { .. }, st) => st
430 .iter()
431 .cloned()
432 .chain(repeat_with(|| self.new_type_var()))
433 .take(exprs.len())
434 .collect::<Vec<_>>(),
435 _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
436 };
437
438 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
439 self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
440 }
441
442 Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
443 }
444 Expr::Array(array) => {
445 let elem_ty = match &expected.ty {
446 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
447 st.as_single().clone()
448 }
449 _ => self.new_type_var(),
450 };
451
452 match array {
453 Array::ElementList(items) => {
454 for expr in items.iter() {
455 self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
456 }
457 }
458 Array::Repeat { initializer, repeat } => {
459 self.infer_expr_coerce(
460 *initializer,
461 &Expectation::has_type(elem_ty.clone()),
462 );
463 self.infer_expr(
464 *repeat,
465 &Expectation::has_type(Ty::simple(TypeCtor::Int(Uncertain::Known(
466 IntTy::usize(),
467 )))),
468 );
469 }
470 }
471
472 Ty::apply_one(TypeCtor::Array, elem_ty)
473 }
474 Expr::Literal(lit) => match lit {
475 Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
476 Literal::String(..) => {
477 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
478 }
479 Literal::ByteString(..) => {
480 let byte_type = Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::u8())));
481 let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
482 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
483 }
484 Literal::Char(..) => Ty::simple(TypeCtor::Char),
485 Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int((*ty).into())),
486 Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float((*ty).into())),
487 },
488 };
489 // use a new type variable if we got Ty::Unknown here
490 let ty = self.insert_type_vars_shallow(ty);
491 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
492 self.write_expr_ty(tgt_expr, ty.clone());
493 ty
494 }
495
496 fn infer_block(
497 &mut self,
498 statements: &[Statement],
499 tail: Option<ExprId>,
500 expected: &Expectation,
501 ) -> Ty {
502 let mut diverges = false;
503 for stmt in statements {
504 match stmt {
505 Statement::Let { pat, type_ref, initializer } => {
506 let decl_ty =
507 type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
508
509 // Always use the declared type when specified
510 let mut ty = decl_ty.clone();
511
512 if let Some(expr) = initializer {
513 let actual_ty =
514 self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
515 if decl_ty == Ty::Unknown {
516 ty = actual_ty;
517 }
518 }
519
520 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
521 self.infer_pat(*pat, &ty, BindingMode::default());
522 }
523 Statement::Expr(expr) => {
524 if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
525 diverges = true;
526 }
527 }
528 }
529 }
530
531 let ty = if let Some(expr) = tail {
532 self.infer_expr_coerce(expr, expected)
533 } else {
534 self.coerce(&Ty::unit(), &expected.ty);
535 Ty::unit()
536 };
537 if diverges {
538 Ty::simple(TypeCtor::Never)
539 } else {
540 ty
541 }
542 }
543
544 fn infer_method_call(
545 &mut self,
546 tgt_expr: ExprId,
547 receiver: ExprId,
548 args: &[ExprId],
549 method_name: &Name,
550 generic_args: Option<&GenericArgs>,
551 ) -> Ty {
552 let receiver_ty = self.infer_expr(receiver, &Expectation::none());
553 let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
554 let resolved = method_resolution::lookup_method(
555 &canonicalized_receiver.value,
556 self.db,
557 method_name,
558 &self.resolver,
559 );
560 let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
561 Some((ty, func)) => {
562 let ty = canonicalized_receiver.decanonicalize_ty(ty);
563 self.write_method_resolution(tgt_expr, func);
564 (ty, self.db.value_ty(func.into()), Some(self.db.generic_params(func.into())))
565 }
566 None => (receiver_ty, Ty::Unknown, None),
567 };
568 let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
569 let method_ty = method_ty.apply_substs(substs);
570 let method_ty = self.insert_type_vars(method_ty);
571 self.register_obligations_for_call(&method_ty);
572 let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
573 Some(sig) => {
574 if !sig.params().is_empty() {
575 (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
576 } else {
577 (Ty::Unknown, Vec::new(), sig.ret().clone())
578 }
579 }
580 None => (Ty::Unknown, Vec::new(), Ty::Unknown),
581 };
582 // Apply autoref so the below unification works correctly
583 // FIXME: return correct autorefs from lookup_method
584 let actual_receiver_ty = match expected_receiver_ty.as_reference() {
585 Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
586 _ => derefed_receiver_ty,
587 };
588 self.unify(&expected_receiver_ty, &actual_receiver_ty);
589
590 self.check_call_arguments(args, &param_tys);
591 let ret_ty = self.normalize_associated_types_in(ret_ty);
592 ret_ty
593 }
594
595 fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
596 // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
597 // We do this in a pretty awful way: first we type-check any arguments
598 // that are not closures, then we type-check the closures. This is so
599 // that we have more information about the types of arguments when we
600 // type-check the functions. This isn't really the right way to do this.
601 for &check_closures in &[false, true] {
602 let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
603 for (&arg, param_ty) in args.iter().zip(param_iter) {
604 let is_closure = match &self.body[arg] {
605 Expr::Lambda { .. } => true,
606 _ => false,
607 };
608
609 if is_closure != check_closures {
610 continue;
611 }
612
613 let param_ty = self.normalize_associated_types_in(param_ty);
614 self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
615 }
616 }
617 }
618
619 fn substs_for_method_call(
620 &mut self,
621 def_generics: Option<Arc<GenericParams>>,
622 generic_args: Option<&GenericArgs>,
623 receiver_ty: &Ty,
624 ) -> Substs {
625 let (parent_param_count, param_count) =
626 def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
627 let mut substs = Vec::with_capacity(parent_param_count + param_count);
628 // Parent arguments are unknown, except for the receiver type
629 if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
630 for param in &parent_generics.params {
631 if param.name == name::SELF_TYPE {
632 substs.push(receiver_ty.clone());
633 } else {
634 substs.push(Ty::Unknown);
635 }
636 }
637 }
638 // handle provided type arguments
639 if let Some(generic_args) = generic_args {
640 // if args are provided, it should be all of them, but we can't rely on that
641 for arg in generic_args.args.iter().take(param_count) {
642 match arg {
643 GenericArg::Type(type_ref) => {
644 let ty = self.make_ty(type_ref);
645 substs.push(ty);
646 }
647 }
648 }
649 };
650 let supplied_params = substs.len();
651 for _ in supplied_params..parent_param_count + param_count {
652 substs.push(Ty::Unknown);
653 }
654 assert_eq!(substs.len(), parent_param_count + param_count);
655 Substs(substs.into())
656 }
657
658 fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
659 if let Ty::Apply(a_ty) = callable_ty {
660 if let TypeCtor::FnDef(def) = a_ty.ctor {
661 let generic_predicates = self.db.generic_predicates(def.into());
662 for predicate in generic_predicates.iter() {
663 let predicate = predicate.clone().subst(&a_ty.parameters);
664 if let Some(obligation) = Obligation::from_predicate(predicate) {
665 self.obligations.push(obligation);
666 }
667 }
668 // add obligation for trait implementation, if this is a trait method
669 match def {
670 CallableDef::FunctionId(f) => {
671 if let ContainerId::TraitId(trait_) = f.lookup(self.db).container {
672 // construct a TraitDef
673 let substs = a_ty.parameters.prefix(
674 self.db
675 .generic_params(trait_.into())
676 .count_params_including_parent(),
677 );
678 self.obligations.push(Obligation::Trait(TraitRef {
679 trait_: trait_.into(),
680 substs,
681 }));
682 }
683 }
684 CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {}
685 }
686 }
687 }
688 }
689}
diff --git a/crates/ra_hir/src/ty/infer/pat.rs b/crates/ra_hir/src/ty/infer/pat.rs
deleted file mode 100644
index a14774607..000000000
--- a/crates/ra_hir/src/ty/infer/pat.rs
+++ /dev/null
@@ -1,189 +0,0 @@
1//! Type inference for patterns.
2
3use std::iter::repeat;
4use std::sync::Arc;
5
6use hir_def::{
7 expr::{BindingAnnotation, Pat, PatId, RecordFieldPat},
8 path::Path,
9 type_ref::Mutability,
10};
11use hir_expand::name::Name;
12use test_utils::tested_by;
13
14use super::{BindingMode, InferenceContext};
15use crate::{
16 db::HirDatabase,
17 ty::{utils::variant_data, Substs, Ty, TypeCtor, TypeWalk},
18};
19
20impl<'a, D: HirDatabase> InferenceContext<'a, D> {
21 fn infer_tuple_struct_pat(
22 &mut self,
23 path: Option<&Path>,
24 subpats: &[PatId],
25 expected: &Ty,
26 default_bm: BindingMode,
27 ) -> Ty {
28 let (ty, def) = self.resolve_variant(path);
29 let var_data = def.map(|it| variant_data(self.db, it));
30 self.unify(&ty, expected);
31
32 let substs = ty.substs().unwrap_or_else(Substs::empty);
33
34 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
35
36 for (i, &subpat) in subpats.iter().enumerate() {
37 let expected_ty = var_data
38 .as_ref()
39 .and_then(|d| d.field(&Name::new_tuple_field(i)))
40 .map_or(Ty::Unknown, |field| field_tys[field].clone())
41 .subst(&substs);
42 let expected_ty = self.normalize_associated_types_in(expected_ty);
43 self.infer_pat(subpat, &expected_ty, default_bm);
44 }
45
46 ty
47 }
48
49 fn infer_record_pat(
50 &mut self,
51 path: Option<&Path>,
52 subpats: &[RecordFieldPat],
53 expected: &Ty,
54 default_bm: BindingMode,
55 id: PatId,
56 ) -> Ty {
57 let (ty, def) = self.resolve_variant(path);
58 let var_data = def.map(|it| variant_data(self.db, it));
59 if let Some(variant) = def {
60 self.write_variant_resolution(id.into(), variant);
61 }
62
63 self.unify(&ty, expected);
64
65 let substs = ty.substs().unwrap_or_else(Substs::empty);
66
67 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
68 for subpat in subpats {
69 let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name));
70 let expected_ty =
71 matching_field.map_or(Ty::Unknown, |field| field_tys[field].clone()).subst(&substs);
72 let expected_ty = self.normalize_associated_types_in(expected_ty);
73 self.infer_pat(subpat.pat, &expected_ty, default_bm);
74 }
75
76 ty
77 }
78
79 pub(super) fn infer_pat(
80 &mut self,
81 pat: PatId,
82 mut expected: &Ty,
83 mut default_bm: BindingMode,
84 ) -> Ty {
85 let body = Arc::clone(&self.body); // avoid borrow checker problem
86
87 let is_non_ref_pat = match &body[pat] {
88 Pat::Tuple(..)
89 | Pat::TupleStruct { .. }
90 | Pat::Record { .. }
91 | Pat::Range { .. }
92 | Pat::Slice { .. } => true,
93 // FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
94 Pat::Path(..) | Pat::Lit(..) => true,
95 Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
96 };
97 if is_non_ref_pat {
98 while let Some((inner, mutability)) = expected.as_reference() {
99 expected = inner;
100 default_bm = match default_bm {
101 BindingMode::Move => BindingMode::Ref(mutability),
102 BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
103 BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
104 }
105 }
106 } else if let Pat::Ref { .. } = &body[pat] {
107 tested_by!(match_ergonomics_ref);
108 // When you encounter a `&pat` pattern, reset to Move.
109 // This is so that `w` is by value: `let (_, &w) = &(1, &2);`
110 default_bm = BindingMode::Move;
111 }
112
113 // Lose mutability.
114 let default_bm = default_bm;
115 let expected = expected;
116
117 let ty = match &body[pat] {
118 Pat::Tuple(ref args) => {
119 let expectations = match expected.as_tuple() {
120 Some(parameters) => &*parameters.0,
121 _ => &[],
122 };
123 let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
124
125 let inner_tys = args
126 .iter()
127 .zip(expectations_iter)
128 .map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
129 .collect();
130
131 Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
132 }
133 Pat::Ref { pat, mutability } => {
134 let expectation = match expected.as_reference() {
135 Some((inner_ty, exp_mut)) => {
136 if *mutability != exp_mut {
137 // FIXME: emit type error?
138 }
139 inner_ty
140 }
141 _ => &Ty::Unknown,
142 };
143 let subty = self.infer_pat(*pat, expectation, default_bm);
144 Ty::apply_one(TypeCtor::Ref(*mutability), subty)
145 }
146 Pat::TupleStruct { path: p, args: subpats } => {
147 self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
148 }
149 Pat::Record { path: p, args: fields } => {
150 self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
151 }
152 Pat::Path(path) => {
153 // FIXME use correct resolver for the surrounding expression
154 let resolver = self.resolver.clone();
155 self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
156 }
157 Pat::Bind { mode, name: _, subpat } => {
158 let mode = if mode == &BindingAnnotation::Unannotated {
159 default_bm
160 } else {
161 BindingMode::convert(*mode)
162 };
163 let inner_ty = if let Some(subpat) = subpat {
164 self.infer_pat(*subpat, expected, default_bm)
165 } else {
166 expected.clone()
167 };
168 let inner_ty = self.insert_type_vars_shallow(inner_ty);
169
170 let bound_ty = match mode {
171 BindingMode::Ref(mutability) => {
172 Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
173 }
174 BindingMode::Move => inner_ty.clone(),
175 };
176 let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
177 self.write_pat_ty(pat, bound_ty);
178 return inner_ty;
179 }
180 _ => Ty::Unknown,
181 };
182 // use a new type variable if we got Ty::Unknown here
183 let ty = self.insert_type_vars_shallow(ty);
184 self.unify(&ty, expected);
185 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
186 self.write_pat_ty(pat, ty.clone());
187 ty
188 }
189}
diff --git a/crates/ra_hir/src/ty/infer/path.rs b/crates/ra_hir/src/ty/infer/path.rs
deleted file mode 100644
index 09ff79728..000000000
--- a/crates/ra_hir/src/ty/infer/path.rs
+++ /dev/null
@@ -1,273 +0,0 @@
1//! Path expression resolution.
2
3use hir_def::{
4 path::{Path, PathSegment},
5 resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
6 AssocItemId, ContainerId, Lookup,
7};
8use hir_expand::name::Name;
9
10use crate::{
11 db::HirDatabase,
12 ty::{method_resolution, Substs, Ty, TypeWalk, ValueTyDefId},
13};
14
15use super::{ExprOrPatId, InferenceContext, TraitRef};
16
17impl<'a, D: HirDatabase> InferenceContext<'a, D> {
18 pub(super) fn infer_path(
19 &mut self,
20 resolver: &Resolver,
21 path: &Path,
22 id: ExprOrPatId,
23 ) -> Option<Ty> {
24 let ty = self.resolve_value_path(resolver, path, id)?;
25 let ty = self.insert_type_vars(ty);
26 let ty = self.normalize_associated_types_in(ty);
27 Some(ty)
28 }
29
30 fn resolve_value_path(
31 &mut self,
32 resolver: &Resolver,
33 path: &Path,
34 id: ExprOrPatId,
35 ) -> Option<Ty> {
36 let (value, self_subst) = if let crate::PathKind::Type(type_ref) = &path.kind {
37 if path.segments.is_empty() {
38 // This can't actually happen syntax-wise
39 return None;
40 }
41 let ty = self.make_ty(type_ref);
42 let remaining_segments_for_ty = &path.segments[..path.segments.len() - 1];
43 let ty = Ty::from_type_relative_path(self.db, resolver, ty, remaining_segments_for_ty);
44 self.resolve_ty_assoc_item(
45 ty,
46 &path.segments.last().expect("path had at least one segment").name,
47 id,
48 )?
49 } else {
50 let value_or_partial = resolver.resolve_path_in_value_ns(self.db, &path)?;
51
52 match value_or_partial {
53 ResolveValueResult::ValueNs(it) => (it, None),
54 ResolveValueResult::Partial(def, remaining_index) => {
55 self.resolve_assoc_item(def, path, remaining_index, id)?
56 }
57 }
58 };
59
60 let typable: ValueTyDefId = match value {
61 ValueNs::LocalBinding(pat) => {
62 let ty = self.result.type_of_pat.get(pat)?.clone();
63 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
64 return Some(ty);
65 }
66 ValueNs::FunctionId(it) => it.into(),
67 ValueNs::ConstId(it) => it.into(),
68 ValueNs::StaticId(it) => it.into(),
69 ValueNs::StructId(it) => it.into(),
70 ValueNs::EnumVariantId(it) => it.into(),
71 };
72
73 let mut ty = self.db.value_ty(typable);
74 if let Some(self_subst) = self_subst {
75 ty = ty.subst(&self_subst);
76 }
77 let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
78 let ty = ty.subst(&substs);
79 Some(ty)
80 }
81
82 fn resolve_assoc_item(
83 &mut self,
84 def: TypeNs,
85 path: &Path,
86 remaining_index: usize,
87 id: ExprOrPatId,
88 ) -> Option<(ValueNs, Option<Substs>)> {
89 assert!(remaining_index < path.segments.len());
90 // there may be more intermediate segments between the resolved one and
91 // the end. Only the last segment needs to be resolved to a value; from
92 // the segments before that, we need to get either a type or a trait ref.
