aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/diagnostics/match_check
diff options
context:
space:
mode:
Diffstat (limited to 'crates/hir_ty/src/diagnostics/match_check')
-rw-r--r--crates/hir_ty/src/diagnostics/match_check/deconstruct_pat.rs894
-rw-r--r--crates/hir_ty/src/diagnostics/match_check/pat_util.rs52
-rw-r--r--crates/hir_ty/src/diagnostics/match_check/usefulness.rs1180
3 files changed, 2126 insertions, 0 deletions
diff --git a/crates/hir_ty/src/diagnostics/match_check/deconstruct_pat.rs b/crates/hir_ty/src/diagnostics/match_check/deconstruct_pat.rs
new file mode 100644
index 000000000..9fa82a952
--- /dev/null
+++ b/crates/hir_ty/src/diagnostics/match_check/deconstruct_pat.rs
@@ -0,0 +1,894 @@
1//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
2//! values and patterns are made from constructors applied to fields. This file defines a
3//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
4//! them from/to patterns.
5//!
6//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
7//! needed there: _constructor splitting_.
8//!
9//! # Constructor splitting
10//!
11//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
12//! with all the value constructors that are covered by `c`, and compute usefulness for each.
13//! Instead of listing all those constructors (which is intractable), we group those value
14//! constructors together as much as possible. Example:
15//!
16//! ```
17//! match (0, false) {
18//! (0 ..=100, true) => {} // `p_1`
19//! (50..=150, false) => {} // `p_2`
20//! (0 ..=200, _) => {} // `q`
21//! }
22//! ```
23//!
24//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
25//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
26//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
27//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
28//! more tractable.
29//!
30//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
31//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
32//! return an equivalent set of witnesses after specializing and computing usefulness.
33//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
34//! in their first element.
35//!
36//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
37//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
38//! is empty of not. We use this in the wildcard `_` case.
39//!
40//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
41//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
42//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
43//! [`SplitVarLenSlice`].
44
45use std::{
46 cmp::{max, min},
47 iter::once,
48 ops::RangeInclusive,
49};
50
51use hir_def::{EnumVariantId, HasModule, LocalFieldId, VariantId};
52use smallvec::{smallvec, SmallVec};
53
54use crate::{AdtId, Interner, Scalar, Ty, TyExt, TyKind};
55
56use super::{
57 usefulness::{MatchCheckCtx, PatCtxt},
58 FieldPat, Pat, PatId, PatKind,
59};
60
61use self::Constructor::*;
62
63/// [Constructor] uses this in umimplemented variants.
64/// It allows porting match expressions from upstream algorithm without losing semantics.
65#[derive(Copy, Clone, Debug, PartialEq, Eq)]
66pub(super) enum Void {}
67
68/// An inclusive interval, used for precise integer exhaustiveness checking.
69/// `IntRange`s always store a contiguous range. This means that values are
70/// encoded such that `0` encodes the minimum value for the integer,
71/// regardless of the signedness.
72/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
73/// This makes comparisons and arithmetic on interval endpoints much more
74/// straightforward. See `signed_bias` for details.
75///
76/// `IntRange` is never used to encode an empty range or a "range" that wraps
77/// around the (offset) space: i.e., `range.lo <= range.hi`.
78#[derive(Clone, Debug, PartialEq, Eq)]
79pub(super) struct IntRange {
80 range: RangeInclusive<u128>,
81}
82
83impl IntRange {
84 #[inline]
85 fn is_integral(ty: &Ty) -> bool {
86 match ty.kind(&Interner) {
87 TyKind::Scalar(Scalar::Char)
88 | TyKind::Scalar(Scalar::Int(_))
89 | TyKind::Scalar(Scalar::Uint(_))
90 | TyKind::Scalar(Scalar::Bool) => true,
91 _ => false,
92 }
93 }
94
95 fn is_singleton(&self) -> bool {
96 self.range.start() == self.range.end()
97 }
98
99 fn boundaries(&self) -> (u128, u128) {
100 (*self.range.start(), *self.range.end())
101 }
102
103 #[inline]
104 fn from_bool(value: bool) -> IntRange {
105 let val = value as u128;
106 IntRange { range: val..=val }
107 }
108
109 #[inline]
110 fn from_range(lo: u128, hi: u128, scalar_ty: Scalar) -> IntRange {
111 if let Scalar::Bool = scalar_ty {
112 IntRange { range: lo..=hi }
113 } else {
114 unimplemented!()
115 }
116 }
117
118 fn is_subrange(&self, other: &Self) -> bool {
119 other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
120 }
121
122 fn intersection(&self, other: &Self) -> Option<Self> {
123 let (lo, hi) = self.boundaries();
124 let (other_lo, other_hi) = other.boundaries();
125 if lo <= other_hi && other_lo <= hi {
126 Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi) })
127 } else {
128 None
129 }
130 }
131
132 /// See `Constructor::is_covered_by`
133 fn is_covered_by(&self, other: &Self) -> bool {
134 if self.intersection(other).is_some() {
135 // Constructor splitting should ensure that all intersections we encounter are actually
136 // inclusions.
