aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir_ty/src/infer
diff options
context:
space:
mode:
authorbors[bot] <26634292+bors[bot]@users.noreply.github.com>2019-12-03 12:58:44 +0000
committerGitHub <[email protected]>2019-12-03 12:58:44 +0000
commitc5be0cedf3a9d56c17d988ce6354599b85198fb8 (patch)
tree70e3d0e36efa9568fb7f510f44bd65ff675122a2 /crates/ra_hir_ty/src/infer
parent3376c08052a563a5d2db487c458972378edebf44 (diff)
parent18f25acb89304b2eb0a822b7b49b5e66a439ada7 (diff)
Merge #2463
2463: More correct method resolution r=flodiebold a=flodiebold This should fix the order in which candidates for method resolution are considered, i.e. `(&Foo).clone()` should now be of type `Foo` instead of `&Foo`. It also checks for inherent candidates that the self type unifies properly with the self type in the impl (i.e. `impl Foo<u32>` methods will only be considered for `Foo<u32>`). To be able to get the correct receiver type to check in the method resolution, I needed the unification logic, so I extracted it to the `unify.rs` module. Should fix #2435. Co-authored-by: Florian Diebold <[email protected]>
Diffstat (limited to 'crates/ra_hir_ty/src/infer')
-rw-r--r--crates/ra_hir_ty/src/infer/coerce.rs10
-rw-r--r--crates/ra_hir_ty/src/infer/expr.rs30
-rw-r--r--crates/ra_hir_ty/src/infer/pat.rs4
-rw-r--r--crates/ra_hir_ty/src/infer/path.rs42
-rw-r--r--crates/ra_hir_ty/src/infer/unify.rs276
5 files changed, 297 insertions, 65 deletions
diff --git a/crates/ra_hir_ty/src/infer/coerce.rs b/crates/ra_hir_ty/src/infer/coerce.rs
index 064993d34..9daa77cfa 100644
--- a/crates/ra_hir_ty/src/infer/coerce.rs
+++ b/crates/ra_hir_ty/src/infer/coerce.rs
@@ -10,7 +10,7 @@ use test_utils::tested_by;
10 10
11use crate::{autoderef, db::HirDatabase, Substs, Ty, TypeCtor, TypeWalk}; 11use crate::{autoderef, db::HirDatabase, Substs, Ty, TypeCtor, TypeWalk};
12 12
13use super::{InEnvironment, InferTy, InferenceContext, TypeVarValue}; 13use super::{unify::TypeVarValue, InEnvironment, InferTy, InferenceContext};
14 14
15impl<'a, D: HirDatabase> InferenceContext<'a, D> { 15impl<'a, D: HirDatabase> InferenceContext<'a, D> {
16 /// Unify two types, but may coerce the first one to the second one 16 /// Unify two types, but may coerce the first one to the second one
@@ -85,8 +85,8 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
85 match (&from_ty, to_ty) { 85 match (&from_ty, to_ty) {
86 // Never type will make type variable to fallback to Never Type instead of Unknown. 86 // Never type will make type variable to fallback to Never Type instead of Unknown.
87 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => { 87 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
88 let var = self.new_maybe_never_type_var(); 88 let var = self.table.new_maybe_never_type_var();
89 self.var_unification_table.union_value(*tv, TypeVarValue::Known(var)); 89 self.table.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
90 return true; 90 return true;
91 } 91 }
92 (ty_app!(TypeCtor::Never), _) => return true, 92 (ty_app!(TypeCtor::Never), _) => return true,
@@ -94,7 +94,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
94 // Trivial cases, this should go after `never` check to 94 // Trivial cases, this should go after `never` check to
95 // avoid infer result type to be never 95 // avoid infer result type to be never
96 _ => { 96 _ => {
97 if self.unify_inner_trivial(&from_ty, &to_ty) { 97 if self.table.unify_inner_trivial(&from_ty, &to_ty) {
98 return true; 98 return true;
99 } 99 }
100 } 100 }
@@ -330,7 +330,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
330 // Stop when constructor matches. 330 // Stop when constructor matches.