93
94 let resolved_segment = &path.segments[remaining_index - 1];
95 let remaining_segments = &path.segments[remaining_index..];
96 let is_before_last = remaining_segments.len() == 1;
97
98 match (def, is_before_last) {
99 (TypeNs::TraitId(trait_), true) => {
100 let segment =
101 remaining_segments.last().expect("there should be at least one segment here");
102 let trait_ref = TraitRef::from_resolved_path(
103 self.db,
104 &self.resolver,
105 trait_.into(),
106 resolved_segment,
107 None,
108 );
109 self.resolve_trait_assoc_item(trait_ref, segment, id)
110 }
111 (def, _) => {
112 // Either we already have a type (e.g. `Vec::new`), or we have a
113 // trait but it's not the last segment, so the next segment
114 // should resolve to an associated type of that trait (e.g. `<T
115 // as Iterator>::Item::default`)
116 let remaining_segments_for_ty = &remaining_segments[..remaining_segments.len() - 1];
117 let ty = Ty::from_partly_resolved_hir_path(
118 self.db,
119 &self.resolver,
120 def,
121 resolved_segment,
122 remaining_segments_for_ty,
123 );
124 if let Ty::Unknown = ty {
125 return None;
126 }
127
128 let ty = self.insert_type_vars(ty);
129 let ty = self.normalize_associated_types_in(ty);
130
131 let segment =
132 remaining_segments.last().expect("there should be at least one segment here");
133
134 self.resolve_ty_assoc_item(ty, &segment.name, id)
135 }
136 }
137 }
138
139 fn resolve_trait_assoc_item(
140 &mut self,
141 trait_ref: TraitRef,
142 segment: &PathSegment,
143 id: ExprOrPatId,
144 ) -> Option<(ValueNs, Option<Substs>)> {
145 let trait_ = trait_ref.trait_;
146 let item = self
147 .db
148 .trait_data(trait_)
149 .items
150 .iter()
151 .map(|(_name, id)| (*id).into())
152 .find_map(|item| match item {
153 AssocItemId::FunctionId(func) => {
154 if segment.name == self.db.function_data(func).name {
155 Some(AssocItemId::FunctionId(func))
156 } else {
157 None
158 }
159 }
160
161 AssocItemId::ConstId(konst) => {
162 if self.db.const_data(konst).name.as_ref().map_or(false, |n| n == &segment.name)
163 {
164 Some(AssocItemId::ConstId(konst))
165 } else {
166 None
167 }
168 }
169 AssocItemId::TypeAliasId(_) => None,
170 })?;
171 let def = match item {
172 AssocItemId::FunctionId(f) => ValueNs::FunctionId(f),
173 AssocItemId::ConstId(c) => ValueNs::ConstId(c),
174 AssocItemId::TypeAliasId(_) => unreachable!(),
175 };
176 let substs = Substs::build_for_def(self.db, item)
177 .use_parent_substs(&trait_ref.substs)
178 .fill_with_params()
179 .build();
180
181 self.write_assoc_resolution(id, item);
182 Some((def, Some(substs)))
183 }
184
185 fn resolve_ty_assoc_item(
186 &mut self,
187 ty: Ty,
188 name: &Name,
189 id: ExprOrPatId,
190 ) -> Option<(ValueNs, Option<Substs>)> {
191 if let Ty::Unknown = ty {
192 return None;
193 }
194
195 let canonical_ty = self.canonicalizer().canonicalize_ty(ty.clone());
196
197 method_resolution::iterate_method_candidates(
198 &canonical_ty.value,
199 self.db,
200 &self.resolver.clone(),
201 Some(name),
202 method_resolution::LookupMode::Path,
203 move |_ty, item| {
204 let (def, container) = match item {
205 AssocItemId::FunctionId(f) => {
206 (ValueNs::FunctionId(f), f.lookup(self.db).container)
207 }
208 AssocItemId::ConstId(c) => (ValueNs::ConstId(c), c.lookup(self.db).container),
209 AssocItemId::TypeAliasId(_) => unreachable!(),
210 };
211 let substs = match container {
212 ContainerId::ImplId(_) => self.find_self_types(&def, ty.clone()),
213 ContainerId::TraitId(trait_) => {
214 // we're picking this method
215 let trait_substs = Substs::build_for_def(self.db, trait_)
216 .push(ty.clone())
217 .fill(std::iter::repeat_with(|| self.new_type_var()))
218 .build();
219 let substs = Substs::build_for_def(self.db, item)
220 .use_parent_substs(&trait_substs)
221 .fill_with_params()
222 .build();
223 self.obligations.push(super::Obligation::Trait(TraitRef {
224 trait_,
225 substs: trait_substs,
226 }));
227 Some(substs)
228 }
229 ContainerId::ModuleId(_) => None,
230 };
231
232 self.write_assoc_resolution(id, item.into());
233 Some((def, substs))
234 },
235 )
236 }
237
238 fn find_self_types(&self, def: &ValueNs, actual_def_ty: Ty) -> Option<Substs> {
239 if let ValueNs::FunctionId(func) = *def {
240 // We only do the infer if parent has generic params
241 let gen = self.db.generic_params(func.into());
242 if gen.count_parent_params() == 0 {
243 return None;
244 }
245
246 let impl_id = match func.lookup(self.db).container {
247 ContainerId::ImplId(it) => it,
248 _ => return None,
249 };
250 let resolver = impl_id.resolver(self.db);
251 let impl_data = self.db.impl_data(impl_id);
252 let impl_block = Ty::from_hir(self.db, &resolver, &impl_data.target_type);
253 let impl_block_substs = impl_block.substs()?;
254 let actual_substs = actual_def_ty.substs()?;
255
256 let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
257
258 // The following code *link up* the function actual parma type
259 // and impl_block type param index
260 impl_block_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
261 if let Ty::Param { idx, .. } = param {
262 if let Some(s) = new_substs.get_mut(*idx as usize) {
263 *s = pty.clone();
264 }
265 }
266 });
267
268 Some(Substs(new_substs.into()))
269 } else {
270 None
271 }
272 }
273}
diff --git a/crates/ra_hir/src/ty/infer/unify.rs b/crates/ra_hir/src/ty/infer/unify.rs
deleted file mode 100644
index e27bb2f82..000000000
--- a/crates/ra_hir/src/ty/infer/unify.rs
+++ /dev/null
@@ -1,166 +0,0 @@
1//! Unification and canonicalization logic.
2
3use super::{InferenceContext, Obligation};
4use crate::{
5 db::HirDatabase,
6 ty::{
7 Canonical, InEnvironment, InferTy, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty,
8 TypeWalk,
9 },
10 util::make_mut_slice,
11};
12
13impl<'a, D: HirDatabase> InferenceContext<'a, D> {
14 pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
15 where
16 'a: 'b,
17 {
18 Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
19 }
20}
21
22pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
23where
24 'a: 'b,
25{
26 ctx: &'b mut InferenceContext<'a, D>,
27 free_vars: Vec<InferTy>,
28 /// A stack of type variables that is used to detect recursive types (which
29 /// are an error, but we need to protect against them to avoid stack
30 /// overflows).
31 var_stack: Vec<super::TypeVarId>,
32}
33
34pub(super) struct Canonicalized<T> {
35 pub value: Canonical<T>,
36 free_vars: Vec<InferTy>,
37}
38
39impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D>
40where
41 'a: 'b,
42{
43 fn add(&mut self, free_var: InferTy) -> usize {
44 self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
45 let next_index = self.free_vars.len();
46 self.free_vars.push(free_var);
47 next_index
48 })
49 }
50
51 fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty {
52 ty.fold(&mut |ty| match ty {
53 Ty::Infer(tv) => {
54 let inner = tv.to_inner();
55 if self.var_stack.contains(&inner) {
56 // recursive type
57 return tv.fallback_value();
58 }
59 if let Some(known_ty) =
60 self.ctx.var_unification_table.inlined_probe_value(inner).known()
61 {
62 self.var_stack.push(inner);
63 let result = self.do_canonicalize_ty(known_ty.clone());
64 self.var_stack.pop();
65 result
66 } else {
67 let root = self.ctx.var_unification_table.find(inner);
68 let free_var = match tv {
69 InferTy::TypeVar(_) => InferTy::TypeVar(root),
70 InferTy::IntVar(_) => InferTy::IntVar(root),
71 InferTy::FloatVar(_) => InferTy::FloatVar(root),
72 InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
73 };
74 let position = self.add(free_var);
75 Ty::Bound(position as u32)
76 }
77 }
78 _ => ty,
79 })
80 }
81
82 fn do_canonicalize_trait_ref(&mut self, mut trait_ref: TraitRef) -> TraitRef {
83 for ty in make_mut_slice(&mut trait_ref.substs.0) {
84 *ty = self.do_canonicalize_ty(ty.clone());
85 }
86 trait_ref
87 }
88
89 fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
90 Canonicalized {
91 value: Canonical { value: result, num_vars: self.free_vars.len() },
92 free_vars: self.free_vars,
93 }
94 }
95
96 fn do_canonicalize_projection_ty(&mut self, mut projection_ty: ProjectionTy) -> ProjectionTy {
97 for ty in make_mut_slice(&mut projection_ty.parameters.0) {
98 *ty = self.do_canonicalize_ty(ty.clone());
99 }
100 projection_ty
101 }
102
103 fn do_canonicalize_projection_predicate(
104 &mut self,
105 projection: ProjectionPredicate,
106 ) -> ProjectionPredicate {
107 let ty = self.do_canonicalize_ty(projection.ty);
108 let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty);
109
110 ProjectionPredicate { ty, projection_ty }
111 }
112
113 // FIXME: add some point, we need to introduce a `Fold` trait that abstracts
114 // over all the things that can be canonicalized (like Chalk and rustc have)
115
116 pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
117 let result = self.do_canonicalize_ty(ty);
118 self.into_canonicalized(result)
119 }
120
121 pub(crate) fn canonicalize_obligation(
122 mut self,
123 obligation: InEnvironment<Obligation>,
124 ) -> Canonicalized<InEnvironment<Obligation>> {
125 let result = match obligation.value {
126 Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)),
127 Obligation::Projection(pr) => {
128 Obligation::Projection(self.do_canonicalize_projection_predicate(pr))
129 }
130 };
131 self.into_canonicalized(InEnvironment {
132 value: result,
133 environment: obligation.environment,
134 })
135 }
136}
137
138impl<T> Canonicalized<T> {
139 pub fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
140 ty.walk_mut_binders(
141 &mut |ty, binders| match ty {
142 &mut Ty::Bound(idx) => {
143 if idx as usize >= binders && (idx as usize - binders) < self.free_vars.len() {
144 *ty = Ty::Infer(self.free_vars[idx as usize - binders]);
145 }
146 }
147 _ => {}
148 },
149 0,
150 );
151 ty
152 }
153
154 pub fn apply_solution(
155 &self,
156 ctx: &mut InferenceContext<'_, impl HirDatabase>,
157 solution: Canonical<Vec<Ty>>,
158 ) {
159 // the solution may contain new variables, which we need to convert to new inference vars
160 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.new_type_var()).collect());
161 for (i, ty) in solution.value.into_iter().enumerate() {
162 let var = self.free_vars[i];
163 ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
164 }
165 }
166}
diff --git a/crates/ra_hir/src/ty/lower.rs b/crates/ra_hir/src/ty/lower.rs
deleted file mode 100644
index 2d447f1ea..000000000
--- a/crates/ra_hir/src/ty/lower.rs
+++ /dev/null
@@ -1,755 +0,0 @@
1//! Methods for lowering the HIR to types. There are two main cases here:
2//!
3//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
4//! type: The entry point for this is `Ty::from_hir`.
5//! - Building the type for an item: This happens through the `type_for_def` query.
6//!
7//! This usually involves resolving names, collecting generic arguments etc.
8use std::iter;
9use std::sync::Arc;
10
11use hir_def::{
12 builtin_type::BuiltinType,
13 generics::WherePredicate,
14 path::{GenericArg, Path, PathSegment},
15 resolver::{HasResolver, Resolver, TypeNs},
16 type_ref::{TypeBound, TypeRef},
17 AdtId, AstItemDef, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule,
18 LocalStructFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, UnionId, VariantId,
19};
20use ra_arena::map::ArenaMap;
21use ra_db::CrateId;
22
23use super::{
24 FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment, TraitRef,
25 Ty, TypeCtor, TypeWalk,
26};
27use crate::{
28 db::HirDatabase,
29 ty::{
30 primitive::{FloatTy, IntTy},
31 utils::{all_super_traits, associated_type_by_name_including_super_traits, variant_data},
32 },
33 util::make_mut_slice,
34};
35
36impl Ty {
37 pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
38 match type_ref {
39 TypeRef::Never => Ty::simple(TypeCtor::Never),
40 TypeRef::Tuple(inner) => {
41 let inner_tys: Arc<[Ty]> =
42 inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect();
43 Ty::apply(
44 TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
45 Substs(inner_tys),
46 )
47 }
48 TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
49 TypeRef::RawPtr(inner, mutability) => {
50 let inner_ty = Ty::from_hir(db, resolver, inner);
51 Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
52 }
53 TypeRef::Array(inner) => {
54 let inner_ty = Ty::from_hir(db, resolver, inner);
55 Ty::apply_one(TypeCtor::Array, inner_ty)
56 }
57 TypeRef::Slice(inner) => {
58 let inner_ty = Ty::from_hir(db, resolver, inner);
59 Ty::apply_one(TypeCtor::Slice, inner_ty)
60 }
61 TypeRef::Reference(inner, mutability) => {
62 let inner_ty = Ty::from_hir(db, resolver, inner);
63 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
64 }
65 TypeRef::Placeholder => Ty::Unknown,
66 TypeRef::Fn(params) => {
67 let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect());
68 Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
69 }
70 TypeRef::DynTrait(bounds) => {
71 let self_ty = Ty::Bound(0);
72 let predicates = bounds
73 .iter()
74 .flat_map(|b| {
75 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
76 })
77 .collect();
78 Ty::Dyn(predicates)
79 }
80 TypeRef::ImplTrait(bounds) => {
81 let self_ty = Ty::Bound(0);
82 let predicates = bounds
83 .iter()
84 .flat_map(|b| {
85 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
86 })
87 .collect();
88 Ty::Opaque(predicates)
89 }
90 TypeRef::Error => Ty::Unknown,
91 }
92 }
93
94 /// This is only for `generic_predicates_for_param`, where we can't just
95 /// lower the self types of the predicates since that could lead to cycles.
96 /// So we just check here if the `type_ref` resolves to a generic param, and which.
97 fn from_hir_only_param(
98 db: &impl HirDatabase,
99 resolver: &Resolver,
100 type_ref: &TypeRef,
101 ) -> Option<u32> {
102 let path = match type_ref {
103 TypeRef::Path(path) => path,
104 _ => return None,
105 };
106 if let crate::PathKind::Type(_) = &path.kind {
107 return None;
108 }
109 if path.segments.len() > 1 {
110 return None;
111 }
112 let resolution = match resolver.resolve_path_in_type_ns(db, path) {
113 Some((it, None)) => it,
114 _ => return None,
115 };
116 if let TypeNs::GenericParam(idx) = resolution {
117 Some(idx)
118 } else {
119 None
120 }
121 }
122
123 pub(crate) fn from_type_relative_path(
124 db: &impl HirDatabase,
125 resolver: &Resolver,
126 ty: Ty,
127 remaining_segments: &[PathSegment],
128 ) -> Ty {
129 if remaining_segments.len() == 1 {
130 // resolve unselected assoc types
131 let segment = &remaining_segments[0];
132 Ty::select_associated_type(db, resolver, ty, segment)
133 } else if remaining_segments.len() > 1 {
134 // FIXME report error (ambiguous associated type)
135 Ty::Unknown
136 } else {
137 ty
138 }
139 }
140
141 pub(crate) fn from_partly_resolved_hir_path(
142 db: &impl HirDatabase,
143 resolver: &Resolver,
144 resolution: TypeNs,
145 resolved_segment: &PathSegment,
146 remaining_segments: &[PathSegment],
147 ) -> Ty {
148 let ty = match resolution {
149 TypeNs::TraitId(trait_) => {
150 let trait_ref =
151 TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None);
152 return if remaining_segments.len() == 1 {
153 let segment = &remaining_segments[0];
154 let associated_ty = associated_type_by_name_including_super_traits(
155 db,
156 trait_ref.trait_,
157 &segment.name,
158 );
159 match associated_ty {
160 Some(associated_ty) => {
161 // FIXME handle type parameters on the segment
162 Ty::Projection(ProjectionTy {
163 associated_ty,
164 parameters: trait_ref.substs,
165 })
166 }
167 None => {
168 // FIXME: report error (associated type not found)
169 Ty::Unknown
170 }
171 }
172 } else if remaining_segments.len() > 1 {
173 // FIXME report error (ambiguous associated type)
174 Ty::Unknown
175 } else {
176 Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
177 };
178 }
179 TypeNs::GenericParam(idx) => {
180 // FIXME: maybe return name in resolution?
181 let name = resolved_segment.name.clone();
182 Ty::Param { idx, name }
183 }
184 TypeNs::SelfType(impl_id) => {
185 let impl_data = db.impl_data(impl_id);
186 let resolver = impl_id.resolver(db);
187 Ty::from_hir(db, &resolver, &impl_data.target_type)
188 }
189 TypeNs::AdtSelfType(adt) => db.ty(adt.into()),
190
191 TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
192 TypeNs::BuiltinType(it) => {
193 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
194 }
195 TypeNs::TypeAliasId(it) => {
196 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
197 }
198 // FIXME: report error
199 TypeNs::EnumVariantId(_) => return Ty::Unknown,
200 };
201
202 Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
203 }
204
205 pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
206 // Resolve the path (in type namespace)
207 if let crate::PathKind::Type(type_ref) = &path.kind {
208 let ty = Ty::from_hir(db, resolver, &type_ref);
209 let remaining_segments = &path.segments[..];
210 return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
211 }
212 let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
213 Some(it) => it,
214 None => return Ty::Unknown,
215 };
216 let (resolved_segment, remaining_segments) = match remaining_index {
217 None => (
218 path.segments.last().expect("resolved path has at least one element"),
219 &[] as &[PathSegment],
220 ),
221 Some(i) => (&path.segments[i - 1], &path.segments[i..]),
222 };
223 Ty::from_partly_resolved_hir_path(
224 db,
225 resolver,
226 resolution,
227 resolved_segment,
228 remaining_segments,
229 )
230 }
231
232 fn select_associated_type(
233 db: &impl HirDatabase,
234 resolver: &Resolver,
235 self_ty: Ty,
236 segment: &PathSegment,
237 ) -> Ty {
238 let param_idx = match self_ty {
239 Ty::Param { idx, .. } => idx,
240 _ => return Ty::Unknown, // Error: Ambiguous associated type
241 };
242 let def = match resolver.generic_def() {
243 Some(def) => def,
244 None => return Ty::Unknown, // this can't actually happen
245 };
246 let predicates = db.generic_predicates_for_param(def.into(), param_idx);
247 let traits_from_env = predicates.iter().filter_map(|pred| match pred {
248 GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
249 _ => None,
250 });
251 let traits = traits_from_env.flat_map(|t| all_super_traits(db, t));
252 for t in traits {
253 if let Some(associated_ty) = db.trait_data(t).associated_type_by_name(&segment.name) {
254 let substs =
255 Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
256 // FIXME handle type parameters on the segment
257 return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
258 }
259 }
260 Ty::Unknown
261 }
262
263 fn from_hir_path_inner(
264 db: &impl HirDatabase,
265 resolver: &Resolver,
266 segment: &PathSegment,
267 typable: TyDefId,
268 ) -> Ty {
269 let generic_def = match typable {
270 TyDefId::BuiltinType(_) => None,
271 TyDefId::AdtId(it) => Some(it.into()),
272 TyDefId::TypeAliasId(it) => Some(it.into()),
273 };
274 let substs = substs_from_path_segment(db, resolver, segment, generic_def, false);
275 db.ty(typable).subst(&substs)
276 }
277
278 /// Collect generic arguments from a path into a `Substs`. See also
279 /// `create_substs_for_ast_path` and `def_to_ty` in rustc.