137 assert!(self.is_subrange(other));
138 true
139 } else {
140 false
141 }
142 }
143}
144
145/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
146/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
147#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
148enum IntBorder {
149 JustBefore(u128),
150 AfterMax,
151}
152
153/// A range of integers that is partitioned into disjoint subranges. This does constructor
154/// splitting for integer ranges as explained at the top of the file.
155///
156/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
157/// the only intersections between an output range and a seen range are inclusions. No output range
158/// straddles the boundary of one of the inputs.
159///
160/// The following input:
161/// ```
162/// |-------------------------| // `self`
163/// |------| |----------| |----|
164/// |-------| |-------|
165/// ```
166/// would be iterated over as follows:
167/// ```
168/// ||---|--||-|---|---|---|--|
169/// ```
170#[derive(Debug, Clone)]
171struct SplitIntRange {
172 /// The range we are splitting
173 range: IntRange,
174 /// The borders of ranges we have seen. They are all contained within `range`. This is kept
175 /// sorted.
176 borders: Vec<IntBorder>,
177}
178
179impl SplitIntRange {
180 fn new(range: IntRange) -> Self {
181 SplitIntRange { range, borders: Vec::new() }
182 }
183
184 /// Internal use
185 fn to_borders(r: IntRange) -> [IntBorder; 2] {
186 use IntBorder::*;
187 let (lo, hi) = r.boundaries();
188 let lo = JustBefore(lo);
189 let hi = match hi.checked_add(1) {
190 Some(m) => JustBefore(m),
191 None => AfterMax,
192 };
193 [lo, hi]
194 }
195
196 /// Add ranges relative to which we split.
197 fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
198 let this_range = &self.range;
199 let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
200 let included_borders = included_ranges.flat_map(|r| {
201 let borders = Self::to_borders(r);
202 once(borders[0]).chain(once(borders[1]))
203 });
204 self.borders.extend(included_borders);
205 self.borders.sort_unstable();
206 }
207
208 /// Iterate over the contained ranges.
209 fn iter(&self) -> impl Iterator<Item = IntRange> + '_ {
210 use IntBorder::*;
211
212 let self_range = Self::to_borders(self.range.clone());
213 // Start with the start of the range.
214 let mut prev_border = self_range[0];
215 self.borders
216 .iter()
217 .copied()
218 // End with the end of the range.
219 .chain(once(self_range[1]))
220 // List pairs of adjacent borders.
221 .map(move |border| {
222 let ret = (prev_border, border);
223 prev_border = border;
224 ret
225 })
226 // Skip duplicates.
227 .filter(|(prev_border, border)| prev_border != border)
228 // Finally, convert to ranges.
229 .map(|(prev_border, border)| {
230 let range = match (prev_border, border) {
231 (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
232 (JustBefore(n), AfterMax) => n..=u128::MAX,
233 _ => unreachable!(), // Ruled out by the sorting and filtering we did
234 };
235 IntRange { range }
236 })
237 }
238}
239
240/// A constructor for array and slice patterns.
241#[derive(Copy, Clone, Debug, PartialEq, Eq)]
242pub(super) struct Slice {
243 _unimplemented: Void,
244}
245
246impl Slice {
247 /// See `Constructor::is_covered_by`
248 fn is_covered_by(self, _other: Self) -> bool {
249 unimplemented!() // never called as Slice contains Void
250 }
251}
252
253/// A value can be decomposed into a constructor applied to some fields. This struct represents
254/// the constructor. See also `Fields`.
255///
256/// `pat_constructor` retrieves the constructor corresponding to a pattern.
257/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
258/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
259/// `Fields`.
260#[allow(dead_code)]
261#[derive(Clone, Debug, PartialEq)]
262pub(super) enum Constructor {
263 /// The constructor for patterns that have a single constructor, like tuples, struct patterns
264 /// and fixed-length arrays.
265 Single,
266 /// Enum variants.
267 Variant(EnumVariantId),
268 /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
269 IntRange(IntRange),
270 /// Ranges of floating-point literal values (`2.0..=5.2`).
271 FloatRange(Void),
272 /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
273 Str(Void),
274 /// Array and slice patterns.
275 Slice(Slice),
276 /// Constants that must not be matched structurally. They are treated as black
277 /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
278 /// don't count towards making a match exhaustive.
279 Opaque,
280 /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
281 /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
282 NonExhaustive,
283 /// Stands for constructors that are not seen in the matrix, as explained in the documentation
284 /// for [`SplitWildcard`].