331 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => { 331 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
332 // It will not recurse to `coerce`. 332 // It will not recurse to `coerce`.
333 return self.unify_substs(st1, st2, 0); 333 return self.table.unify_substs(st1, st2, 0);
334 } 334 }
335 _ => {} 335 _ => {}
336 } 336 }
diff --git a/crates/ra_hir_ty/src/infer/expr.rs b/crates/ra_hir_ty/src/infer/expr.rs
index 4014f4732..1e78f6efd 100644
--- a/crates/ra_hir_ty/src/infer/expr.rs
+++ b/crates/ra_hir_ty/src/infer/expr.rs
@@ -32,7 +32,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
32 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() }, 32 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
33 ); 33 );
34 } 34 }
35 let ty = self.resolve_ty_as_possible(&mut vec![], ty); 35 let ty = self.resolve_ty_as_possible(ty);
36 ty 36 ty
37 } 37 }
38 38
@@ -53,7 +53,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
53 expected.ty.clone() 53 expected.ty.clone()
54 }; 54 };
55 55
56 self.resolve_ty_as_possible(&mut vec![], ty) 56 self.resolve_ty_as_possible(ty)
57 } 57 }
58 58
59 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty { 59 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
@@ -94,7 +94,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
94 94
95 let pat_ty = match self.resolve_into_iter_item() { 95 let pat_ty = match self.resolve_into_iter_item() {
96 Some(into_iter_item_alias) => { 96 Some(into_iter_item_alias) => {
97 let pat_ty = self.new_type_var(); 97 let pat_ty = self.table.new_type_var();
98 let projection = ProjectionPredicate { 98 let projection = ProjectionPredicate {
99 ty: pat_ty.clone(), 99 ty: pat_ty.clone(),
100 projection_ty: ProjectionTy { 100 projection_ty: ProjectionTy {
@@ -103,7 +103,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
103 }, 103 },
104 }; 104 };
105 self.obligations.push(Obligation::Projection(projection)); 105 self.obligations.push(Obligation::Projection(projection));
106 self.resolve_ty_as_possible(&mut vec![], pat_ty) 106 self.resolve_ty_as_possible(pat_ty)
107 } 107 }
108 None => Ty::Unknown, 108 None => Ty::Unknown,
109 }; 109 };
@@ -128,7 +128,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
128 } 128 }
129 129
130 // add return type 130 // add return type
131 let ret_ty = self.new_type_var(); 131 let ret_ty = self.table.new_type_var();
132 sig_tys.push(ret_ty.clone()); 132 sig_tys.push(ret_ty.clone());
133 let sig_ty = Ty::apply( 133 let sig_ty = Ty::apply(
134 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 }, 134 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
@@ -167,7 +167,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
167 Expr::Match { expr, arms } => { 167 Expr::Match { expr, arms } => {
168 let input_ty = self.infer_expr(*expr, &Expectation::none()); 168 let input_ty = self.infer_expr(*expr, &Expectation::none());
169 169
170 let mut result_ty = self.new_maybe_never_type_var(); 170 let mut result_ty = self.table.new_maybe_never_type_var();
171 171
172 for arm in arms { 172 for arm in arms {
173 for &pat in &arm.pats { 173 for &pat in &arm.pats {
@@ -283,7 +283,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
283 let inner_ty = self.infer_expr(*expr, &Expectation::none()); 283 let inner_ty = self.infer_expr(*expr, &Expectation::none());
284 let ty = match self.resolve_future_future_output() { 284 let ty = match self.resolve_future_future_output() {
285 Some(future_future_output_alias) => { 285 Some(future_future_output_alias) => {
286 let ty = self.new_type_var(); 286 let ty = self.table.new_type_var();
287 let projection = ProjectionPredicate { 287 let projection = ProjectionPredicate {