280 pub(super) fn substs_from_path(
281 db: &impl HirDatabase,
282 resolver: &Resolver,
283 path: &Path,
284 // Note that we don't call `db.value_type(resolved)` here,
285 // `ValueTyDefId` is just a convenient way to pass generics and
286 // special-case enum variants
287 resolved: ValueTyDefId,
288 ) -> Substs {
289 let last = path.segments.last().expect("path should have at least one segment");
290 let (segment, generic_def) = match resolved {
291 ValueTyDefId::FunctionId(it) => (last, Some(it.into())),
292 ValueTyDefId::StructId(it) => (last, Some(it.into())),
293 ValueTyDefId::ConstId(it) => (last, Some(it.into())),
294 ValueTyDefId::StaticId(_) => (last, None),
295 ValueTyDefId::EnumVariantId(var) => {
296 // the generic args for an enum variant may be either specified
297 // on the segment referring to the enum, or on the segment
298 // referring to the variant. So `Option::<T>::None` and
299 // `Option::None::<T>` are both allowed (though the former is
300 // preferred). See also `def_ids_for_path_segments` in rustc.
301 let len = path.segments.len();
302 let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
303 // Option::<T>::None
304 &path.segments[len - 2]
305 } else {
306 // Option::None::<T>
307 last
308 };
309 (segment, Some(var.parent.into()))
310 }
311 };
312 substs_from_path_segment(db, resolver, segment, generic_def, false)
313 }
314}
315
316pub(super) fn substs_from_path_segment(
317 db: &impl HirDatabase,
318 resolver: &Resolver,
319 segment: &PathSegment,
320 def_generic: Option<GenericDefId>,
321 add_self_param: bool,
322) -> Substs {
323 let mut substs = Vec::new();
324 let def_generics = def_generic.map(|def| db.generic_params(def.into()));
325
326 let (parent_param_count, param_count) =
327 def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
328 substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
329 if add_self_param {
330 // FIXME this add_self_param argument is kind of a hack: Traits have the
331 // Self type as an implicit first type parameter, but it can't be
332 // actually provided in the type arguments
333 // (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
334 substs.push(Ty::Unknown);
335 }
336 if let Some(generic_args) = &segment.args_and_bindings {
337 // if args are provided, it should be all of them, but we can't rely on that
338 let self_param_correction = if add_self_param { 1 } else { 0 };
339 let param_count = param_count - self_param_correction;
340 for arg in generic_args.args.iter().take(param_count) {
341 match arg {
342 GenericArg::Type(type_ref) => {
343 let ty = Ty::from_hir(db, resolver, type_ref);
344 substs.push(ty);
345 }
346 }
347 }
348 }
349 // add placeholders for args that were not provided
350 let supplied_params = substs.len();
351 for _ in supplied_params..parent_param_count + param_count {
352 substs.push(Ty::Unknown);
353 }
354 assert_eq!(substs.len(), parent_param_count + param_count);
355
356 // handle defaults
357 if let Some(def_generic) = def_generic {
358 let default_substs = db.generic_defaults(def_generic.into());
359 assert_eq!(substs.len(), default_substs.len());
360
361 for (i, default_ty) in default_substs.iter().enumerate() {
362 if substs[i] == Ty::Unknown {
363 substs[i] = default_ty.clone();
364 }
365 }
366 }
367
368 Substs(substs.into())
369}
370
371impl TraitRef {
372 pub(crate) fn from_path(
373 db: &impl HirDatabase,
374 resolver: &Resolver,
375 path: &Path,
376 explicit_self_ty: Option<Ty>,
377 ) -> Option<Self> {
378 let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
379 TypeNs::TraitId(tr) => tr,
380 _ => return None,
381 };
382 let segment = path.segments.last().expect("path should have at least one segment");
383 Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty))
384 }
385
386 pub(super) fn from_resolved_path(
387 db: &impl HirDatabase,
388 resolver: &Resolver,
389 resolved: TraitId,
390 segment: &PathSegment,
391 explicit_self_ty: Option<Ty>,
392 ) -> Self {
393 let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
394 if let Some(self_ty) = explicit_self_ty {
395 make_mut_slice(&mut substs.0)[0] = self_ty;
396 }
397 TraitRef { trait_: resolved, substs }
398 }
399
400 pub(crate) fn from_hir(
401 db: &impl HirDatabase,
402 resolver: &Resolver,
403 type_ref: &TypeRef,
404 explicit_self_ty: Option<Ty>,
405 ) -> Option<Self> {
406 let path = match type_ref {
407 TypeRef::Path(path) => path,
408 _ => return None,
409 };
410 TraitRef::from_path(db, resolver, path, explicit_self_ty)
411 }
412
413 fn substs_from_path(
414 db: &impl HirDatabase,
415 resolver: &Resolver,
416 segment: &PathSegment,
417 resolved: TraitId,
418 ) -> Substs {
419 let has_self_param =
420 segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
421 substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
422 }
423
424 pub(crate) fn for_trait(db: &impl HirDatabase, trait_: TraitId) -> TraitRef {
425 let substs = Substs::identity(&db.generic_params(trait_.into()));
426 TraitRef { trait_, substs }
427 }
428
429 pub(crate) fn from_type_bound(
430 db: &impl HirDatabase,
431 resolver: &Resolver,
432 bound: &TypeBound,
433 self_ty: Ty,
434 ) -> Option<TraitRef> {
435 match bound {
436 TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
437 TypeBound::Error => None,
438 }
439 }
440}
441
442impl GenericPredicate {
443 pub(crate) fn from_where_predicate<'a>(
444 db: &'a impl HirDatabase,
445 resolver: &'a Resolver,
446 where_predicate: &'a WherePredicate,
447 ) -> impl Iterator<Item = GenericPredicate> + 'a {
448 let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
449 GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
450 }
451
452 pub(crate) fn from_type_bound<'a>(
453 db: &'a impl HirDatabase,
454 resolver: &'a Resolver,
455 bound: &'a TypeBound,
456 self_ty: Ty,
457 ) -> impl Iterator<Item = GenericPredicate> + 'a {
458 let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
459 iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
460 .chain(
461 trait_ref.into_iter().flat_map(move |tr| {
462 assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
463 }),
464 )
465 }
466}
467
468fn assoc_type_bindings_from_type_bound<'a>(
469 db: &'a impl HirDatabase,
470 resolver: &'a Resolver,
471 bound: &'a TypeBound,
472 trait_ref: TraitRef,
473) -> impl Iterator<Item = GenericPredicate> + 'a {
474 let last_segment = match bound {
475 TypeBound::Path(path) => path.segments.last(),
476 TypeBound::Error => None,
477 };
478 last_segment
479 .into_iter()
480 .flat_map(|segment| segment.args_and_bindings.iter())
481 .flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
482 .map(move |(name, type_ref)| {
483 let associated_ty =
484 associated_type_by_name_including_super_traits(db, trait_ref.trait_, &name);
485 let associated_ty = match associated_ty {
486 None => return GenericPredicate::Error,
487 Some(t) => t,
488 };
489 let projection_ty =
490 ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
491 let ty = Ty::from_hir(db, resolver, type_ref);
492 let projection_predicate = ProjectionPredicate { projection_ty, ty };
493 GenericPredicate::Projection(projection_predicate)
494 })
495}
496
497/// Build the signature of a callable item (function, struct or enum variant).
498pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
499 match def {
500 CallableDef::FunctionId(f) => fn_sig_for_fn(db, f),
501 CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s),
502 CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
503 }
504}
505
506/// Build the type of all specific fields of a struct or enum variant.
507pub(crate) fn field_types_query(
508 db: &impl HirDatabase,
509 variant_id: VariantId,
510) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
511 let var_data = variant_data(db, variant_id);
512 let resolver = match variant_id {
513 VariantId::StructId(it) => it.resolver(db),
514 VariantId::UnionId(it) => it.resolver(db),
515 VariantId::EnumVariantId(it) => it.parent.resolver(db),
516 };
517 let mut res = ArenaMap::default();
518 for (field_id, field_data) in var_data.fields().iter() {
519 res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref))
520 }
521 Arc::new(res)
522}
523
524/// This query exists only to be used when resolving short-hand associated types
525/// like `T::Item`.
526///
527/// See the analogous query in rustc and its comment:
528/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
529/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
530/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
531/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
532pub(crate) fn generic_predicates_for_param_query(
533 db: &impl HirDatabase,
534 def: GenericDefId,
535 param_idx: u32,
536) -> Arc<[GenericPredicate]> {
537 let resolver = def.resolver(db);
538 resolver
539 .where_predicates_in_scope()
540 // we have to filter out all other predicates *first*, before attempting to lower them
541 .filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
542 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
543 .collect()
544}
545
546impl TraitEnvironment {
547 pub(crate) fn lower(db: &impl HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> {
548 let predicates = resolver
549 .where_predicates_in_scope()
550 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
551 .collect::<Vec<_>>();
552
553 Arc::new(TraitEnvironment { predicates })
554 }
555}
556
557/// Resolve the where clause(s) of an item with generics.
558pub(crate) fn generic_predicates_query(
559 db: &impl HirDatabase,
560 def: GenericDefId,
561) -> Arc<[GenericPredicate]> {
562 let resolver = def.resolver(db);
563 resolver
564 .where_predicates_in_scope()
565 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
566 .collect()
567}
568
569/// Resolve the default type params from generics
570pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs {
571 let resolver = def.resolver(db);
572 let generic_params = db.generic_params(def.into());
573
574 let defaults = generic_params
575 .params_including_parent()
576 .into_iter()
577 .map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t)))
578 .collect();
579
580 Substs(defaults)
581}
582
583fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig {
584 let data = db.function_data(def);
585 let resolver = def.resolver(db);
586 let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
587 let ret = Ty::from_hir(db, &resolver, &data.ret_type);
588 FnSig::from_params_and_return(params, ret)
589}
590
591/// Build the declared type of a function. This should not need to look at the
592/// function body.
593fn type_for_fn(db: &impl HirDatabase, def: FunctionId) -> Ty {
594 let generics = db.generic_params(def.into());
595 let substs = Substs::identity(&generics);
596 Ty::apply(TypeCtor::FnDef(def.into()), substs)
597}
598
599/// Build the declared type of a const.
600fn type_for_const(db: &impl HirDatabase, def: ConstId) -> Ty {
601 let data = db.const_data(def);
602 let resolver = def.resolver(db);
603
604 Ty::from_hir(db, &resolver, &data.type_ref)
605}
606
607/// Build the declared type of a static.
608fn type_for_static(db: &impl HirDatabase, def: StaticId) -> Ty {
609 let data = db.static_data(def);
610 let resolver = def.resolver(db);
611
612 Ty::from_hir(db, &resolver, &data.type_ref)
613}
614
615/// Build the declared type of a static.
616fn type_for_builtin(def: BuiltinType) -> Ty {
617 Ty::simple(match def {
618 BuiltinType::Char => TypeCtor::Char,
619 BuiltinType::Bool => TypeCtor::Bool,
620 BuiltinType::Str => TypeCtor::Str,
621 BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
622 BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
623 })
624}
625
626fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig {
627 let struct_data = db.struct_data(def.into());
628 let fields = struct_data.variant_data.fields();
629 let resolver = def.resolver(db);
630 let params = fields
631 .iter()
632 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
633 .collect::<Vec<_>>();
634 let ret = type_for_adt(db, def.into());
635 FnSig::from_params_and_return(params, ret)
636}
637
638/// Build the type of a tuple struct constructor.
639fn type_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> Ty {
640 let struct_data = db.struct_data(def.into());
641 if struct_data.variant_data.is_unit() {
642 return type_for_adt(db, def.into()); // Unit struct
643 }
644 let generics = db.generic_params(def.into());
645 let substs = Substs::identity(&generics);
646 Ty::apply(TypeCtor::FnDef(def.into()), substs)
647}
648
649fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig {
650 let enum_data = db.enum_data(def.parent);
651 let var_data = &enum_data.variants[def.local_id];
652 let fields = var_data.variant_data.fields();
653 let resolver = def.parent.resolver(db);
654 let params = fields
655 .iter()
656 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
657 .collect::<Vec<_>>();
658 let generics = db.generic_params(def.parent.into());
659 let substs = Substs::identity(&generics);
660 let ret = type_for_adt(db, def.parent.into()).subst(&substs);
661 FnSig::from_params_and_return(params, ret)
662}
663
664/// Build the type of a tuple enum variant constructor.
665fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> Ty {
666 let enum_data = db.enum_data(def.parent);
667 let var_data = &enum_data.variants[def.local_id].variant_data;
668 if var_data.is_unit() {
669 return type_for_adt(db, def.parent.into()); // Unit variant
670 }
671 let generics = db.generic_params(def.parent.into());
672 let substs = Substs::identity(&generics);
673 Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs)
674}
675
676fn type_for_adt(db: &impl HirDatabase, adt: AdtId) -> Ty {
677 let generics = db.generic_params(adt.into());
678 Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics))
679}
680
681fn type_for_type_alias(db: &impl HirDatabase, t: TypeAliasId) -> Ty {
682 let generics = db.generic_params(t.into());
683 let resolver = t.resolver(db);
684 let type_ref = &db.type_alias_data(t).type_ref;
685 let substs = Substs::identity(&generics);
686 let inner = Ty::from_hir(db, &resolver, type_ref.as_ref().unwrap_or(&TypeRef::Error));
687 inner.subst(&substs)
688}
689
690#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
691pub enum CallableDef {
692 FunctionId(FunctionId),
693 StructId(StructId),
694 EnumVariantId(EnumVariantId),
695}
696impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId);
697
698impl CallableDef {
699 pub fn krate(self, db: &impl HirDatabase) -> CrateId {
700 match self {
701 CallableDef::FunctionId(f) => f.lookup(db).module(db).krate,
702 CallableDef::StructId(s) => s.module(db).krate,
703 CallableDef::EnumVariantId(e) => e.parent.module(db).krate,
704 }
705 }
706}
707
708impl From<CallableDef> for GenericDefId {
709 fn from(def: CallableDef) -> GenericDefId {
710 match def {
711 CallableDef::FunctionId(f) => f.into(),
712 CallableDef::StructId(s) => s.into(),
713 CallableDef::EnumVariantId(e) => e.into(),
714 }
715 }
716}
717
718#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
719pub enum TyDefId {
720 BuiltinType(BuiltinType),
721 AdtId(AdtId),
722 TypeAliasId(TypeAliasId),
723}
724impl_froms!(TyDefId: BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId);
725
726#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
727pub enum ValueTyDefId {
728 FunctionId(FunctionId),
729 StructId(StructId),
730 EnumVariantId(EnumVariantId),
731 ConstId(ConstId),
732 StaticId(StaticId),
733}
734impl_froms!(ValueTyDefId: FunctionId, StructId, EnumVariantId, ConstId, StaticId);
735
736/// Build the declared type of an item. This depends on the namespace; e.g. for
737/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
738/// the constructor function `(usize) -> Foo` which lives in the values
739/// namespace.
740pub(crate) fn ty_query(db: &impl HirDatabase, def: TyDefId) -> Ty {
741 match def {
742 TyDefId::BuiltinType(it) => type_for_builtin(it),
743 TyDefId::AdtId(it) => type_for_adt(db, it),
744 TyDefId::TypeAliasId(it) => type_for_type_alias(db, it),
745 }
746}
747pub(crate) fn value_ty_query(db: &impl HirDatabase, def: ValueTyDefId) -> Ty {
748 match def {
749 ValueTyDefId::FunctionId(it) => type_for_fn(db, it),
750 ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
751 ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
752 ValueTyDefId::ConstId(it) => type_for_const(db, it),
753 ValueTyDefId::StaticId(it) => type_for_static(db, it),
754 }
755}
diff --git a/crates/ra_hir/src/ty/method_resolution.rs b/crates/ra_hir/src/ty/method_resolution.rs
deleted file mode 100644
index 5cc249855..000000000
--- a/crates/ra_hir/src/ty/method_resolution.rs
+++ /dev/null
@@ -1,362 +0,0 @@
1//! This module is concerned with finding methods that a given type provides.
2//! For details about how this works in rustc, see the method lookup page in the
3//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
4//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
5use std::sync::Arc;
6
7use arrayvec::ArrayVec;
8use hir_def::{
9 lang_item::LangItemTarget, resolver::HasResolver, resolver::Resolver, type_ref::Mutability,
10 AssocItemId, AstItemDef, FunctionId, HasModule, ImplId, TraitId,
11};
12use hir_expand::name::Name;
13use ra_db::CrateId;
14use ra_prof::profile;
15use rustc_hash::FxHashMap;
16
17use crate::{
18 db::HirDatabase,
19 ty::primitive::{FloatBitness, Uncertain},
20 ty::{utils::all_super_traits, Ty, TypeCtor},
21};
22
23use super::{autoderef, Canonical, InEnvironment, TraitEnvironment, TraitRef};
24
25/// This is used as a key for indexing impls.
26#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
27pub enum TyFingerprint {
28 Apply(TypeCtor),
29}
30
31impl TyFingerprint {
32 /// Creates a TyFingerprint for looking up an impl. Only certain types can
33 /// have impls: if we have some `struct S`, we can have an `impl S`, but not
34 /// `impl &S`. Hence, this will return `None` for reference types and such.
35 fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
36 match ty {
37 Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
38 _ => None,
39 }
40 }
41}
42
43#[derive(Debug, PartialEq, Eq)]
44pub struct CrateImplBlocks {
45 impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
46 impls_by_trait: FxHashMap<TraitId, Vec<ImplId>>,
47}
48
49impl CrateImplBlocks {
50 pub(crate) fn impls_in_crate_query(
51 db: &impl HirDatabase,
52 krate: CrateId,
53 ) -> Arc<CrateImplBlocks> {
54 let _p = profile("impls_in_crate_query");
55 let mut res =
56 CrateImplBlocks { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
57
58 let crate_def_map = db.crate_def_map(krate);
59 for (_module_id, module_data) in crate_def_map.modules.iter() {
60 for &impl_id in module_data.impls.iter() {
61 let impl_data = db.impl_data(impl_id);
62 let resolver = impl_id.resolver(db);
63
64 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
65
66 match &impl_data.target_trait {
67 Some(trait_ref) => {
68 if let Some(tr) =
69 TraitRef::from_hir(db, &resolver, &trait_ref, Some(target_ty))
70 {
71 res.impls_by_trait.entry(tr.trait_).or_default().push(impl_id);
72 }
73 }
74 None => {
75 if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
76 res.impls.entry(target_ty_fp).or_default().push(impl_id);
77 }
78 }
79 }
80 }
81 }
82
83 Arc::new(res)
84 }
85 pub fn lookup_impl_blocks(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
86 let fingerprint = TyFingerprint::for_impl(ty);
87 fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
88 }
89
90 pub fn lookup_impl_blocks_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
91 self.impls_by_trait.get(&tr).into_iter().flatten().copied()
92 }
93
94 pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
95 self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
96 }
97}
98
99impl Ty {
100 pub(crate) fn def_crates(
101 &self,
102 db: &impl HirDatabase,
103 cur_crate: CrateId,
104 ) -> Option<ArrayVec<[CrateId; 2]>> {
105 // Types like slice can have inherent impls in several crates, (core and alloc).