285 Missing,
286 /// Wildcard pattern.
287 Wildcard,
288}
289
290impl Constructor {
291 pub(super) fn is_wildcard(&self) -> bool {
292 matches!(self, Wildcard)
293 }
294
295 fn as_int_range(&self) -> Option<&IntRange> {
296 match self {
297 IntRange(range) => Some(range),
298 _ => None,
299 }
300 }
301
302 fn as_slice(&self) -> Option<Slice> {
303 match self {
304 Slice(slice) => Some(*slice),
305 _ => None,
306 }
307 }
308
309 fn variant_id_for_adt(&self, adt: hir_def::AdtId) -> VariantId {
310 match *self {
311 Variant(id) => id.into(),
312 Single => {
313 assert!(!matches!(adt, hir_def::AdtId::EnumId(_)));
314 match adt {
315 hir_def::AdtId::EnumId(_) => unreachable!(),
316 hir_def::AdtId::StructId(id) => id.into(),
317 hir_def::AdtId::UnionId(id) => id.into(),
318 }
319 }
320 _ => panic!("bad constructor {:?} for adt {:?}", self, adt),
321 }
322 }
323
324 /// Determines the constructor that the given pattern can be specialized to.
325 pub(super) fn from_pat(cx: &MatchCheckCtx<'_>, pat: PatId) -> Self {
326 match cx.pattern_arena.borrow()[pat].kind.as_ref() {
327 PatKind::Binding { .. } | PatKind::Wild => Wildcard,
328 PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
329 &PatKind::Variant { enum_variant, .. } => Variant(enum_variant),
330 &PatKind::LiteralBool { value } => IntRange(IntRange::from_bool(value)),
331 PatKind::Or { .. } => panic!("bug: Or-pattern should have been expanded earlier on."),
332 }
333 }
334
335 /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
336 /// constructors (like variants, integers or fixed-sized slices). When specializing for these
337 /// constructors, we want to be specialising for the actual underlying constructors.
338 /// Naively, we would simply return the list of constructors they correspond to. We instead are
339 /// more clever: if there are constructors that we know will behave the same wrt the current
340 /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
341 /// will either be all useful or all non-useful with a given matrix.
342 ///
343 /// See the branches for details on how the splitting is done.
344 ///
345 /// This function may discard some irrelevant constructors if this preserves behavior and
346 /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
347 /// matrix, unless all of them are.
348 pub(super) fn split<'a>(
349 &self,
350 pcx: PatCtxt<'_>,
351 ctors: impl Iterator<Item = &'a Constructor> + Clone,
352 ) -> SmallVec<[Self; 1]> {
353 match self {
354 Wildcard => {
355 let mut split_wildcard = SplitWildcard::new(pcx);
356 split_wildcard.split(pcx, ctors);
357 split_wildcard.into_ctors(pcx)
358 }
359 // Fast-track if the range is trivial. In particular, we don't do the overlapping
360 // ranges check.
361 IntRange(ctor_range) if !ctor_range.is_singleton() => {
362 let mut split_range = SplitIntRange::new(ctor_range.clone());
363 let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
364 split_range.split(int_ranges.cloned());
365 split_range.iter().map(IntRange).collect()
366 }
367 Slice(_) => unimplemented!(),
368 // Any other constructor can be used unchanged.
369 _ => smallvec![self.clone()],
370 }
371 }
372
373 /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
374 /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
375 /// this checks for inclusion.
376 // We inline because this has a single call site in `Matrix::specialize_constructor`.
377 #[inline]
378 pub(super) fn is_covered_by(&self, _pcx: PatCtxt<'_>, other: &Self) -> bool {
379 // This must be kept in sync with `is_covered_by_any`.
380 match (self, other) {
381 // Wildcards cover anything
382 (_, Wildcard) => true,
383 // The missing ctors are not covered by anything in the matrix except wildcards.
384 (Missing, _) | (Wildcard, _) => false,
385
386 (Single, Single) => true,
387 (Variant(self_id), Variant(other_id)) => self_id == other_id,
388
389 (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
390 (FloatRange(..), FloatRange(..)) => {
391 unimplemented!()
392 }
393 (Str(..), Str(..)) => {
394 unimplemented!()
395 }
396 (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
397
398 // We are trying to inspect an opaque constant. Thus we skip the row.
399 (Opaque, _) | (_, Opaque) => false,
400 // Only a wildcard pattern can match the special extra constructor.
401 (NonExhaustive, _) => false,
402
403 _ => panic!(
404 "bug: trying to compare incompatible constructors {:?} and {:?}",
405 self, other
406 ),
407 }
408 }
409
410 /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
411 /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
412 /// assumed to have been split from a wildcard.