288 ty: ty.clone(), 288 ty: ty.clone(),
289 projection_ty: ProjectionTy { 289 projection_ty: ProjectionTy {
@@ -292,7 +292,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
292 }, 292 },
293 }; 293 };
294 self.obligations.push(Obligation::Projection(projection)); 294 self.obligations.push(Obligation::Projection(projection));
295 self.resolve_ty_as_possible(&mut vec![], ty) 295 self.resolve_ty_as_possible(ty)
296 } 296 }
297 None => Ty::Unknown, 297 None => Ty::Unknown,
298 }; 298 };
@@ -302,7 +302,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
302 let inner_ty = self.infer_expr(*expr, &Expectation::none()); 302 let inner_ty = self.infer_expr(*expr, &Expectation::none());
303 let ty = match self.resolve_ops_try_ok() { 303 let ty = match self.resolve_ops_try_ok() {
304 Some(ops_try_ok_alias) => { 304 Some(ops_try_ok_alias) => {
305 let ty = self.new_type_var(); 305 let ty = self.table.new_type_var();
306 let projection = ProjectionPredicate { 306 let projection = ProjectionPredicate {
307 ty: ty.clone(), 307 ty: ty.clone(),
308 projection_ty: ProjectionTy { 308 projection_ty: ProjectionTy {
@@ -311,7 +311,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
311 }, 311 },
312 }; 312 };
313 self.obligations.push(Obligation::Projection(projection)); 313 self.obligations.push(Obligation::Projection(projection));
314 self.resolve_ty_as_possible(&mut vec![], ty) 314 self.resolve_ty_as_possible(ty)
315 } 315 }
316 None => Ty::Unknown, 316 None => Ty::Unknown,
317 }; 317 };
@@ -465,10 +465,10 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
465 ty_app!(TypeCtor::Tuple { .. }, st) => st 465 ty_app!(TypeCtor::Tuple { .. }, st) => st
466 .iter() 466 .iter()
467 .cloned() 467 .cloned()
468 .chain(repeat_with(|| self.new_type_var())) 468 .chain(repeat_with(|| self.table.new_type_var()))
469 .take(exprs.len()) 469 .take(exprs.len())
470 .collect::<Vec<_>>(), 470 .collect::<Vec<_>>(),
471 _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(), 471 _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
472 }; 472 };
473 473
474 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) { 474 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
@@ -482,7 +482,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
482 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => { 482 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
483 st.as_single().clone() 483 st.as_single().clone()
484 } 484 }
485 _ => self.new_type_var(), 485 _ => self.table.new_type_var(),
486 }; 486 };
487 487
488 match array { 488 match array {
@@ -524,7 +524,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
524 }; 524 };
525 // use a new type variable if we got Ty::Unknown here 525 // use a new type variable if we got Ty::Unknown here
526 let ty = self.insert_type_vars_shallow(ty); 526 let ty = self.insert_type_vars_shallow(ty);
527 let ty = self.resolve_ty_as_possible(&mut vec![], ty); 527 let ty = self.resolve_ty_as_possible(ty);
528 self.write_expr_ty(tgt_expr, ty.clone()); 528 self.write_expr_ty(tgt_expr, ty.clone());
529 ty 529 ty
530 } 530 }
@@ -553,7 +553,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
553 } 553 }
554 } 554 }
555 555
556 let ty = self.resolve_ty_as_possible(&mut vec![], ty); 556 let ty = self.resolve_ty_as_possible(ty);
557 self.infer_pat(*pat, &ty, BindingMode::default()); 557 self.infer_pat(*pat, &ty, BindingMode::default());
558 } 558 }
559 Statement::Expr(expr) => { 559 Statement::Expr(expr) => {
diff --git a/crates/ra_hir_ty/src/infer/pat.rs b/crates/ra_hir_ty/src/infer/pat.rs
index 1ebb36239..a14662884 100644
--- a/crates/ra_hir_ty/src/infer/pat.rs
+++ b/crates/ra_hir_ty/src/infer/pat.rs
@@ -170,7 +170,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