106 // The corresponding impls are marked with lang items, so we can use them to find the required crates.
107 macro_rules! lang_item_crate {
108 ($($name:expr),+ $(,)?) => {{
109 let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
110 $(
111 v.extend(db.lang_item(cur_crate, $name.into()));
112 )+
113 v
114 }};
115 }
116
117 let lang_item_targets = match self {
118 Ty::Apply(a_ty) => match a_ty.ctor {
119 TypeCtor::Adt(def_id) => {
120 return Some(std::iter::once(def_id.module(db).krate).collect())
121 }
122 TypeCtor::Bool => lang_item_crate!("bool"),
123 TypeCtor::Char => lang_item_crate!("char"),
124 TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
125 // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
126 FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
127 FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
128 },
129 TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
130 TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
131 TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
132 TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
133 TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
134 _ => return None,
135 },
136 _ => return None,
137 };
138 let res = lang_item_targets
139 .into_iter()
140 .filter_map(|it| match it {
141 LangItemTarget::ImplBlockId(it) => Some(it),
142 _ => None,
143 })
144 .map(|it| it.module(db).krate)
145 .collect();
146 Some(res)
147 }
148}
149/// Look up the method with the given name, returning the actual autoderefed
150/// receiver type (but without autoref applied yet).
151pub(crate) fn lookup_method(
152 ty: &Canonical<Ty>,
153 db: &impl HirDatabase,
154 name: &Name,
155 resolver: &Resolver,
156) -> Option<(Ty, FunctionId)> {
157 iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| match f
158 {
159 AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
160 _ => None,
161 })
162}
163
164/// Whether we're looking up a dotted method call (like `v.len()`) or a path
165/// (like `Vec::new`).
166#[derive(Copy, Clone, Debug, PartialEq, Eq)]
167pub enum LookupMode {
168 /// Looking up a method call like `v.len()`: We only consider candidates
169 /// that have a `self` parameter, and do autoderef.
170 MethodCall,
171 /// Looking up a path like `Vec::new` or `Vec::default`: We consider all
172 /// candidates including associated constants, but don't do autoderef.
173 Path,
174}
175
176// This would be nicer if it just returned an iterator, but that runs into
177// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
178// FIXME add a context type here?
179pub(crate) fn iterate_method_candidates<T>(
180 ty: &Canonical<Ty>,
181 db: &impl HirDatabase,
182 resolver: &Resolver,
183 name: Option<&Name>,
184 mode: LookupMode,
185 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
186) -> Option<T> {
187 let krate = resolver.krate()?;
188 match mode {
189 LookupMode::MethodCall => {
190 // For method calls, rust first does any number of autoderef, and then one
191 // autoref (i.e. when the method takes &self or &mut self). We just ignore
192 // the autoref currently -- when we find a method matching the given name,
193 // we assume it fits.
194
195 // Also note that when we've got a receiver like &S, even if the method we
196 // find in the end takes &self, we still do the autoderef step (just as
197 // rustc does an autoderef and then autoref again).
198 let environment = TraitEnvironment::lower(db, resolver);
199 let ty = InEnvironment { value: ty.clone(), environment };
200 for derefed_ty in autoderef::autoderef(db, resolver.krate(), ty) {
201 if let Some(result) =
202 iterate_inherent_methods(&derefed_ty, db, name, mode, krate, &mut callback)
203 {
204 return Some(result);
205 }
206 if let Some(result) = iterate_trait_method_candidates(
207 &derefed_ty,
208 db,
209 resolver,
210 name,
211 mode,
212 &mut callback,
213 ) {
214 return Some(result);
215 }
216 }
217 }
218 LookupMode::Path => {
219 // No autoderef for path lookups
220 if let Some(result) =
221 iterate_inherent_methods(&ty, db, name, mode, krate.into(), &mut callback)
222 {
223 return Some(result);
224 }
225 if let Some(result) =
226 iterate_trait_method_candidates(&ty, db, resolver, name, mode, &mut callback)
227 {
228 return Some(result);
229 }
230 }
231 }
232 None
233}
234
235fn iterate_trait_method_candidates<T>(
236 ty: &Canonical<Ty>,
237 db: &impl HirDatabase,
238 resolver: &Resolver,
239 name: Option<&Name>,
240 mode: LookupMode,
241 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
242) -> Option<T> {
243 let krate = resolver.krate()?;
244 // FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
245 let env = TraitEnvironment::lower(db, resolver);
246 // if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
247 let inherent_trait = ty.value.inherent_trait().into_iter();
248 // if we have `T: Trait` in the param env, the trait doesn't need to be in scope
249 let traits_from_env = env
250 .trait_predicates_for_self_ty(&ty.value)
251 .map(|tr| tr.trait_)
252 .flat_map(|t| all_super_traits(db, t));
253 let traits =
254 inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db).into_iter());
255 'traits: for t in traits {
256 let data = db.trait_data(t);
257
258 // we'll be lazy about checking whether the type implements the
259 // trait, but if we find out it doesn't, we'll skip the rest of the
260 // iteration
261 let mut known_implemented = false;
262 for (_name, item) in data.items.iter() {
263 if !is_valid_candidate(db, name, mode, (*item).into()) {
264 continue;
265 }
266 if !known_implemented {
267 let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
268 if db.trait_solve(krate.into(), goal).is_none() {
269 continue 'traits;
270 }
271 }
272 known_implemented = true;
273 if let Some(result) = callback(&ty.value, (*item).into()) {
274 return Some(result);
275 }
276 }
277 }
278 None
279}
280
281fn iterate_inherent_methods<T>(
282 ty: &Canonical<Ty>,
283 db: &impl HirDatabase,
284 name: Option<&Name>,
285 mode: LookupMode,
286 krate: CrateId,
287 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
288) -> Option<T> {
289 for krate in ty.value.def_crates(db, krate)? {
290 let impls = db.impls_in_crate(krate);
291
292 for impl_block in impls.lookup_impl_blocks(&ty.value) {
293 for &item in db.impl_data(impl_block).items.iter() {
294 if !is_valid_candidate(db, name, mode, item) {
295 continue;
296 }
297 if let Some(result) = callback(&ty.value, item.into()) {
298 return Some(result);
299 }
300 }
301 }
302 }
303 None
304}
305
306fn is_valid_candidate(
307 db: &impl HirDatabase,
308 name: Option<&Name>,
309 mode: LookupMode,
310 item: AssocItemId,
311) -> bool {
312 match item {
313 AssocItemId::FunctionId(m) => {
314 let data = db.function_data(m);
315 name.map_or(true, |name| &data.name == name)
316 && (data.has_self_param || mode == LookupMode::Path)
317 }
318 AssocItemId::ConstId(c) => {
319 let data = db.const_data(c);
320 name.map_or(true, |name| data.name.as_ref() == Some(name)) && (mode == LookupMode::Path)
321 }
322 _ => false,
323 }
324}
325
326pub(crate) fn implements_trait(
327 ty: &Canonical<Ty>,
328 db: &impl HirDatabase,
329 resolver: &Resolver,
330 krate: CrateId,
331 trait_: TraitId,
332) -> bool {
333 if ty.value.inherent_trait() == Some(trait_) {
334 // FIXME this is a bit of a hack, since Chalk should say the same thing
335 // anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
336 return true;
337 }
338 let env = TraitEnvironment::lower(db, resolver);
339 let goal = generic_implements_goal(db, env, trait_, ty.clone());
340 let solution = db.trait_solve(krate.into(), goal);
341
342 solution.is_some()
343}
344
345/// This creates Substs for a trait with the given Self type and type variables
346/// for all other parameters, to query Chalk with it.
347fn generic_implements_goal(
348 db: &impl HirDatabase,
349 env: Arc<TraitEnvironment>,
350 trait_: TraitId,
351 self_ty: Canonical<Ty>,
352) -> Canonical<InEnvironment<super::Obligation>> {
353 let num_vars = self_ty.num_vars;
354 let substs = super::Substs::build_for_def(db, trait_)
355 .push(self_ty.value)
356 .fill_with_bound_vars(num_vars as u32)
357 .build();
358 let num_vars = substs.len() - 1 + self_ty.num_vars;
359 let trait_ref = TraitRef { trait_, substs };
360 let obligation = super::Obligation::Trait(trait_ref);
361 Canonical { num_vars, value: InEnvironment::new(env, obligation) }
362}
diff --git a/crates/ra_hir/src/ty/op.rs b/crates/ra_hir/src/ty/op.rs
deleted file mode 100644
index cc6e244f4..000000000
--- a/crates/ra_hir/src/ty/op.rs
+++ /dev/null
@@ -1,50 +0,0 @@
1//! FIXME: write short doc here
2use hir_def::expr::{BinaryOp, CmpOp};
3
4use super::{InferTy, Ty, TypeCtor};
5use crate::ty::ApplicationTy;
6
7pub(super) fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty {
8 match op {
9 BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => Ty::simple(TypeCtor::Bool),
10 BinaryOp::Assignment { .. } => Ty::unit(),
11 BinaryOp::ArithOp(_) => match rhs_ty {
12 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
13 TypeCtor::Int(..) | TypeCtor::Float(..) => rhs_ty,
14 _ => Ty::Unknown,
15 },
16 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => rhs_ty,
17 _ => Ty::Unknown,
18 },
19 }
20}
21
22pub(super) fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty {
23 match op {
24 BinaryOp::LogicOp(..) => Ty::simple(TypeCtor::Bool),
25 BinaryOp::Assignment { op: None } | BinaryOp::CmpOp(CmpOp::Eq { negated: _ }) => {
26 match lhs_ty {
27 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
28 TypeCtor::Int(..)
29 | TypeCtor::Float(..)
30 | TypeCtor::Str
31 | TypeCtor::Char
32 | TypeCtor::Bool => lhs_ty,
33 _ => Ty::Unknown,
34 },
35 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
36 _ => Ty::Unknown,
37 }
38 }
39 BinaryOp::CmpOp(CmpOp::Ord { .. })
40 | BinaryOp::Assignment { op: Some(_) }
41 | BinaryOp::ArithOp(_) => match lhs_ty {
42 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
43 TypeCtor::Int(..) | TypeCtor::Float(..) => lhs_ty,
44 _ => Ty::Unknown,
45 },
46 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
47 _ => Ty::Unknown,
48 },
49 }
50}
diff --git a/crates/ra_hir/src/ty/primitive.rs b/crates/ra_hir/src/ty/primitive.rs
deleted file mode 100644
index 12dc96572..000000000
--- a/crates/ra_hir/src/ty/primitive.rs
+++ /dev/null
@@ -1,3 +0,0 @@
1//! FIXME: write short doc here
2
3pub use hir_ty::primitive::{FloatBitness, FloatTy, IntBitness, IntTy, Signedness, Uncertain};
diff --git a/crates/ra_hir/src/ty/tests.rs b/crates/ra_hir/src/ty/tests.rs
deleted file mode 100644
index 98eb863cb..000000000
--- a/crates/ra_hir/src/ty/tests.rs
+++ /dev/null
@@ -1,4896 +0,0 @@
1mod never_type;
2mod coercion;
3
4use std::fmt::Write;
5use std::sync::Arc;
6
7use insta::assert_snapshot;
8use ra_db::{fixture::WithFixture, salsa::Database, FilePosition, SourceDatabase};
9use ra_syntax::{
10 algo,
11 ast::{self, AstNode},
12 SyntaxKind::*,
13};
14use rustc_hash::FxHashSet;
15use test_utils::covers;
16
17use crate::{
18 expr::BodySourceMap, test_db::TestDB, ty::display::HirDisplay, ty::InferenceResult, Source,
19 SourceAnalyzer,
20};
21
22// These tests compare the inference results for all expressions in a file
23// against snapshots of the expected results using insta. Use cargo-insta to
24// update the snapshots.
25
26#[test]
27fn cfg_impl_block() {
28 let (db, pos) = TestDB::with_position(
29 r#"
30//- /main.rs crate:main deps:foo cfg:test
31use foo::S as T;
32struct S;
33
34#[cfg(test)]
35impl S {
36 fn foo1(&self) -> i32 { 0 }
37}
38
39#[cfg(not(test))]
40impl S {
41 fn foo2(&self) -> i32 { 0 }
42}
43
44fn test() {
45 let t = (S.foo1(), S.foo2(), T.foo3(), T.foo4());
46 t<|>;
47}
48
49//- /foo.rs crate:foo
50struct S;
51
52#[cfg(not(test))]
53impl S {
54 fn foo3(&self) -> i32 { 0 }
55}
56
57#[cfg(test)]
58impl S {
59 fn foo4(&self) -> i32 { 0 }
60}
61"#,
62 );
63 assert_eq!("(i32, {unknown}, i32, {unknown})", type_at_pos(&db, pos));
64}
65
66#[test]
67fn infer_await() {
68 let (db, pos) = TestDB::with_position(
69 r#"
70//- /main.rs crate:main deps:std
71
72struct IntFuture;
73
74impl Future for IntFuture {
75 type Output = u64;
76}
77
78fn test() {
79 let r = IntFuture;
80 let v = r.await;
81 v<|>;
82}
83
84//- /std.rs crate:std
85#[prelude_import] use future::*;
86mod future {
87 trait Future {
88 type Output;
89 }
90}
91
92"#,
93 );
94 assert_eq!("u64", type_at_pos(&db, pos));
95}
96
97#[test]
98fn infer_box() {
99 let (db, pos) = TestDB::with_position(
100 r#"
101//- /main.rs crate:main deps:std
102
103fn test() {
104 let x = box 1;
105 let t = (x, box x, box &1, box [1]);
106 t<|>;
107}
108
109//- /std.rs crate:std
110#[prelude_import] use prelude::*;
111mod prelude {}
112
113mod boxed {
114 pub struct Box<T: ?Sized> {
115 inner: *mut T,
116 }
117}
118
119"#,
120 );
121 assert_eq!("(Box<i32>, Box<Box<i32>>, Box<&i32>, Box<[i32;_]>)", type_at_pos(&db, pos));
122}
123
124#[test]
125fn infer_adt_self() {
126 let (db, pos) = TestDB::with_position(
127 r#"
128//- /main.rs
129enum Nat { Succ(Self), Demo(Nat), Zero }
130
131fn test() {
132 let foo: Nat = Nat::Zero;
133 if let Nat::Succ(x) = foo {
134 x<|>
135 }
136}
137
138"#,
139 );
140 assert_eq!("Nat", type_at_pos(&db, pos));
141}
142
143#[test]
144fn infer_try() {
145 let (db, pos) = TestDB::with_position(
146 r#"
147//- /main.rs crate:main deps:std
148
149fn test() {
150 let r: Result<i32, u64> = Result::Ok(1);
151 let v = r?;
152 v<|>;
153}
154
155//- /std.rs crate:std
156
157#[prelude_import] use ops::*;
158mod ops {
159 trait Try {
160 type Ok;
161 type Error;
162 }
163}
164
165#[prelude_import] use result::*;
166mod result {
167 enum Result<O, E> {
168 Ok(O),
169 Err(E)
170 }
171
172 impl<O, E> crate::ops::Try for Result<O, E> {
173 type Ok = O;
174 type Error = E;
175 }
176}
177
178"#,
179 );
180 assert_eq!("i32", type_at_pos(&db, pos));
181}
182
183#[test]
184fn infer_for_loop() {
185 let (db, pos) = TestDB::with_position(
186 r#"
187//- /main.rs crate:main deps:std
188
189use std::collections::Vec;
190
191fn test() {
192 let v = Vec::new();
193 v.push("foo");
194 for x in v {
195 x<|>;
196 }
197}
198
199//- /std.rs crate:std
200
201#[prelude_import] use iter::*;
202mod iter {
203 trait IntoIterator {
204 type Item;
205 }
206}
207
208mod collections {
209 struct Vec<T> {}
210 impl<T> Vec<T> {
211 fn new() -> Self { Vec {} }
212 fn push(&mut self, t: T) { }
213 }
214
215 impl<T> crate::iter::IntoIterator for Vec<T> {
216 type Item=T;
217 }
218}
219"#,
220 );
221 assert_eq!("&str", type_at_pos(&db, pos));
222}
223
224#[test]
225fn infer_while_let() {
226 let (db, pos) = TestDB::with_position(
227 r#"
228//- /main.rs
229enum Option<T> { Some(T), None }
230
231fn test() {
232 let foo: Option<f32> = None;
233 while let Option::Some(x) = foo {
234 <|>x
235 }
236}
237
238"#,
239 );
240 assert_eq!("f32", type_at_pos(&db, pos));
241}
242
243#[test]
244fn infer_basics() {
245 assert_snapshot!(
246 infer(r#"
247fn test(a: u32, b: isize, c: !, d: &str) {
248 a;
249 b;
250 c;
251 d;
252 1usize;
253 1isize;
254 "test";
255 1.0f32;
256}"#),
257 @r###"
258 [9; 10) 'a': u32
259 [17; 18) 'b': isize
260 [27; 28) 'c': !
261 [33; 34) 'd': &str
262 [42; 121) '{ ...f32; }': !
263 [48; 49) 'a': u32
264 [55; 56) 'b': isize
265 [62; 63) 'c': !
266 [69; 70) 'd': &str
267 [76; 82) '1usize': usize
268 [88; 94) '1isize': isize
269 [100; 106) '"test"': &str
270 [112; 118) '1.0f32': f32
271 "###
272 );
273}
274
275#[test]
276fn infer_let() {
277 assert_snapshot!(
278 infer(r#"
279fn test() {
280 let a = 1isize;
281 let b: usize = 1;
282 let c = b;
283 let d: u32;
284 let e;
285 let f: i32 = e;
286}
287"#),
288 @r###"
289 [11; 118) '{ ...= e; }': ()
290 [21; 22) 'a': isize
291 [25; 31) '1isize': isize
292 [41; 42) 'b': usize
293 [52; 53) '1': usize
294 [63; 64) 'c': usize
295 [67; 68) 'b': usize
296 [78; 79) 'd': u32
297 [94; 95) 'e': i32
298 [105; 106) 'f': i32
299 [114; 115) 'e': i32
300 "###
301 );
302}
303
304#[test]
305fn infer_paths() {
306 assert_snapshot!(
307 infer(r#"
308fn a() -> u32 { 1 }
309
310mod b {
311 fn c() -> u32 { 1 }
312}
313
314fn test() {
315 a();
316 b::c();
317}
318"#),
319 @r###"
320 [15; 20) '{ 1 }': u32
321 [17; 18) '1': u32
322 [48; 53) '{ 1 }': u32
323 [50; 51) '1': u32
324 [67; 91) '{ ...c(); }': ()
325 [73; 74) 'a': fn a() -> u32
326 [73; 76) 'a()': u32
327 [82; 86) 'b::c': fn c() -> u32
328 [82; 88) 'b::c()': u32
329 "###
330 );
331}
332
333#[test]
334fn infer_path_type() {
335 assert_snapshot!(
336 infer(r#"
337struct S;
338
339impl S {
340 fn foo() -> i32 { 1 }
341}
342
343fn test() {
344 S::foo();
345 <S>::foo();
346}
347"#),
348 @r###"
349 [41; 46) '{ 1 }': i32
350 [43; 44) '1': i32
351 [60; 93) '{ ...o(); }': ()
352 [66; 72) 'S::foo': fn foo() -> i32
353 [66; 74) 'S::foo()': i32
354 [80; 88) '<S>::foo': fn foo() -> i32
355 [80; 90) '<S>::foo()': i32
356 "###
357 );
358}
359
360#[test]
361fn infer_slice_method() {
362 assert_snapshot!(
363 infer(r#"
364#[lang = "slice"]
365impl<T> [T] {
366 fn foo(&self) -> T {
367 loop {}
368 }
369}
370
371#[lang = "slice_alloc"]
372impl<T> [T] {}
373
374fn test() {
375 <[_]>::foo(b"foo");
376}
377"#),
378 @r###"
379 [45; 49) 'self': &[T]
380 [56; 79) '{ ... }': T
381 [66; 73) 'loop {}': !
382 [71; 73) '{}': ()
383 [133; 160) '{ ...o"); }': ()
384 [139; 149) '<[_]>::foo': fn foo<u8>(&[T]) -> T
385 [139; 157) '<[_]>:..."foo")': u8
386 [150; 156) 'b"foo"': &[u8]
387 "###
388 );
389}
390
391#[test]
392fn infer_struct() {
393 assert_snapshot!(
394 infer(r#"
395struct A {
396 b: B,
397 c: C,
398}
399struct B;
400struct C(usize);
401
402fn test() {
403 let c = C(1);
404 B;
405 let a: A = A { b: B, c: C(1) };
406 a.b;
407 a.c;
408}
409"#),
410 @r###"
411 [72; 154) '{ ...a.c; }': ()
412 [82; 83) 'c': C
413 [86; 87) 'C': C(usize) -> C
414 [86; 90) 'C(1)': C
415 [88; 89) '1': usize
416 [96; 97) 'B': B
417 [107; 108) 'a': A
418 [114; 133) 'A { b:...C(1) }': A
419 [121; 122) 'B': B
420 [127; 128) 'C': C(usize) -> C
421 [127; 131) 'C(1)': C
422 [129; 130) '1': usize
423 [139; 140) 'a': A
424 [139; 142) 'a.b': B
425 [148; 149) 'a': A
426 [148; 151) 'a.c': C
427 "###
428 );
429}
430
431#[test]
432fn infer_enum() {
433 assert_snapshot!(
434 infer(r#"
435enum E {
436 V1 { field: u32 },
437 V2
438}
439fn test() {
440 E::V1 { field: 1 };
441 E::V2;
442}"#),
443 @r###"
444 [48; 82) '{ E:...:V2; }': ()
445 [52; 70) 'E::V1 ...d: 1 }': E
446 [67; 68) '1': u32
447 [74; 79) 'E::V2': E
448 "###
449 );
450}
451
452#[test]
453fn infer_refs() {
454 assert_snapshot!(
455 infer(r#"
456fn test(a: &u32, b: &mut u32, c: *const u32, d: *mut u32) {
457 a;
458 *a;
459 &a;
460 &mut a;
461 b;
462 *b;
463 &b;
464 c;
465 *c;
466 d;
467 *d;
468}
469"#),
470 @r###"
471 [9; 10) 'a': &u32
472 [18; 19) 'b': &mut u32
473 [31; 32) 'c': *const u32
474 [46; 47) 'd': *mut u32
475 [59; 150) '{ ... *d; }': ()
476 [65; 66) 'a': &u32
477 [72; 74) '*a': u32
478 [73; 74) 'a': &u32
479 [80; 82) '&a': &&u32
480 [81; 82) 'a': &u32
481 [88; 94) '&mut a': &mut &u32
482 [93; 94) 'a': &u32
483 [100; 101) 'b': &mut u32
484 [107; 109) '*b': u32
485 [108; 109) 'b': &mut u32
486 [115; 117) '&b': &&mut u32
487 [116; 117) 'b': &mut u32
488 [123; 124) 'c': *const u32
489 [130; 132) '*c': u32
490 [131; 132) 'c': *const u32
491 [138; 139) 'd': *mut u32
492 [145; 147) '*d': u32
493 [146; 147) 'd': *mut u32
494 "###
495 );
496}
497
498#[test]
499fn infer_literals() {
500 assert_snapshot!(
501 infer(r##"
502fn test() {
503 5i32;
504 5f32;
505 5f64;
506 "hello";
507 b"bytes";
508 'c';
509 b'b';
510 3.14;
511 5000;
512 false;
513 true;
514 r#"
515 //! doc
516 // non-doc
517 mod foo {}
518 "#;
519 br#"yolo"#;
520}
521"##),
522 @r###"
523 [11; 221) '{ ...o"#; }': ()
524 [17; 21) '5i32': i32
525 [27; 31) '5f32': f32
526 [37; 41) '5f64': f64
527 [47; 54) '"hello"': &str
528 [60; 68) 'b"bytes"': &[u8]
529 [74; 77) ''c'': char
530 [83; 87) 'b'b'': u8
531 [93; 97) '3.14': f64
532 [103; 107) '5000': i32
533 [113; 118) 'false': bool
534 [124; 128) 'true': bool
535 [134; 202) 'r#" ... "#': &str
536 [208; 218) 'br#"yolo"#': &[u8]
537 "###
538 );
539}
540
541#[test]
542fn infer_unary_op() {
543 assert_snapshot!(
544 infer(r#"
545enum SomeType {}
546
547fn test(x: SomeType) {
548 let b = false;
549 let c = !b;
550 let a = 100;
551 let d: i128 = -a;
552 let e = -100;
553 let f = !!!true;
554 let g = !42;
555 let h = !10u32;
556 let j = !a;
557 -3.14;
558 !3;
559 -x;
560 !x;
561 -"hello";
562 !"hello";
563}
564"#),
565 @r###"
566 [27; 28) 'x': SomeType
567 [40; 272) '{ ...lo"; }': ()
568 [50; 51) 'b': bool
569 [54; 59) 'false': bool
570 [69; 70) 'c': bool
571 [73; 75) '!b': bool
572 [74; 75) 'b': bool
573 [85; 86) 'a': i128
574 [89; 92) '100': i128
575 [102; 103) 'd': i128
576 [112; 114) '-a': i128
577 [113; 114) 'a': i128
578 [124; 125) 'e': i32
579 [128; 132) '-100': i32
580 [129; 132) '100': i32
581 [142; 143) 'f': bool
582 [146; 153) '!!!true': bool
583 [147; 153) '!!true': bool
584 [148; 153) '!true': bool
585 [149; 153) 'true': bool
586 [163; 164) 'g': i32
587 [167; 170) '!42': i32
588 [168; 170) '42': i32
589 [180; 181) 'h': u32
590 [184; 190) '!10u32': u32
591 [185; 190) '10u32': u32
592 [200; 201) 'j': i128
593 [204; 206) '!a': i128
594 [205; 206) 'a': i128
595 [212; 217) '-3.14': f64
596 [213; 217) '3.14': f64
597 [223; 225) '!3': i32
598 [224; 225) '3': i32
599 [231; 233) '-x': {unknown}
600 [232; 233) 'x': SomeType
601 [239; 241) '!x': {unknown}
602 [240; 241) 'x': SomeType
603 [247; 255) '-"hello"': {unknown}
604 [248; 255) '"hello"': &str
605 [261; 269) '!"hello"': {unknown}
606 [262; 269) '"hello"': &str
607 "###
608 );
609}
610
611#[test]
612fn infer_backwards() {
613 assert_snapshot!(
614 infer(r#"
615fn takes_u32(x: u32) {}
616
617struct S { i32_field: i32 }
618
619fn test() -> &mut &f64 {
620 let a = unknown_function();
621 takes_u32(a);
622 let b = unknown_function();
623 S { i32_field: b };
624 let c = unknown_function();
625 &mut &c
626}
627"#),
628 @r###"
629 [14; 15) 'x': u32
630 [22; 24) '{}': ()
631 [78; 231) '{ ...t &c }': &mut &f64
632 [88; 89) 'a': u32
633 [92; 108) 'unknow...nction': {unknown}
634 [92; 110) 'unknow...tion()': u32
635 [116; 125) 'takes_u32': fn takes_u32(u32) -> ()
636 [116; 128) 'takes_u32(a)': ()
637 [126; 127) 'a': u32
638 [138; 139) 'b': i32
639 [142; 158) 'unknow...nction': {unknown}
640 [142; 160) 'unknow...tion()': i32
641 [166; 184) 'S { i3...d: b }': S
642 [181; 182) 'b': i32
643 [194; 195) 'c': f64
644 [198; 214) 'unknow...nction': {unknown}
645 [198; 216) 'unknow...tion()': f64
646 [222; 229) '&mut &c': &mut &f64
647 [227; 229) '&c': &f64
648 [228; 229) 'c': f64
649 "###
650 );
651}
652
653#[test]
654fn infer_self() {
655 assert_snapshot!(
656 infer(r#"
657struct S;
658
659impl S {
660 fn test(&self) {
661 self;
662 }
663 fn test2(self: &Self) {
664 self;
665 }
666 fn test3() -> Self {
667 S {}
668 }
669 fn test4() -> Self {
670 Self {}
671 }
672}
673"#),
674 @r###"
675 [34; 38) 'self': &S
676 [40; 61) '{ ... }': ()
677 [50; 54) 'self': &S
678 [75; 79) 'self': &S
679 [88; 109) '{ ... }': ()
680 [98; 102) 'self': &S
681 [133; 153) '{ ... }': S
682 [143; 147) 'S {}': S
683 [177; 200) '{ ... }': S
684 [187; 194) 'Self {}': S
685 "###
686 );
687}
688
689#[test]
690fn infer_binary_op() {
691 assert_snapshot!(
692 infer(r#"
693fn f(x: bool) -> i32 {
694 0i32
695}
696
697fn test() -> bool {
698 let x = a && b;
699 let y = true || false;
700 let z = x == y;
701 let t = x != y;
702 let minus_forty: isize = -40isize;
703 let h = minus_forty <= CONST_2;
704 let c = f(z || y) + 5;
705 let d = b;
706 let g = minus_forty ^= i;
707 let ten: usize = 10;
708 let ten_is_eleven = ten == some_num;
709
710 ten < 3
711}
712"#),
713 @r###"
714 [6; 7) 'x': bool
715 [22; 34) '{ 0i32 }': i32
716 [28; 32) '0i32': i32
717 [54; 370) '{ ... < 3 }': bool
718 [64; 65) 'x': bool
719 [68; 69) 'a': bool
720 [68; 74) 'a && b': bool
721 [73; 74) 'b': bool
722 [84; 85) 'y': bool
723 [88; 92) 'true': bool
724 [88; 101) 'true || false': bool
725 [96; 101) 'false': bool
726 [111; 112) 'z': bool
727 [115; 116) 'x': bool
728 [115; 121) 'x == y': bool
729 [120; 121) 'y': bool
730 [131; 132) 't': bool
731 [135; 136) 'x': bool
732 [135; 141) 'x != y': bool
733 [140; 141) 'y': bool
734 [151; 162) 'minus_forty': isize
735 [172; 180) '-40isize': isize
736 [173; 180) '40isize': isize
737 [190; 191) 'h': bool
738 [194; 205) 'minus_forty': isize
739 [194; 216) 'minus_...ONST_2': bool
740 [209; 216) 'CONST_2': isize
741 [226; 227) 'c': i32
742 [230; 231) 'f': fn f(bool) -> i32
743 [230; 239) 'f(z || y)': i32
744 [230; 243) 'f(z || y) + 5': i32
745 [232; 233) 'z': bool
746 [232; 238) 'z || y': bool
747 [237; 238) 'y': bool
748 [242; 243) '5': i32
749 [253; 254) 'd': {unknown}
750 [257; 258) 'b': {unknown}
751 [268; 269) 'g': ()
752 [272; 283) 'minus_forty': isize
753 [272; 288) 'minus_...y ^= i': ()
754 [287; 288) 'i': isize
755 [298; 301) 'ten': usize
756 [311; 313) '10': usize
757 [323; 336) 'ten_is_eleven': bool
758 [339; 342) 'ten': usize
759 [339; 354) 'ten == some_num': bool
760 [346; 354) 'some_num': usize
761 [361; 364) 'ten': usize
762 [361; 368) 'ten < 3': bool
763 [367; 368) '3': usize
764 "###
765 );
766}
767
768#[test]
769fn infer_field_autoderef() {
770 assert_snapshot!(
771 infer(r#"
772struct A {
773 b: B,
774}
775struct B;
776
777fn test1(a: A) {
778 let a1 = a;
779 a1.b;
780 let a2 = &a;
781 a2.b;
782 let a3 = &mut a;
783 a3.b;
784 let a4 = &&&&&&&a;
785 a4.b;
786 let a5 = &mut &&mut &&mut a;
787 a5.b;
788}
789
790fn test2(a1: *const A, a2: *mut A) {
791 a1.b;
792 a2.b;
793}
794"#),
795 @r###"
796 [44; 45) 'a': A
797 [50; 213) '{ ...5.b; }': ()
798 [60; 62) 'a1': A
799 [65; 66) 'a': A
800 [72; 74) 'a1': A
801 [72; 76) 'a1.b': B
802 [86; 88) 'a2': &A
803 [91; 93) '&a': &A
804 [92; 93) 'a': A
805 [99; 101) 'a2': &A
806 [99; 103) 'a2.b': B
807 [113; 115) 'a3': &mut A
808 [118; 124) '&mut a': &mut A
809 [123; 124) 'a': A
810 [130; 132) 'a3': &mut A
811 [130; 134) 'a3.b': B
812 [144; 146) 'a4': &&&&&&&A
813 [149; 157) '&&&&&&&a': &&&&&&&A
814 [150; 157) '&&&&&&a': &&&&&&A
815 [151; 157) '&&&&&a': &&&&&A
816 [152; 157) '&&&&a': &&&&A
817 [153; 157) '&&&a': &&&A
818 [154; 157) '&&a': &&A
819 [155; 157) '&a': &A
820 [156; 157) 'a': A
821 [163; 165) 'a4': &&&&&&&A
822 [163; 167) 'a4.b': B
823 [177; 179) 'a5': &mut &&mut &&mut A
824 [182; 200) '&mut &...&mut a': &mut &&mut &&mut A
825 [187; 200) '&&mut &&mut a': &&mut &&mut A
826 [188; 200) '&mut &&mut a': &mut &&mut A
827 [193; 200) '&&mut a': &&mut A
828 [194; 200) '&mut a': &mut A
829 [199; 200) 'a': A
830 [206; 208) 'a5': &mut &&mut &&mut A
831 [206; 210) 'a5.b': B
832 [224; 226) 'a1': *const A
833 [238; 240) 'a2': *mut A
834 [250; 273) '{ ...2.b; }': ()
835 [256; 258) 'a1': *const A
836 [256; 260) 'a1.b': B
837 [266; 268) 'a2': *mut A
838 [266; 270) 'a2.b': B
839 "###
840 );
841}
842
843#[test]
844fn infer_argument_autoderef() {
845 assert_snapshot!(
846 infer(r#"
847#[lang = "deref"]
848pub trait Deref {
849 type Target;
850 fn deref(&self) -> &Self::Target;
851}
852
853struct A<T>(T);
854
855impl<T> A<T> {
856 fn foo(&self) -> &T {
857 &self.0
858 }
859}
860
861struct B<T>(T);
862
863impl<T> Deref for B<T> {
864 type Target = T;
865 fn deref(&self) -> &Self::Target {
866 &self.0
867 }
868}
869
870fn test() {
871 let t = A::foo(&&B(B(A(42))));
872}
873"#),
874 @r###"
875 [68; 72) 'self': &Self
876 [139; 143) 'self': &A<T>
877 [151; 174) '{ ... }': &T
878 [161; 168) '&self.0': &T
879 [162; 166) 'self': &A<T>
880 [162; 168) 'self.0': T
881 [255; 259) 'self': &B<T>
882 [278; 301) '{ ... }': &T
883 [288; 295) '&self.0': &T
884 [289; 293) 'self': &B<T>
885 [289; 295) 'self.0': T
886 [315; 353) '{ ...))); }': ()
887 [325; 326) 't': &i32
888 [329; 335) 'A::foo': fn foo<i32>(&A<T>) -> &T
889 [329; 350) 'A::foo...42))))': &i32
890 [336; 349) '&&B(B(A(42)))': &&B<B<A<i32>>>
891 [337; 349) '&B(B(A(42)))': &B<B<A<i32>>>
892 [338; 339) 'B': B<B<A<i32>>>(T) -> B<T>
893 [338; 349) 'B(B(A(42)))': B<B<A<i32>>>
894 [340; 341) 'B': B<A<i32>>(T) -> B<T>
895 [340; 348) 'B(A(42))': B<A<i32>>
896 [342; 343) 'A': A<i32>(T) -> A<T>
897 [342; 347) 'A(42)': A<i32>
898 [344; 346) '42': i32
899 "###
900 );
901}
902
903#[test]
904fn infer_method_argument_autoderef() {
905 assert_snapshot!(
906 infer(r#"
907#[lang = "deref"]
908pub trait Deref {
909 type Target;
910 fn deref(&self) -> &Self::Target;
911}
912
913struct A<T>(*mut T);
914
915impl<T> A<T> {
916 fn foo(&self, x: &A<T>) -> &T {
917 &*x.0
918 }
919}
920
921struct B<T>(T);
922
923impl<T> Deref for B<T> {
924 type Target = T;
925 fn deref(&self) -> &Self::Target {
926 &self.0
927 }
928}
929
930fn test(a: A<i32>) {
931 let t = A(0 as *mut _).foo(&&B(B(a)));
932}
933"#),
934 @r###"
935 [68; 72) 'self': &Self
936 [144; 148) 'self': &A<T>
937 [150; 151) 'x': &A<T>
938 [166; 187) '{ ... }': &T
939 [176; 181) '&*x.0': &T
940 [177; 181) '*x.0': T
941 [178; 179) 'x': &A<T>
942 [178; 181) 'x.0': *mut T
943 [268; 272) 'self': &B<T>
944 [291; 314) '{ ... }': &T
945 [301; 308) '&self.0': &T
946 [302; 306) 'self': &B<T>
947 [302; 308) 'self.0': T
948 [326; 327) 'a': A<i32>
949 [337; 383) '{ ...))); }': ()
950 [347; 348) 't': &i32
951 [351; 352) 'A': A<i32>(*mut T) -> A<T>
952 [351; 365) 'A(0 as *mut _)': A<i32>
953 [351; 380) 'A(0 as...B(a)))': &i32
954 [353; 354) '0': i32
955 [353; 364) '0 as *mut _': *mut i32
956 [370; 379) '&&B(B(a))': &&B<B<A<i32>>>
957 [371; 379) '&B(B(a))': &B<B<A<i32>>>
958 [372; 373) 'B': B<B<A<i32>>>(T) -> B<T>
959 [372; 379) 'B(B(a))': B<B<A<i32>>>
960 [374; 375) 'B': B<A<i32>>(T) -> B<T>
961 [374; 378) 'B(a)': B<A<i32>>
962 [376; 377) 'a': A<i32>
963 "###
964 );
965}
966
967#[test]
968fn bug_484() {
969 assert_snapshot!(
970 infer(r#"
971fn test() {
972 let x = if true {};
973}
974"#),
975 @r###"
976 [11; 37) '{ l... {}; }': ()
977 [20; 21) 'x': ()
978 [24; 34) 'if true {}': ()
979 [27; 31) 'true': bool
980 [32; 34) '{}': ()
981 "###
982 );
983}
984
985#[test]
986fn infer_in_elseif() {
987 assert_snapshot!(
988 infer(r#"
989struct Foo { field: i32 }
990fn main(foo: Foo) {
991 if true {
992
993 } else if false {
994 foo.field
995 }
996}
997"#),
998 @r###"
999 [35; 38) 'foo': Foo
1000 [45; 109) '{ ... } }': ()
1001 [51; 107) 'if tru... }': ()
1002 [54; 58) 'true': bool
1003 [59; 67) '{ }': ()
1004 [73; 107) 'if fal... }': ()
1005 [76; 81) 'false': bool
1006 [82; 107) '{ ... }': i32
1007 [92; 95) 'foo': Foo
1008 [92; 101) 'foo.field': i32
1009 "###
1010 )
1011}
1012
1013#[test]
1014fn infer_if_match_with_return() {
1015 assert_snapshot!(
1016 infer(r#"
1017fn foo() {
1018 let _x1 = if true {
1019 1
1020 } else {
1021 return;
1022 };
1023 let _x2 = if true {
1024 2
1025 } else {
1026 return
1027 };
1028 let _x3 = match true {
1029 true => 3,
1030 _ => {
1031 return;
1032 }
1033 };
1034 let _x4 = match true {
1035 true => 4,
1036 _ => return
1037 };
1038}"#),
1039 @r###"
1040 [10; 323) '{ ... }; }': ()
1041 [20; 23) '_x1': i32
1042 [26; 80) 'if tru... }': i32
1043 [29; 33) 'true': bool
1044 [34; 51) '{ ... }': i32
1045 [44; 45) '1': i32
1046 [57; 80) '{ ... }': !