170 } 170 }
171 BindingMode::Move => inner_ty.clone(), 171 BindingMode::Move => inner_ty.clone(),
172 }; 172 };
173 let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty); 173 let bound_ty = self.resolve_ty_as_possible(bound_ty);
174 self.write_pat_ty(pat, bound_ty); 174 self.write_pat_ty(pat, bound_ty);
175 return inner_ty; 175 return inner_ty;
176 } 176 }
@@ -179,7 +179,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
179 // use a new type variable if we got Ty::Unknown here 179 // use a new type variable if we got Ty::Unknown here
180 let ty = self.insert_type_vars_shallow(ty); 180 let ty = self.insert_type_vars_shallow(ty);
181 self.unify(&ty, expected); 181 self.unify(&ty, expected);
182 let ty = self.resolve_ty_as_possible(&mut vec![], ty); 182 let ty = self.resolve_ty_as_possible(ty);
183 self.write_pat_ty(pat, ty.clone()); 183 self.write_pat_ty(pat, ty.clone());
184 ty 184 ty
185 } 185 }
diff --git a/crates/ra_hir_ty/src/infer/path.rs b/crates/ra_hir_ty/src/infer/path.rs
index bbf146418..b0024c6e1 100644
--- a/crates/ra_hir_ty/src/infer/path.rs
+++ b/crates/ra_hir_ty/src/infer/path.rs
@@ -57,7 +57,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
57 let typable: ValueTyDefId = match value { 57 let typable: ValueTyDefId = match value {
58 ValueNs::LocalBinding(pat) => { 58 ValueNs::LocalBinding(pat) => {
59 let ty = self.result.type_of_pat.get(pat)?.clone(); 59 let ty = self.result.type_of_pat.get(pat)?.clone();
60 let ty = self.resolve_ty_as_possible(&mut vec![], ty); 60 let ty = self.resolve_ty_as_possible(ty);
61 return Some(ty); 61 return Some(ty);
62 } 62 }
63 ValueNs::FunctionId(it) => it.into(), 63 ValueNs::FunctionId(it) => it.into(),
@@ -206,12 +206,14 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
206 AssocItemId::TypeAliasId(_) => unreachable!(), 206 AssocItemId::TypeAliasId(_) => unreachable!(),
207 }; 207 };
208 let substs = match container { 208 let substs = match container {
209 ContainerId::ImplId(_) => self.find_self_types(&def, ty.clone()), 209 ContainerId::ImplId(impl_id) => {
210 method_resolution::inherent_impl_substs(self.db, impl_id, &ty)
211 }
210 ContainerId::TraitId(trait_) => { 212 ContainerId::TraitId(trait_) => {
211 // we're picking this method 213 // we're picking this method
212 let trait_substs = Substs::build_for_def(self.db, trait_) 214 let trait_substs = Substs::build_for_def(self.db, trait_)
213 .push(ty.clone()) 215 .push(ty.clone())
214 .fill(std::iter::repeat_with(|| self.new_type_var())) 216 .fill(std::iter::repeat_with(|| self.table.new_type_var()))
215 .build(); 217 .build();
216 let substs = Substs::build_for_def(self.db, item) 218 let substs = Substs::build_for_def(self.db, item)
217 .use_parent_substs(&trait_substs) 219 .use_parent_substs(&trait_substs)
@@ -231,38 +233,4 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
231 }, 233 },
232 ) 234 )
233 } 235 }
234
235 fn find_self_types(&self, def: &ValueNs, actual_def_ty: Ty) -> Option<Substs> {
236 if let ValueNs::FunctionId(func) = *def {
237 // We only do the infer if parent has generic params
238 let gen = self.db.generic_params(func.into());
239 if gen.count_parent_params() == 0 {
240 return None;
241 }
242
243 let impl_id = match func.lookup(self.db).container {
244 ContainerId::ImplId(it) => it,
245 _ => return None,
246 };
247 let self_ty = self.db.impl_self_ty(impl_id).clone();
248 let self_ty_substs = self_ty.substs()?;
249 let actual_substs = actual_def_ty.substs()?;
250
251 let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
252
253 // The following code *link up* the function actual parma type
254 // and impl_block type param index
255 self_ty_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
256 if let Ty::Param { idx, .. } = param {
257 if let Some(s) = new_substs.get_mut(*idx as usize) {
258 *s = pty.clone();
259 }
260 }
261 });
262
263 Some(Substs(new_substs.into()))
264 } else {
265 None
266 }
267 }
268} 236}
diff --git a/crates/ra_hir_ty/src/infer/unify.rs b/crates/ra_hir_ty/src/infer/unify.rs
index f3a875678..8ed2a6090 100644
--- a/crates/ra_hir_ty/src/infer/unify.rs
+++ b/crates/ra_hir_ty/src/infer/unify.rs
@@ -1,9 +1,15 @@
1//! Unification and canonicalization logic. 1//! Unification and canonicalization logic.
2 2
3use std::borrow::Cow;
4
5use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
6
7use test_utils::tested_by;
8
3use super::{InferenceContext, Obligation}; 9use super::{InferenceContext, Obligation};
4use crate::{ 10use crate::{
5 db::HirDatabase, utils::make_mut_slice, Canonical, InEnvironment, InferTy, ProjectionPredicate, 11 db::HirDatabase, utils::make_mut_slice, Canonical, InEnvironment, InferTy, ProjectionPredicate,
6 ProjectionTy, Substs, TraitRef, Ty, TypeWalk, 12 ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk,
7}; 13};
8 14
9impl<'a, D: HirDatabase> InferenceContext<'a, D> { 15impl<'a, D: HirDatabase> InferenceContext<'a, D> {
@@ -24,7 +30,7 @@ where
24 /// A stack of type variables that is used to detect recursive types (which 30 /// A stack of type variables that is used to detect recursive types (which
25 /// are an error, but we need to protect against them to avoid stack 31 /// are an error, but we need to protect against them to avoid stack
26 /// overflows). 32 /// overflows).
27 var_stack: Vec<super::TypeVarId>, 33 var_stack: Vec<TypeVarId>,
28} 34}
29 35
30pub(super) struct Canonicalized<T> { 36pub(super) struct Canonicalized<T> {
@@ -53,14 +59,14 @@ where
53 return tv.fallback_value(); 59 return tv.fallback_value();
54 } 60 }
55 if let Some(known_ty) = 61 if let Some(known_ty) =
56 self.ctx.var_unification_table.inlined_probe_value(inner).known() 62 self.ctx.table.var_unification_table.inlined_probe_value(inner).known()
57 { 63 {
58 self.var_stack.push(inner); 64 self.var_stack.push(inner);
59 let result = self.do_canonicalize_ty(known_ty.clone()); 65 let result = self.do_canonicalize_ty(known_ty.clone());
60 self.var_stack.pop(); 66 self.var_stack.pop();
61 result 67 result
62 } else { 68 } else {
63 let root = self.ctx.var_unification_table.find(inner); 69 let root = self.ctx.table.var_unification_table.find(inner);
64 let free_var = match tv { 70 let free_var = match tv {
65 InferTy::TypeVar(_) => InferTy::TypeVar(root), 71 InferTy::TypeVar(_) => InferTy::TypeVar(root),
66 InferTy::IntVar(_) => InferTy::IntVar(root), 72 InferTy::IntVar(_) => InferTy::IntVar(root),
@@ -153,10 +159,268 @@ impl<T> Canonicalized<T> {
153 solution: Canonical<Vec<Ty>>, 159 solution: Canonical<Vec<Ty>>,
154 ) { 160 ) {
155 // the solution may contain new variables, which we need to convert to new inference vars 161 // the solution may contain new variables, which we need to convert to new inference vars
156 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.new_type_var()).collect()); 162 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.table.new_type_var()).collect());
157 for (i, ty) in solution.value.into_iter().enumerate() { 163 for (i, ty) in solution.value.into_iter().enumerate() {
158 let var = self.free_vars[i]; 164 let var = self.free_vars[i];
159 ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars)); 165 ctx.table.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
166 }
167 }
168}
169
170pub fn unify(ty1: Canonical<&Ty>, ty2: &Ty) -> Option<Substs> {
171 let mut table = InferenceTable::new();
172 let vars =