1047 [67; 73) 'return': !
1048 [90; 93) '_x2': i32
1049 [96; 149) 'if tru... }': i32
1050 [99; 103) 'true': bool
1051 [104; 121) '{ ... }': i32
1052 [114; 115) '2': i32
1053 [127; 149) '{ ... }': !
1054 [137; 143) 'return': !
1055 [159; 162) '_x3': i32
1056 [165; 247) 'match ... }': i32
1057 [171; 175) 'true': bool
1058 [186; 190) 'true': bool
1059 [194; 195) '3': i32
1060 [205; 206) '_': bool
1061 [210; 241) '{ ... }': !
1062 [224; 230) 'return': !
1063 [257; 260) '_x4': i32
1064 [263; 320) 'match ... }': i32
1065 [269; 273) 'true': bool
1066 [284; 288) 'true': bool
1067 [292; 293) '4': i32
1068 [303; 304) '_': bool
1069 [308; 314) 'return': !
1070 "###
1071 )
1072}
1073
1074#[test]
1075fn infer_inherent_method() {
1076 assert_snapshot!(
1077 infer(r#"
1078struct A;
1079
1080impl A {
1081 fn foo(self, x: u32) -> i32 {}
1082}
1083
1084mod b {
1085 impl super::A {
1086 fn bar(&self, x: u64) -> i64 {}
1087 }
1088}
1089
1090fn test(a: A) {
1091 a.foo(1);
1092 (&a).bar(1);
1093 a.bar(1);
1094}
1095"#),
1096 @r###"
1097 [32; 36) 'self': A
1098 [38; 39) 'x': u32
1099 [53; 55) '{}': ()
1100 [103; 107) 'self': &A
1101 [109; 110) 'x': u64
1102 [124; 126) '{}': ()
1103 [144; 145) 'a': A
1104 [150; 198) '{ ...(1); }': ()
1105 [156; 157) 'a': A
1106 [156; 164) 'a.foo(1)': i32
1107 [162; 163) '1': u32
1108 [170; 181) '(&a).bar(1)': i64
1109 [171; 173) '&a': &A
1110 [172; 173) 'a': A
1111 [179; 180) '1': u64
1112 [187; 188) 'a': A
1113 [187; 195) 'a.bar(1)': i64
1114 [193; 194) '1': u64
1115 "###
1116 );
1117}
1118
1119#[test]
1120fn infer_inherent_method_str() {
1121 assert_snapshot!(
1122 infer(r#"
1123#[lang = "str"]
1124impl str {
1125 fn foo(&self) -> i32 {}
1126}
1127
1128fn test() {
1129 "foo".foo();
1130}
1131"#),
1132 @r###"
1133 [40; 44) 'self': &str
1134 [53; 55) '{}': ()
1135 [69; 89) '{ ...o(); }': ()
1136 [75; 80) '"foo"': &str
1137 [75; 86) '"foo".foo()': i32
1138 "###
1139 );
1140}
1141
1142#[test]
1143fn infer_tuple() {
1144 assert_snapshot!(
1145 infer(r#"
1146fn test(x: &str, y: isize) {
1147 let a: (u32, &str) = (1, "a");
1148 let b = (a, x);
1149 let c = (y, x);
1150 let d = (c, x);
1151 let e = (1, "e");
1152 let f = (e, "d");
1153}
1154"#),
1155 @r###"
1156 [9; 10) 'x': &str
1157 [18; 19) 'y': isize
1158 [28; 170) '{ ...d"); }': ()
1159 [38; 39) 'a': (u32, &str)
1160 [55; 63) '(1, "a")': (u32, &str)
1161 [56; 57) '1': u32
1162 [59; 62) '"a"': &str
1163 [73; 74) 'b': ((u32, &str), &str)
1164 [77; 83) '(a, x)': ((u32, &str), &str)
1165 [78; 79) 'a': (u32, &str)
1166 [81; 82) 'x': &str
1167 [93; 94) 'c': (isize, &str)
1168 [97; 103) '(y, x)': (isize, &str)
1169 [98; 99) 'y': isize
1170 [101; 102) 'x': &str
1171 [113; 114) 'd': ((isize, &str), &str)
1172 [117; 123) '(c, x)': ((isize, &str), &str)
1173 [118; 119) 'c': (isize, &str)
1174 [121; 122) 'x': &str
1175 [133; 134) 'e': (i32, &str)
1176 [137; 145) '(1, "e")': (i32, &str)
1177 [138; 139) '1': i32
1178 [141; 144) '"e"': &str
1179 [155; 156) 'f': ((i32, &str), &str)
1180 [159; 167) '(e, "d")': ((i32, &str), &str)
1181 [160; 161) 'e': (i32, &str)
1182 [163; 166) '"d"': &str
1183 "###
1184 );
1185}
1186
1187#[test]
1188fn infer_array() {
1189 assert_snapshot!(
1190 infer(r#"
1191fn test(x: &str, y: isize) {
1192 let a = [x];
1193 let b = [a, a];
1194 let c = [b, b];
1195
1196 let d = [y, 1, 2, 3];
1197 let d = [1, y, 2, 3];
1198 let e = [y];
1199 let f = [d, d];
1200 let g = [e, e];
1201
1202 let h = [1, 2];
1203 let i = ["a", "b"];
1204
1205 let b = [a, ["b"]];
1206 let x: [u8; 0] = [];
1207}
1208"#),
1209 @r###"
1210 [9; 10) 'x': &str
1211 [18; 19) 'y': isize
1212 [28; 293) '{ ... []; }': ()
1213 [38; 39) 'a': [&str;_]
1214 [42; 45) '[x]': [&str;_]
1215 [43; 44) 'x': &str
1216 [55; 56) 'b': [[&str;_];_]
1217 [59; 65) '[a, a]': [[&str;_];_]
1218 [60; 61) 'a': [&str;_]
1219 [63; 64) 'a': [&str;_]
1220 [75; 76) 'c': [[[&str;_];_];_]
1221 [79; 85) '[b, b]': [[[&str;_];_];_]
1222 [80; 81) 'b': [[&str;_];_]
1223 [83; 84) 'b': [[&str;_];_]
1224 [96; 97) 'd': [isize;_]
1225 [100; 112) '[y, 1, 2, 3]': [isize;_]
1226 [101; 102) 'y': isize
1227 [104; 105) '1': isize
1228 [107; 108) '2': isize
1229 [110; 111) '3': isize
1230 [122; 123) 'd': [isize;_]
1231 [126; 138) '[1, y, 2, 3]': [isize;_]
1232 [127; 128) '1': isize
1233 [130; 131) 'y': isize
1234 [133; 134) '2': isize
1235 [136; 137) '3': isize
1236 [148; 149) 'e': [isize;_]
1237 [152; 155) '[y]': [isize;_]
1238 [153; 154) 'y': isize
1239 [165; 166) 'f': [[isize;_];_]
1240 [169; 175) '[d, d]': [[isize;_];_]
1241 [170; 171) 'd': [isize;_]
1242 [173; 174) 'd': [isize;_]
1243 [185; 186) 'g': [[isize;_];_]
1244 [189; 195) '[e, e]': [[isize;_];_]
1245 [190; 191) 'e': [isize;_]
1246 [193; 194) 'e': [isize;_]
1247 [206; 207) 'h': [i32;_]
1248 [210; 216) '[1, 2]': [i32;_]
1249 [211; 212) '1': i32
1250 [214; 215) '2': i32
1251 [226; 227) 'i': [&str;_]
1252 [230; 240) '["a", "b"]': [&str;_]
1253 [231; 234) '"a"': &str
1254 [236; 239) '"b"': &str
1255 [251; 252) 'b': [[&str;_];_]
1256 [255; 265) '[a, ["b"]]': [[&str;_];_]
1257 [256; 257) 'a': [&str;_]
1258 [259; 264) '["b"]': [&str;_]
1259 [260; 263) '"b"': &str
1260 [275; 276) 'x': [u8;_]
1261 [288; 290) '[]': [u8;_]
1262 "###
1263 );
1264}
1265
1266#[test]
1267fn infer_pattern() {
1268 assert_snapshot!(
1269 infer(r#"
1270fn test(x: &i32) {
1271 let y = x;
1272 let &z = x;
1273 let a = z;
1274 let (c, d) = (1, "hello");
1275
1276 for (e, f) in some_iter {
1277 let g = e;
1278 }
1279
1280 if let [val] = opt {
1281 let h = val;
1282 }
1283
1284 let lambda = |a: u64, b, c: i32| { a + b; c };
1285
1286 let ref ref_to_x = x;
1287 let mut mut_x = x;
1288 let ref mut mut_ref_to_x = x;
1289 let k = mut_ref_to_x;
1290}
1291"#),
1292 @r###"
1293 [9; 10) 'x': &i32
1294 [18; 369) '{ ...o_x; }': ()
1295 [28; 29) 'y': &i32
1296 [32; 33) 'x': &i32
1297 [43; 45) '&z': &i32
1298 [44; 45) 'z': i32
1299 [48; 49) 'x': &i32
1300 [59; 60) 'a': i32
1301 [63; 64) 'z': i32
1302 [74; 80) '(c, d)': (i32, &str)
1303 [75; 76) 'c': i32
1304 [78; 79) 'd': &str
1305 [83; 95) '(1, "hello")': (i32, &str)
1306 [84; 85) '1': i32
1307 [87; 94) '"hello"': &str
1308 [102; 152) 'for (e... }': ()
1309 [106; 112) '(e, f)': ({unknown}, {unknown})
1310 [107; 108) 'e': {unknown}
1311 [110; 111) 'f': {unknown}
1312 [116; 125) 'some_iter': {unknown}
1313 [126; 152) '{ ... }': ()
1314 [140; 141) 'g': {unknown}
1315 [144; 145) 'e': {unknown}
1316 [158; 205) 'if let... }': ()
1317 [165; 170) '[val]': {unknown}
1318 [173; 176) 'opt': {unknown}
1319 [177; 205) '{ ... }': ()
1320 [191; 192) 'h': {unknown}
1321 [195; 198) 'val': {unknown}
1322 [215; 221) 'lambda': |u64, u64, i32| -> i32
1323 [224; 256) '|a: u6...b; c }': |u64, u64, i32| -> i32
1324 [225; 226) 'a': u64
1325 [233; 234) 'b': u64
1326 [236; 237) 'c': i32
1327 [244; 256) '{ a + b; c }': i32
1328 [246; 247) 'a': u64
1329 [246; 251) 'a + b': u64
1330 [250; 251) 'b': u64
1331 [253; 254) 'c': i32
1332 [267; 279) 'ref ref_to_x': &&i32
1333 [282; 283) 'x': &i32
1334 [293; 302) 'mut mut_x': &i32
1335 [305; 306) 'x': &i32
1336 [316; 336) 'ref mu...f_to_x': &mut &i32
1337 [339; 340) 'x': &i32
1338 [350; 351) 'k': &mut &i32
1339 [354; 366) 'mut_ref_to_x': &mut &i32
1340 "###
1341 );
1342}
1343
1344#[test]
1345fn infer_pattern_match_ergonomics() {
1346 assert_snapshot!(
1347 infer(r#"
1348struct A<T>(T);
1349
1350fn test() {
1351 let A(n) = &A(1);
1352 let A(n) = &mut A(1);
1353}
1354"#),
1355 @r###"
1356 [28; 79) '{ ...(1); }': ()
1357 [38; 42) 'A(n)': A<i32>
1358 [40; 41) 'n': &i32
1359 [45; 50) '&A(1)': &A<i32>
1360 [46; 47) 'A': A<i32>(T) -> A<T>
1361 [46; 50) 'A(1)': A<i32>
1362 [48; 49) '1': i32
1363 [60; 64) 'A(n)': A<i32>
1364 [62; 63) 'n': &mut i32
1365 [67; 76) '&mut A(1)': &mut A<i32>
1366 [72; 73) 'A': A<i32>(T) -> A<T>
1367 [72; 76) 'A(1)': A<i32>
1368 [74; 75) '1': i32
1369 "###
1370 );
1371}
1372
1373#[test]
1374fn infer_pattern_match_ergonomics_ref() {
1375 covers!(match_ergonomics_ref);
1376 assert_snapshot!(
1377 infer(r#"
1378fn test() {
1379 let v = &(1, &2);
1380 let (_, &w) = v;
1381}
1382"#),
1383 @r###"
1384 [11; 57) '{ ...= v; }': ()
1385 [21; 22) 'v': &(i32, &i32)
1386 [25; 33) '&(1, &2)': &(i32, &i32)
1387 [26; 33) '(1, &2)': (i32, &i32)
1388 [27; 28) '1': i32
1389 [30; 32) '&2': &i32
1390 [31; 32) '2': i32
1391 [43; 50) '(_, &w)': (i32, &i32)
1392 [44; 45) '_': i32
1393 [47; 49) '&w': &i32
1394 [48; 49) 'w': i32
1395 [53; 54) 'v': &(i32, &i32)
1396 "###
1397 );
1398}
1399
1400#[test]
1401fn infer_adt_pattern() {
1402 assert_snapshot!(
1403 infer(r#"
1404enum E {
1405 A { x: usize },
1406 B
1407}
1408
1409struct S(u32, E);
1410
1411fn test() {
1412 let e = E::A { x: 3 };
1413
1414 let S(y, z) = foo;
1415 let E::A { x: new_var } = e;
1416
1417 match e {
1418 E::A { x } => x,
1419 E::B if foo => 1,
1420 E::B => 10,
1421 };
1422
1423 let ref d @ E::A { .. } = e;
1424 d;
1425}
1426"#),
1427 @r###"
1428 [68; 289) '{ ... d; }': ()
1429 [78; 79) 'e': E
1430 [82; 95) 'E::A { x: 3 }': E
1431 [92; 93) '3': usize
1432 [106; 113) 'S(y, z)': S
1433 [108; 109) 'y': u32
1434 [111; 112) 'z': E
1435 [116; 119) 'foo': S
1436 [129; 148) 'E::A {..._var }': E
1437 [139; 146) 'new_var': usize
1438 [151; 152) 'e': E
1439 [159; 245) 'match ... }': usize
1440 [165; 166) 'e': E
1441 [177; 187) 'E::A { x }': E
1442 [184; 185) 'x': usize
1443 [191; 192) 'x': usize
1444 [202; 206) 'E::B': E
1445 [210; 213) 'foo': bool
1446 [217; 218) '1': usize
1447 [228; 232) 'E::B': E
1448 [236; 238) '10': usize
1449 [256; 275) 'ref d ...{ .. }': &E
1450 [264; 275) 'E::A { .. }': E
1451 [278; 279) 'e': E
1452 [285; 286) 'd': &E
1453 "###
1454 );
1455}
1456
1457#[test]
1458fn infer_struct_generics() {
1459 assert_snapshot!(
1460 infer(r#"
1461struct A<T> {
1462 x: T,
1463}
1464
1465fn test(a1: A<u32>, i: i32) {
1466 a1.x;
1467 let a2 = A { x: i };
1468 a2.x;
1469 let a3 = A::<i128> { x: 1 };
1470 a3.x;
1471}
1472"#),
1473 @r###"
1474 [36; 38) 'a1': A<u32>
1475 [48; 49) 'i': i32
1476 [56; 147) '{ ...3.x; }': ()
1477 [62; 64) 'a1': A<u32>
1478 [62; 66) 'a1.x': u32
1479 [76; 78) 'a2': A<i32>
1480 [81; 91) 'A { x: i }': A<i32>
1481 [88; 89) 'i': i32
1482 [97; 99) 'a2': A<i32>
1483 [97; 101) 'a2.x': i32
1484 [111; 113) 'a3': A<i128>
1485 [116; 134) 'A::<i1...x: 1 }': A<i128>
1486 [131; 132) '1': i128
1487 [140; 142) 'a3': A<i128>
1488 [140; 144) 'a3.x': i128
1489 "###
1490 );
1491}
1492
1493#[test]
1494fn infer_tuple_struct_generics() {
1495 assert_snapshot!(
1496 infer(r#"
1497struct A<T>(T);
1498enum Option<T> { Some(T), None }
1499use Option::*;
1500
1501fn test() {
1502 A(42);
1503 A(42u128);
1504 Some("x");
1505 Option::Some("x");
1506 None;
1507 let x: Option<i64> = None;
1508}
1509"#),
1510 @r###"
1511 [76; 184) '{ ...one; }': ()
1512 [82; 83) 'A': A<i32>(T) -> A<T>
1513 [82; 87) 'A(42)': A<i32>
1514 [84; 86) '42': i32
1515 [93; 94) 'A': A<u128>(T) -> A<T>
1516 [93; 102) 'A(42u128)': A<u128>
1517 [95; 101) '42u128': u128
1518 [108; 112) 'Some': Some<&str>(T) -> Option<T>
1519 [108; 117) 'Some("x")': Option<&str>
1520 [113; 116) '"x"': &str
1521 [123; 135) 'Option::Some': Some<&str>(T) -> Option<T>