173 Substs::builder(ty1.num_vars).fill(std::iter::repeat_with(|| table.new_type_var())).build();
174 let ty_with_vars = ty1.value.clone().subst_bound_vars(&vars);
175 if !table.unify(&ty_with_vars, ty2) {
176 return None;
177 }
178 Some(
179 Substs::builder(ty1.num_vars)
180 .fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone())))
181 .build(),
182 )
183}
184
185#[derive(Clone, Debug)]
186pub(crate) struct InferenceTable {
187 pub(super) var_unification_table: InPlaceUnificationTable<TypeVarId>,
188}
189
190impl InferenceTable {
191 pub fn new() -> Self {
192 InferenceTable { var_unification_table: InPlaceUnificationTable::new() }
193 }
194
195 pub fn new_type_var(&mut self) -> Ty {
196 Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
197 }
198
199 pub fn new_integer_var(&mut self) -> Ty {
200 Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
201 }
202
203 pub fn new_float_var(&mut self) -> Ty {
204 Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
205 }
206
207 pub fn new_maybe_never_type_var(&mut self) -> Ty {
208 Ty::Infer(InferTy::MaybeNeverTypeVar(
209 self.var_unification_table.new_key(TypeVarValue::Unknown),
210 ))
211 }
212
213 pub fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
214 self.resolve_ty_completely_inner(&mut Vec::new(), ty)
215 }
216
217 pub fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
218 self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
219 }
220
221 pub fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
222 self.unify_inner(ty1, ty2, 0)
223 }
224
225 pub fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
226 substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
227 }
228
229 fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
230 if depth > 1000 {
231 // prevent stackoverflows
232 panic!("infinite recursion in unification");
233 }
234 if ty1 == ty2 {
235 return true;
236 }
237 // try to resolve type vars first
238 let ty1 = self.resolve_ty_shallow(ty1);
239 let ty2 = self.resolve_ty_shallow(ty2);
240 match (&*ty1, &*ty2) {
241 (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
242 self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
243 }
244 _ => self.unify_inner_trivial(&ty1, &ty2),
245 }
246 }
247
248 pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
249 match (ty1, ty2) {
250 (Ty::Unknown, _) | (_, Ty::Unknown) => true,
251
252 (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
253 | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
254 | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
255 | (
256 Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
257 Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
258 ) => {
259 // both type vars are unknown since we tried to resolve them
260 self.var_unification_table.union(*tv1, *tv2);
261 true
262 }
263
264 // The order of MaybeNeverTypeVar matters here.
265 // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
266 // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
267 (Ty::Infer(InferTy::TypeVar(tv)), other)
268 | (other, Ty::Infer(InferTy::TypeVar(tv)))
269 | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
270 | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
271 | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
272 | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
273 | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
274 | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
275 // the type var is unknown since we tried to resolve it
276 self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
277 true
278 }
279
280 _ => false,
281 }
282 }
283
284 /// If `ty` is a type variable with known type, returns that type;
285 /// otherwise, return ty.