1522 [123; 140) 'Option...e("x")': Option<&str>
1523 [136; 139) '"x"': &str
1524 [146; 150) 'None': Option<{unknown}>
1525 [160; 161) 'x': Option<i64>
1526 [177; 181) 'None': Option<i64>
1527 "###
1528 );
1529}
1530
1531#[test]
1532fn infer_generics_in_patterns() {
1533 assert_snapshot!(
1534 infer(r#"
1535struct A<T> {
1536 x: T,
1537}
1538
1539enum Option<T> {
1540 Some(T),
1541 None,
1542}
1543
1544fn test(a1: A<u32>, o: Option<u64>) {
1545 let A { x: x2 } = a1;
1546 let A::<i64> { x: x3 } = A { x: 1 };
1547 match o {
1548 Option::Some(t) => t,
1549 _ => 1,
1550 };
1551}
1552"#),
1553 @r###"
1554 [79; 81) 'a1': A<u32>
1555 [91; 92) 'o': Option<u64>
1556 [107; 244) '{ ... }; }': ()
1557 [117; 128) 'A { x: x2 }': A<u32>
1558 [124; 126) 'x2': u32
1559 [131; 133) 'a1': A<u32>
1560 [143; 161) 'A::<i6...: x3 }': A<i64>
1561 [157; 159) 'x3': i64
1562 [164; 174) 'A { x: 1 }': A<i64>
1563 [171; 172) '1': i64
1564 [180; 241) 'match ... }': u64
1565 [186; 187) 'o': Option<u64>
1566 [198; 213) 'Option::Some(t)': Option<u64>
1567 [211; 212) 't': u64
1568 [217; 218) 't': u64
1569 [228; 229) '_': Option<u64>
1570 [233; 234) '1': u64
1571 "###
1572 );
1573}
1574
1575#[test]
1576fn infer_function_generics() {
1577 assert_snapshot!(
1578 infer(r#"
1579fn id<T>(t: T) -> T { t }
1580
1581fn test() {
1582 id(1u32);
1583 id::<i128>(1);
1584 let x: u64 = id(1);
1585}
1586"#),
1587 @r###"
1588 [10; 11) 't': T
1589 [21; 26) '{ t }': T
1590 [23; 24) 't': T
1591 [38; 98) '{ ...(1); }': ()
1592 [44; 46) 'id': fn id<u32>(T) -> T
1593 [44; 52) 'id(1u32)': u32
1594 [47; 51) '1u32': u32
1595 [58; 68) 'id::<i128>': fn id<i128>(T) -> T
1596 [58; 71) 'id::<i128>(1)': i128
1597 [69; 70) '1': i128
1598 [81; 82) 'x': u64
1599 [90; 92) 'id': fn id<u64>(T) -> T
1600 [90; 95) 'id(1)': u64
1601 [93; 94) '1': u64
1602 "###
1603 );
1604}
1605
1606#[test]
1607fn infer_impl_generics() {
1608 assert_snapshot!(
1609 infer(r#"
1610struct A<T1, T2> {
1611 x: T1,
1612 y: T2,
1613}
1614impl<Y, X> A<X, Y> {
1615 fn x(self) -> X {
1616 self.x
1617 }
1618 fn y(self) -> Y {
1619 self.y
1620 }
1621 fn z<T>(self, t: T) -> (X, Y, T) {
1622 (self.x, self.y, t)
1623 }
1624}
1625
1626fn test() -> i128 {
1627 let a = A { x: 1u64, y: 1i64 };
1628 a.x();
1629 a.y();
1630 a.z(1i128);
1631 a.z::<u128>(1);
1632}
1633"#),
1634 @r###"
1635 [74; 78) 'self': A<X, Y>
1636 [85; 107) '{ ... }': X
1637 [95; 99) 'self': A<X, Y>
1638 [95; 101) 'self.x': X
1639 [117; 121) 'self': A<X, Y>
1640 [128; 150) '{ ... }': Y
1641 [138; 142) 'self': A<X, Y>
1642 [138; 144) 'self.y': Y
1643 [163; 167) 'self': A<X, Y>
1644 [169; 170) 't': T
1645 [188; 223) '{ ... }': (X, Y, T)
1646 [198; 217) '(self.....y, t)': (X, Y, T)
1647 [199; 203) 'self': A<X, Y>
1648 [199; 205) 'self.x': X
1649 [207; 211) 'self': A<X, Y>
1650 [207; 213) 'self.y': Y
1651 [215; 216) 't': T
1652 [245; 342) '{ ...(1); }': ()
1653 [255; 256) 'a': A<u64, i64>
1654 [259; 281) 'A { x:...1i64 }': A<u64, i64>
1655 [266; 270) '1u64': u64
1656 [275; 279) '1i64': i64
1657 [287; 288) 'a': A<u64, i64>
1658 [287; 292) 'a.x()': u64
1659 [298; 299) 'a': A<u64, i64>
1660 [298; 303) 'a.y()': i64
1661 [309; 310) 'a': A<u64, i64>
1662 [309; 319) 'a.z(1i128)': (u64, i64, i128)
1663 [313; 318) '1i128': i128
1664 [325; 326) 'a': A<u64, i64>
1665 [325; 339) 'a.z::<u128>(1)': (u64, i64, u128)
1666 [337; 338) '1': u128
1667 "###
1668 );
1669}
1670
1671#[test]
1672fn infer_impl_generics_with_autoderef() {
1673 assert_snapshot!(
1674 infer(r#"
1675enum Option<T> {
1676 Some(T),
1677 None,
1678}
1679impl<T> Option<T> {
1680 fn as_ref(&self) -> Option<&T> {}
1681}
1682fn test(o: Option<u32>) {
1683 (&o).as_ref();
1684 o.as_ref();
1685}
1686"#),
1687 @r###"
1688 [78; 82) 'self': &Option<T>
1689 [98; 100) '{}': ()
1690 [111; 112) 'o': Option<u32>
1691 [127; 165) '{ ...f(); }': ()
1692 [133; 146) '(&o).as_ref()': Option<&u32>
1693 [134; 136) '&o': &Option<u32>
1694 [135; 136) 'o': Option<u32>
1695 [152; 153) 'o': Option<u32>
1696 [152; 162) 'o.as_ref()': Option<&u32>
1697 "###
1698 );
1699}
1700
1701#[test]
1702fn infer_generic_chain() {
1703 assert_snapshot!(
1704 infer(r#"
1705struct A<T> {
1706 x: T,
1707}
1708impl<T2> A<T2> {
1709 fn x(self) -> T2 {
1710 self.x
1711 }
1712}
1713fn id<T>(t: T) -> T { t }
1714
1715fn test() -> i128 {
1716 let x = 1;
1717 let y = id(x);
1718 let a = A { x: id(y) };
1719 let z = id(a.x);
1720 let b = A { x: z };
1721 b.x()
1722}
1723"#),
1724 @r###"
1725 [53; 57) 'self': A<T2>
1726 [65; 87) '{ ... }': T2
1727 [75; 79) 'self': A<T2>
1728 [75; 81) 'self.x': T2
1729 [99; 100) 't': T
1730 [110; 115) '{ t }': T
1731 [112; 113) 't': T
1732 [135; 261) '{ ....x() }': i128
1733 [146; 147) 'x': i128
1734 [150; 151) '1': i128
1735 [162; 163) 'y': i128
1736 [166; 168) 'id': fn id<i128>(T) -> T
1737 [166; 171) 'id(x)': i128
1738 [169; 170) 'x': i128
1739 [182; 183) 'a': A<i128>
1740 [186; 200) 'A { x: id(y) }': A<i128>
1741 [193; 195) 'id': fn id<i128>(T) -> T
1742 [193; 198) 'id(y)': i128
1743 [196; 197) 'y': i128
1744 [211; 212) 'z': i128
1745 [215; 217) 'id': fn id<i128>(T) -> T
1746 [215; 222) 'id(a.x)': i128
1747 [218; 219) 'a': A<i128>
1748 [218; 221) 'a.x': i128
1749 [233; 234) 'b': A<i128>
1750 [237; 247) 'A { x: z }': A<i128>
1751 [244; 245) 'z': i128
1752 [254; 255) 'b': A<i128>
1753 [254; 259) 'b.x()': i128
1754 "###
1755 );
1756}
1757
1758#[test]
1759fn infer_associated_const() {
1760 assert_snapshot!(
1761 infer(r#"
1762struct Struct;
1763
1764impl Struct {
1765 const FOO: u32 = 1;
1766}
1767
1768enum Enum {}
1769
1770impl Enum {
1771 const BAR: u32 = 2;
1772}
1773
1774trait Trait {
1775 const ID: u32;
1776}
1777
1778struct TraitTest;
1779
1780impl Trait for TraitTest {
1781 const ID: u32 = 5;
1782}
1783
1784fn test() {
1785 let x = Struct::FOO;
1786 let y = Enum::BAR;
1787 let z = TraitTest::ID;
1788}
1789"#),
1790 @r###"
1791 [52; 53) '1': u32
1792 [105; 106) '2': u32
1793 [213; 214) '5': u32
1794 [229; 307) '{ ...:ID; }': ()
1795 [239; 240) 'x': u32
1796 [243; 254) 'Struct::FOO': u32
1797 [264; 265) 'y': u32
1798 [268; 277) 'Enum::BAR': u32
1799 [287; 288) 'z': u32
1800 [291; 304) 'TraitTest::ID': u32
1801 "###
1802 );
1803}
1804
1805#[test]
1806fn infer_associated_method_struct() {
1807 assert_snapshot!(
1808 infer(r#"
1809struct A { x: u32 }
1810
1811impl A {
1812 fn new() -> A {
1813 A { x: 0 }
1814 }
1815}
1816fn test() {
1817 let a = A::new();
1818 a.x;
1819}
1820"#),
1821 @r###"
1822 [49; 75) '{ ... }': A
1823 [59; 69) 'A { x: 0 }': A
1824 [66; 67) '0': u32
1825 [88; 122) '{ ...a.x; }': ()
1826 [98; 99) 'a': A
1827 [102; 108) 'A::new': fn new() -> A
1828 [102; 110) 'A::new()': A
1829 [116; 117) 'a': A
1830 [116; 119) 'a.x': u32
1831 "###
1832 );
1833}
1834
1835#[test]
1836fn infer_associated_method_enum() {
1837 assert_snapshot!(
1838 infer(r#"
1839enum A { B, C }
1840
1841impl A {
1842 pub fn b() -> A {
1843 A::B
1844 }
1845 pub fn c() -> A {
1846 A::C
1847 }
1848}
1849fn test() {
1850 let a = A::b();
1851 a;
1852 let c = A::c();
1853 c;
1854}
1855"#),
1856 @r###"
1857 [47; 67) '{ ... }': A
1858 [57; 61) 'A::B': A
1859 [88; 108) '{ ... }': A
1860 [98; 102) 'A::C': A
1861 [121; 178) '{ ... c; }': ()
1862 [131; 132) 'a': A
1863 [135; 139) 'A::b': fn b() -> A
1864 [135; 141) 'A::b()': A
1865 [147; 148) 'a': A
1866 [158; 159) 'c': A
1867 [162; 166) 'A::c': fn c() -> A
1868 [162; 168) 'A::c()': A
1869 [174; 175) 'c': A
1870 "###
1871 );
1872}
1873
1874#[test]
1875fn infer_associated_method_with_modules() {
1876 assert_snapshot!(
1877 infer(r#"
1878mod a {
1879 struct A;
1880 impl A { pub fn thing() -> A { A {} }}
1881}
1882
1883mod b {
1884 struct B;
1885 impl B { pub fn thing() -> u32 { 99 }}
1886
1887 mod c {
1888 struct C;
1889 impl C { pub fn thing() -> C { C {} }}
1890 }
1891}
1892use b::c;
1893
1894fn test() {
1895 let x = a::A::thing();
1896 let y = b::B::thing();
1897 let z = c::C::thing();
1898}
1899"#),
1900 @r###"
1901 [56; 64) '{ A {} }': A
1902 [58; 62) 'A {}': A
1903 [126; 132) '{ 99 }': u32
1904 [128; 130) '99': u32
1905 [202; 210) '{ C {} }': C
1906 [204; 208) 'C {}': C
1907 [241; 325) '{ ...g(); }': ()
1908 [251; 252) 'x': A
1909 [255; 266) 'a::A::thing': fn thing() -> A
1910 [255; 268) 'a::A::thing()': A
1911 [278; 279) 'y': u32
1912 [282; 293) 'b::B::thing': fn thing() -> u32
1913 [282; 295) 'b::B::thing()': u32
1914 [305; 306) 'z': C
1915 [309; 320) 'c::C::thing': fn thing() -> C
1916 [309; 322) 'c::C::thing()': C
1917 "###
1918 );
1919}
1920
1921#[test]
1922fn infer_associated_method_generics() {
1923 assert_snapshot!(
1924 infer(r#"
1925struct Gen<T> {
1926 val: T
1927}
1928
1929impl<T> Gen<T> {
1930 pub fn make(val: T) -> Gen<T> {
1931 Gen { val }
1932 }
1933}
1934
1935fn test() {
1936 let a = Gen::make(0u32);
1937}
1938"#),
1939 @r###"
1940 [64; 67) 'val': T
1941 [82; 109) '{ ... }': Gen<T>
1942 [92; 103) 'Gen { val }': Gen<T>
1943 [98; 101) 'val': T
1944 [123; 155) '{ ...32); }': ()
1945 [133; 134) 'a': Gen<u32>
1946 [137; 146) 'Gen::make': fn make<u32>(T) -> Gen<T>
1947 [137; 152) 'Gen::make(0u32)': Gen<u32>
1948 [147; 151) '0u32': u32
1949 "###
1950 );
1951}
1952
1953#[test]
1954fn infer_associated_method_generics_with_default_param() {
1955 assert_snapshot!(
1956 infer(r#"
1957struct Gen<T=u32> {
1958 val: T
1959}
1960
1961impl<T> Gen<T> {
1962 pub fn make() -> Gen<T> {
1963 loop { }
1964 }
1965}
1966
1967fn test() {
1968 let a = Gen::make();
1969}
1970"#),
1971 @r###"
1972 [80; 104) '{ ... }': Gen<T>
1973 [90; 98) 'loop { }': !
1974 [95; 98) '{ }': ()
1975 [118; 146) '{ ...e(); }': ()
1976 [128; 129) 'a': Gen<u32>
1977 [132; 141) 'Gen::make': fn make<u32>() -> Gen<T>
1978 [132; 143) 'Gen::make()': Gen<u32>
1979 "###
1980 );
1981}
1982
1983#[test]
1984fn infer_associated_method_generics_with_default_tuple_param() {
1985 let t = type_at(
1986 r#"
1987//- /main.rs
1988struct Gen<T=()> {
1989 val: T
1990}
1991
1992impl<T> Gen<T> {
1993 pub fn make() -> Gen<T> {
1994 loop { }
1995 }
1996}
1997
1998fn test() {
1999 let a = Gen::make();
2000 a.val<|>;
2001}
2002"#,
2003 );
2004 assert_eq!(t, "()");
2005}
2006
2007#[test]
2008fn infer_associated_method_generics_without_args() {
2009 assert_snapshot!(
2010 infer(r#"
2011struct Gen<T> {
2012 val: T
2013}
2014
2015impl<T> Gen<T> {
2016 pub fn make() -> Gen<T> {
2017 loop { }
2018 }
2019}
2020
2021fn test() {
2022 let a = Gen::<u32>::make();
2023}
2024"#),
2025 @r###"
2026 [76; 100) '{ ... }': Gen<T>
2027 [86; 94) 'loop { }': !
2028 [91; 94) '{ }': ()
2029 [114; 149) '{ ...e(); }': ()
2030 [124; 125) 'a': Gen<u32>
2031 [128; 144) 'Gen::<...::make': fn make<u32>() -> Gen<T>
2032 [128; 146) 'Gen::<...make()': Gen<u32>
2033 "###
2034 );
2035}
2036
2037#[test]
2038fn infer_associated_method_generics_2_type_params_without_args() {
2039 assert_snapshot!(
2040 infer(r#"
2041struct Gen<T, U> {
2042 val: T,
2043 val2: U,
2044}
2045
2046impl<T> Gen<u32, T> {
2047 pub fn make() -> Gen<u32,T> {
2048 loop { }
2049 }
2050}
2051
2052fn test() {
2053 let a = Gen::<u32, u64>::make();
2054}
2055"#),
2056 @r###"
2057 [102; 126) '{ ... }': Gen<u32, T>
2058 [112; 120) 'loop { }': !
2059 [117; 120) '{ }': ()
2060 [140; 180) '{ ...e(); }': ()
2061 [150; 151) 'a': Gen<u32, u64>
2062 [154; 175) 'Gen::<...::make': fn make<u64>() -> Gen<u32, T>
2063 [154; 177) 'Gen::<...make()': Gen<u32, u64>
2064 "###
2065 );
2066}
2067
2068#[test]
2069fn infer_type_alias() {
2070 assert_snapshot!(
2071 infer(r#"
2072struct A<X, Y> { x: X, y: Y }
2073type Foo = A<u32, i128>;
2074type Bar<T> = A<T, u128>;
2075type Baz<U, V> = A<V, U>;
2076fn test(x: Foo, y: Bar<&str>, z: Baz<i8, u8>) {
2077 x.x;
2078 x.y;
2079 y.x;
2080 y.y;
2081 z.x;
2082 z.y;
2083}
2084"#),
2085 @r###"
2086 [116; 117) 'x': A<u32, i128>
2087 [124; 125) 'y': A<&str, u128>
2088 [138; 139) 'z': A<u8, i8>
2089 [154; 211) '{ ...z.y; }': ()
2090 [160; 161) 'x': A<u32, i128>
2091 [160; 163) 'x.x': u32
2092 [169; 170) 'x': A<u32, i128>
2093 [169; 172) 'x.y': i128
2094 [178; 179) 'y': A<&str, u128>
2095 [178; 181) 'y.x': &str
2096 [187; 188) 'y': A<&str, u128>
2097 [187; 190) 'y.y': u128
2098 [196; 197) 'z': A<u8, i8>
2099 [196; 199) 'z.x': u8
2100 [205; 206) 'z': A<u8, i8>
2101 [205; 208) 'z.y': i8
2102 "###
2103 )
2104}
2105
2106#[test]
2107#[should_panic] // we currently can't handle this
2108fn recursive_type_alias() {
2109 assert_snapshot!(
2110 infer(r#"
2111struct A<X> {}
2112type Foo = Foo;
2113type Bar = A<Bar>;
2114fn test(x: Foo) {}
2115"#),
2116 @""
2117 )
2118}
2119
2120#[test]
2121fn no_panic_on_field_of_enum() {
2122 assert_snapshot!(
2123 infer(r#"
2124enum X {}
2125
2126fn test(x: X) {
2127 x.some_field;
2128}
2129"#),
2130 @r###"
2131 [20; 21) 'x': X
2132 [26; 47) '{ ...eld; }': ()
2133 [32; 33) 'x': X
2134 [32; 44) 'x.some_field': {unknown}
2135 "###
2136 );
2137}
2138
2139#[test]
2140fn bug_585() {
2141 assert_snapshot!(
2142 infer(r#"
2143fn test() {
2144 X {};
2145 match x {
2146 A::B {} => (),
2147 A::Y() => (),
2148 }
2149}
2150"#),
2151 @r###"
2152 [11; 89) '{ ... } }': ()
2153 [17; 21) 'X {}': {unknown}
2154 [27; 87) 'match ... }': ()
2155 [33; 34) 'x': {unknown}
2156 [45; 52) 'A::B {}': {unknown}
2157 [56; 58) '()': ()
2158 [68; 74) 'A::Y()': {unknown}
2159 [78; 80) '()': ()
2160 "###
2161 );
2162}
2163
2164#[test]
2165fn bug_651() {
2166 assert_snapshot!(
2167 infer(r#"
2168fn quux() {
2169 let y = 92;
2170 1 + y;
2171}
2172"#),
2173 @r###"
2174 [11; 41) '{ ...+ y; }': ()
2175 [21; 22) 'y': i32
2176 [25; 27) '92': i32
2177 [33; 34) '1': i32
2178 [33; 38) '1 + y': i32
2179 [37; 38) 'y': i32
2180 "###
2181 );
2182}
2183
2184#[test]
2185fn recursive_vars() {
2186 covers!(type_var_cycles_resolve_completely);
2187 covers!(type_var_cycles_resolve_as_possible);
2188 assert_snapshot!(
2189 infer(r#"
2190fn test() {
2191 let y = unknown;
2192 [y, &y];
2193}
2194"#),
2195 @r###"
2196 [11; 48) '{ ...&y]; }': ()
2197 [21; 22) 'y': &{unknown}
2198 [25; 32) 'unknown': &{unknown}
2199 [38; 45) '[y, &y]': [&&{unknown};_]
2200 [39; 40) 'y': &{unknown}
2201 [42; 44) '&y': &&{unknown}
2202 [43; 44) 'y': &{unknown}
2203 "###
2204 );
2205}
2206
2207#[test]
2208fn recursive_vars_2() {
2209 covers!(type_var_cycles_resolve_completely);
2210 covers!(type_var_cycles_resolve_as_possible);
2211 assert_snapshot!(
2212 infer(r#"
2213fn test() {
2214 let x = unknown;
2215 let y = unknown;
2216 [(x, y), (&y, &x)];
2217}
2218"#),
2219 @r###"
2220 [11; 80) '{ ...x)]; }': ()
2221 [21; 22) 'x': &&{unknown}
2222 [25; 32) 'unknown': &&{unknown}
2223 [42; 43) 'y': &&{unknown}
2224 [46; 53) 'unknown': &&{unknown}
2225 [59; 77) '[(x, y..., &x)]': [(&&&{unknown}, &&&{unknown});_]
2226 [60; 66) '(x, y)': (&&&{unknown}, &&&{unknown})
2227 [61; 62) 'x': &&{unknown}
2228 [64; 65) 'y': &&{unknown}
2229 [68; 76) '(&y, &x)': (&&&{unknown}, &&&{unknown})
2230 [69; 71) '&y': &&&{unknown}
2231 [70; 71) 'y': &&{unknown}
2232 [73; 75) '&x': &&&{unknown}
2233 [74; 75) 'x': &&{unknown}
2234 "###
2235 );
2236}
2237
2238#[test]
2239fn infer_type_param() {
2240 assert_snapshot!(
2241 infer(r#"
2242fn id<T>(x: T) -> T {
2243 x
2244}
2245
2246fn clone<T>(x: &T) -> T {
2247 *x
2248}
2249
2250fn test() {
2251 let y = 10u32;
2252 id(y);
2253 let x: bool = clone(z);
2254 id::<i128>(1);
2255}
2256"#),
2257 @r###"
2258 [10; 11) 'x': T
2259 [21; 30) '{ x }': T
2260 [27; 28) 'x': T
2261 [44; 45) 'x': &T
2262 [56; 66) '{ *x }': T
2263 [62; 64) '*x': T
2264 [63; 64) 'x': &T
2265 [78; 158) '{ ...(1); }': ()
2266 [88; 89) 'y': u32
2267 [92; 97) '10u32': u32
2268 [103; 105) 'id': fn id<u32>(T) -> T
2269 [103; 108) 'id(y)': u32
2270 [106; 107) 'y': u32
2271 [118; 119) 'x': bool
2272 [128; 133) 'clone': fn clone<bool>(&T) -> T
2273 [128; 136) 'clone(z)': bool
2274 [134; 135) 'z': &bool
2275 [142; 152) 'id::<i128>': fn id<i128>(T) -> T
2276 [142; 155) 'id::<i128>(1)': i128
2277 [153; 154) '1': i128
2278 "###
2279 );
2280}
2281
2282#[test]
2283fn infer_std_crash_1() {
2284 // caused stack overflow, taken from std
2285 assert_snapshot!(
2286 infer(r#"
2287enum Maybe<T> {
2288 Real(T),
2289 Fake,
2290}
2291
2292fn write() {
2293 match something_unknown {
2294 Maybe::Real(ref mut something) => (),
2295 }
2296}
2297"#),
2298 @r###"
2299 [54; 139) '{ ... } }': ()
2300 [60; 137) 'match ... }': ()
2301 [66; 83) 'someth...nknown': Maybe<{unknown}>
2302 [94; 124) 'Maybe:...thing)': Maybe<{unknown}>
2303 [106; 123) 'ref mu...ething': &mut {unknown}
2304 [128; 130) '()': ()
2305 "###
2306 );
2307}
2308
2309#[test]
2310fn infer_std_crash_2() {
2311 covers!(type_var_resolves_to_int_var);
2312 // caused "equating two type variables, ...", taken from std
2313 assert_snapshot!(
2314 infer(r#"
2315fn test_line_buffer() {
2316 &[0, b'\n', 1, b'\n'];
2317}
2318"#),
2319 @r###"
2320 [23; 53) '{ ...n']; }': ()
2321 [29; 50) '&[0, b...b'\n']': &[u8;_]
2322 [30; 50) '[0, b'...b'\n']': [u8;_]
2323 [31; 32) '0': u8
2324 [34; 39) 'b'\n'': u8
2325 [41; 42) '1': u8
2326 [44; 49) 'b'\n'': u8
2327 "###
2328 );
2329}
2330
2331#[test]
2332fn infer_std_crash_3() {
2333 // taken from rustc
2334 assert_snapshot!(
2335 infer(r#"
2336pub fn compute() {
2337 match nope!() {
2338 SizeSkeleton::Pointer { non_zero: true, tail } => {}
2339 }
2340}
2341"#),
2342 @r###"
2343 [18; 108) '{ ... } }': ()
2344 [24; 106) 'match ... }': ()
2345 [30; 37) 'nope!()': {unknown}
2346 [48; 94) 'SizeSk...tail }': {unknown}
2347 [82; 86) 'true': {unknown}
2348 [88; 92) 'tail': {unknown}
2349 [98; 100) '{}': ()
2350 "###
2351 );
2352}
2353
2354#[test]
2355fn infer_std_crash_4() {
2356 // taken from rustc
2357 assert_snapshot!(
2358 infer(r#"
2359pub fn primitive_type() {
2360 match *self {
2361 BorrowedRef { type_: Primitive(p), ..} => {},
2362 }
2363}
2364"#),
2365 @r###"
2366 [25; 106) '{ ... } }': ()
2367 [31; 104) 'match ... }': ()
2368 [37; 42) '*self': {unknown}
2369 [38; 42) 'self': {unknown}
2370 [53; 91) 'Borrow...), ..}': {unknown}
2371 [74; 86) 'Primitive(p)': {unknown}
2372 [84; 85) 'p': {unknown}
2373 [95; 97) '{}': ()
2374 "###
2375 );
2376}
2377
2378#[test]
2379fn infer_std_crash_5() {
2380 // taken from rustc
2381 assert_snapshot!(
2382 infer(r#"
2383fn extra_compiler_flags() {
2384 for content in doesnt_matter {
2385 let name = if doesnt_matter {
2386 first
2387 } else {
2388 &content
2389 };
2390
2391 let content = if ICE_REPORT_COMPILER_FLAGS_STRIP_VALUE.contains(&name) {
2392 name
2393 } else {
2394 content
2395 };
2396 }
2397}
2398"#),
2399 @r###"
2400 [27; 323) '{ ... } }': ()
2401 [33; 321) 'for co... }': ()
2402 [37; 44) 'content': &{unknown}
2403 [48; 61) 'doesnt_matter': {unknown}
2404 [62; 321) '{ ... }': ()
2405 [76; 80) 'name': &&{unknown}
2406 [83; 167) 'if doe... }': &&{unknown}
2407 [86; 99) 'doesnt_matter': bool
2408 [100; 129) '{ ... }': &&{unknown}
2409 [114; 119) 'first': &&{unknown}
2410 [135; 167) '{ ... }': &&{unknown}
2411 [149; 157) '&content': &&{unknown}
2412 [150; 157) 'content': &{unknown}
2413 [182; 189) 'content': &{unknown}
2414 [192; 314) 'if ICE... }': &{unknown}
2415 [195; 232) 'ICE_RE..._VALUE': {unknown}
2416 [195; 248) 'ICE_RE...&name)': bool
2417 [242; 247) '&name': &&&{unknown}
2418 [243; 247) 'name': &&{unknown}
2419 [249; 277) '{ ... }': &&{unknown}
2420 [263; 267) 'name': &&{unknown}
2421 [283; 314) '{ ... }': &{unknown}
2422 [297; 304) 'content': &{unknown}
2423 "###
2424 );
2425}
2426
2427#[test]
2428fn infer_nested_generics_crash() {
2429 // another crash found typechecking rustc
2430 assert_snapshot!(
2431 infer(r#"
2432struct Canonical<V> {
2433 value: V,
2434}
2435struct QueryResponse<V> {
2436 value: V,
2437}
2438fn test<R>(query_response: Canonical<QueryResponse<R>>) {
2439 &query_response.value;
2440}
2441"#),
2442 @r###"
2443 [92; 106) 'query_response': Canonical<QueryResponse<R>>
2444 [137; 167) '{ ...lue; }': ()
2445 [143; 164) '&query....value': &QueryResponse<R>
2446 [144; 158) 'query_response': Canonical<QueryResponse<R>>
2447 [144; 164) 'query_....value': QueryResponse<R>
2448 "###
2449 );
2450}
2451
2452#[test]
2453fn bug_1030() {
2454 assert_snapshot!(infer(r#"
2455struct HashSet<T, H>;
2456struct FxHasher;
2457type FxHashSet<T> = HashSet<T, FxHasher>;
2458
2459impl<T, H> HashSet<T, H> {
2460 fn default() -> HashSet<T, H> {}
2461}
2462
2463pub fn main_loop() {
2464 FxHashSet::default();
2465}
2466"#),
2467 @r###"
2468 [144; 146) '{}': ()
2469 [169; 198) '{ ...t(); }': ()
2470 [175; 193) 'FxHash...efault': fn default<{unknown}, FxHasher>() -> HashSet<T, H>
2471 [175; 195) 'FxHash...ault()': HashSet<{unknown}, FxHasher>
2472 "###
2473 );
2474}
2475
2476#[test]
2477fn cross_crate_associated_method_call() {
2478 let (db, pos) = TestDB::with_position(
2479 r#"
2480//- /main.rs crate:main deps:other_crate
2481fn test() {
2482 let x = other_crate::foo::S::thing();
2483 x<|>;
2484}
2485
2486//- /lib.rs crate:other_crate
2487mod foo {
2488 struct S;
2489 impl S {
2490 fn thing() -> i128 {}
2491 }
2492}
2493"#,
2494 );
2495 assert_eq!("i128", type_at_pos(&db, pos));
2496}
2497
2498#[test]
2499fn infer_const() {
2500 assert_snapshot!(
2501 infer(r#"
2502struct Foo;
2503impl Foo { const ASSOC_CONST: u32 = 0; }
2504const GLOBAL_CONST: u32 = 101;
2505fn test() {
2506 const LOCAL_CONST: u32 = 99;
2507 let x = LOCAL_CONST;
2508 let z = GLOBAL_CONST;
2509 let id = Foo::ASSOC_CONST;
2510}
2511"#),
2512 @r###"
2513 [49; 50) '0': u32
2514 [80; 83) '101': u32
2515 [95; 213) '{ ...NST; }': ()
2516 [138; 139) 'x': {unknown}
2517 [142; 153) 'LOCAL_CONST': {unknown}
2518 [163; 164) 'z': u32
2519 [167; 179) 'GLOBAL_CONST': u32
2520 [189; 191) 'id': u32
2521 [194; 210) 'Foo::A..._CONST': u32
2522 "###
2523 );
2524}
2525
2526#[test]
2527fn infer_static() {
2528 assert_snapshot!(
2529 infer(r#"
2530static GLOBAL_STATIC: u32 = 101;
2531static mut GLOBAL_STATIC_MUT: u32 = 101;
2532fn test() {
2533 static LOCAL_STATIC: u32 = 99;
2534 static mut LOCAL_STATIC_MUT: u32 = 99;
2535 let x = LOCAL_STATIC;
2536 let y = LOCAL_STATIC_MUT;
2537 let z = GLOBAL_STATIC;
2538 let w = GLOBAL_STATIC_MUT;
2539}
2540"#),
2541 @r###"
2542 [29; 32) '101': u32
2543 [70; 73) '101': u32
2544 [85; 280) '{ ...MUT; }': ()
2545 [173; 174) 'x': {unknown}
2546 [177; 189) 'LOCAL_STATIC': {unknown}
2547 [199; 200) 'y': {unknown}
2548 [203; 219) 'LOCAL_...IC_MUT': {unknown}
2549 [229; 230) 'z': u32
2550 [233; 246) 'GLOBAL_STATIC': u32
2551 [256; 257) 'w': u32
2552 [260; 277) 'GLOBAL...IC_MUT': u32
2553 "###
2554 );
2555}
2556
2557#[test]
2558fn infer_trait_method_simple() {
2559 // the trait implementation is intentionally incomplete -- it shouldn't matter
2560 assert_snapshot!(
2561 infer(r#"
2562trait Trait1 {
2563 fn method(&self) -> u32;
2564}
2565struct S1;
2566impl Trait1 for S1 {}
2567trait Trait2 {
2568 fn method(&self) -> i128;
2569}
2570struct S2;
2571impl Trait2 for S2 {}
2572fn test() {
2573 S1.method(); // -> u32
2574 S2.method(); // -> i128
2575}
2576"#),
2577 @r###"
2578 [31; 35) 'self': &Self
2579 [110; 114) 'self': &Self
2580 [170; 228) '{ ...i128 }': ()
2581 [176; 178) 'S1': S1
2582 [176; 187) 'S1.method()': u32
2583 [203; 205) 'S2': S2
2584 [203; 214) 'S2.method()': i128
2585 "###
2586 );
2587}
2588
2589#[test]
2590fn infer_trait_method_scoped() {
2591 // the trait implementation is intentionally incomplete -- it shouldn't matter
2592 assert_snapshot!(
2593 infer(r#"
2594struct S;
2595mod foo {
2596 pub trait Trait1 {
2597 fn method(&self) -> u32;
2598 }
2599 impl Trait1 for super::S {}
2600}
2601mod bar {
2602 pub trait Trait2 {
2603 fn method(&self) -> i128;
2604 }
2605 impl Trait2 for super::S {}
2606}
2607
2608mod foo_test {
2609 use super::S;
2610 use super::foo::Trait1;
2611 fn test() {
2612 S.method(); // -> u32
2613 }
2614}
2615
2616mod bar_test {
2617 use super::S;
2618 use super::bar::Trait2;
2619 fn test() {
2620 S.method(); // -> i128
2621 }
2622}
2623"#),
2624 @r###"
2625 [63; 67) 'self': &Self
2626 [169; 173) 'self': &Self
2627 [300; 337) '{ ... }': ()
2628 [310; 311) 'S': S
2629 [310; 320) 'S.method()': u32
2630 [416; 454) '{ ... }': ()
2631 [426; 427) 'S': S
2632 [426; 436) 'S.method()': i128
2633 "###
2634 );
2635}
2636