286 pub fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
287 let mut ty = Cow::Borrowed(ty);
288 // The type variable could resolve to a int/float variable. Hence try
289 // resolving up to three times; each type of variable shouldn't occur
290 // more than once
291 for i in 0..3 {
292 if i > 0 {
293 tested_by!(type_var_resolves_to_int_var);
294 }
295 match &*ty {
296 Ty::Infer(tv) => {
297 let inner = tv.to_inner();
298 match self.var_unification_table.inlined_probe_value(inner).known() {
299 Some(known_ty) => {
300 // The known_ty can't be a type var itself
301 ty = Cow::Owned(known_ty.clone());
302 }
303 _ => return ty,
304 }
305 }
306 _ => return ty,
307 }
308 }
309 log::error!("Inference variable still not resolved: {:?}", ty);
310 ty
311 }
312
313 /// Resolves the type as far as currently possible, replacing type variables
314 /// by their known types. All types returned by the infer_* functions should
315 /// be resolved as far as possible, i.e. contain no type variables with
316 /// known type.
317 fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
318 ty.fold(&mut |ty| match ty {
319 Ty::Infer(tv) => {
320 let inner = tv.to_inner();
321 if tv_stack.contains(&inner) {
322 tested_by!(type_var_cycles_resolve_as_possible);
323 // recursive type
324 return tv.fallback_value();
325 }
326 if let Some(known_ty) =
327 self.var_unification_table.inlined_probe_value(inner).known()
328 {
329 // known_ty may contain other variables that are known by now
330 tv_stack.push(inner);
331 let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone());
332 tv_stack.pop();
333 result
334 } else {
335 ty
336 }
337 }
338 _ => ty,
339 })
340 }
341
342 /// Resolves the type completely; type variables without known type are
343 /// replaced by Ty::Unknown.
344 fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
345 ty.fold(&mut |ty| match ty {
346 Ty::Infer(tv) => {
347 let inner = tv.to_inner();
348 if tv_stack.contains(&inner) {
349 tested_by!(type_var_cycles_resolve_completely);
350 // recursive type
351 return tv.fallback_value();
352 }
353 if let Some(known_ty) =
354 self.var_unification_table.inlined_probe_value(inner).known()
355 {
356 // known_ty may contain other variables that are known by now
357 tv_stack.push(inner);
358 let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone());
359 tv_stack.pop();
360 result
361 } else {
362 tv.fallback_value()
363 }
364 }
365 _ => ty,
366 })
367 }
368}
369
370/// The ID of a type variable.
371#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
372pub struct TypeVarId(pub(super) u32);
373
374impl UnifyKey for TypeVarId {
375 type Value = TypeVarValue;
376
377 fn index(&self) -> u32 {
378 self.0
379 }
380
381 fn from_index(i: u32) -> Self {
382 TypeVarId(i)
383 }
384
385 fn tag() -> &'static str {
386 "TypeVarId"
387 }
388}
389
390/// The value of a type variable: either we already know the type, or we don't
391/// know it yet.
392#[derive(Clone, PartialEq, Eq, Debug)]
393pub enum TypeVarValue {
394 Known(Ty),
395 Unknown,
396}
397
398impl TypeVarValue {
399 fn known(&self) -> Option<&Ty> {
400 match self {
401 TypeVarValue::Known(ty) => Some(ty),
402 TypeVarValue::Unknown => None,
403 }
404 }
405}
406
407impl UnifyValue for TypeVarValue {
408 type Error = NoError;
409
410 fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
411 match (value1, value2) {
412 // We should never equate two type variables, both of which have
413 // known types. Instead, we recursively equate those types.
414 (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
415 "equating two type variables, both of which have known types: {:?} and {:?}",
416 t1, t2
417 ),
418
419 // If one side is known, prefer that one.
420 (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
421 (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
422
423 (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
160 } 424 }
161 } 425 }
162} 426}