413 fn is_covered_by_any(&self, _pcx: PatCtxt<'_>, used_ctors: &[Constructor]) -> bool {
414 if used_ctors.is_empty() {
415 return false;
416 }
417
418 // This must be kept in sync with `is_covered_by`.
419 match self {
420 // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
421 Single => !used_ctors.is_empty(),
422 Variant(_) => used_ctors.iter().any(|c| c == self),
423 IntRange(range) => used_ctors
424 .iter()
425 .filter_map(|c| c.as_int_range())
426 .any(|other| range.is_covered_by(other)),
427 Slice(slice) => used_ctors
428 .iter()
429 .filter_map(|c| c.as_slice())
430 .any(|other| slice.is_covered_by(other)),
431 // This constructor is never covered by anything else
432 NonExhaustive => false,
433 Str(..) | FloatRange(..) | Opaque | Missing | Wildcard => {
434 panic!("bug: found unexpected ctor in all_ctors: {:?}", self)
435 }
436 }
437 }
438}
439
440/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
441/// at the top of the file.
442///
443/// A constructor that is not present in the matrix rows will only be covered by the rows that have
444/// wildcards. Thus we can group all of those constructors together; we call them "missing
445/// constructors". Splitting a wildcard would therefore list all present constructors individually
446/// (or grouped if they are integers or slices), and then all missing constructors together as a
447/// group.
448///
449/// However we can go further: since any constructor will match the wildcard rows, and having more
450/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
451/// and only try the missing ones.
452/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
453/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
454/// in `to_ctors`: in some cases we only return `Missing`.
455#[derive(Debug)]
456pub(super) struct SplitWildcard {
457 /// Constructors seen in the matrix.
458 matrix_ctors: Vec<Constructor>,
459 /// All the constructors for this type
460 all_ctors: SmallVec<[Constructor; 1]>,
461}
462
463impl SplitWildcard {
464 pub(super) fn new(pcx: PatCtxt<'_>) -> Self {
465 let cx = pcx.cx;
466 let make_range = |start, end, scalar| IntRange(IntRange::from_range(start, end, scalar));
467
468 // Unhandled types are treated as non-exhaustive. Being explicit here instead of falling
469 // to catchall arm to ease further implementation.
470 let unhandled = || smallvec![NonExhaustive];
471
472 // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
473 // arrays and slices we use ranges and variable-length slices when appropriate.
474 //
475 // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
476 // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
477 // returned list of constructors.
478 // Invariant: this is empty if and only if the type is uninhabited (as determined by
479 // `cx.is_uninhabited()`).
480 let all_ctors = match pcx.ty.kind(&Interner) {
481 TyKind::Scalar(Scalar::Bool) => smallvec![make_range(0, 1, Scalar::Bool)],
482 // TyKind::Array(..) if ... => unhandled(),
483 TyKind::Array(..) | TyKind::Slice(..) => unhandled(),
484 &TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ref _substs) => {
485 let enum_data = cx.db.enum_data(enum_id);
486
487 // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
488 // additional "unknown" constructor.
489 // There is no point in enumerating all possible variants, because the user can't
490 // actually match against them all themselves. So we always return only the fictitious
491 // constructor.
492 // E.g., in an example like:
493 //
494 // ```
495 // let err: io::ErrorKind = ...;
496 // match err {
497 // io::ErrorKind::NotFound => {},
498 // }
499 // ```
500 //
501 // we don't want to show every possible IO error, but instead have only `_` as the
502 // witness.
503 let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(enum_id);
504
505 // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
506 // as though it had an "unknown" constructor to avoid exposing its emptiness. The
507 // exception is if the pattern is at the top level, because we want empty matches to be
508 // considered exhaustive.
509 let is_secretly_empty = enum_data.variants.is_empty()
510 && !cx.feature_exhaustive_patterns()
511 && !pcx.is_top_level;
512
513 if is_secretly_empty || is_declared_nonexhaustive {
514 smallvec![NonExhaustive]
515 } else if cx.feature_exhaustive_patterns() {
516 // If `exhaustive_patterns` is enabled, we exclude variants known to be
517 // uninhabited.
518 unhandled()
519 } else {
520 enum_data
521 .variants
522 .iter()
523 .map(|(local_id, ..)| Variant(EnumVariantId { parent: enum_id, local_id }))
524 .collect()
525 }
526 }
527 TyKind::Scalar(Scalar::Char) => unhandled(),
528 TyKind::Scalar(Scalar::Int(..)) | TyKind::Scalar(Scalar::Uint(..)) => unhandled(),
529 TyKind::Never if !cx.feature_exhaustive_patterns() && !pcx.is_top_level => {
530 smallvec![NonExhaustive]
531 }
532 TyKind::Never => SmallVec::new(),
533 _ if cx.is_uninhabited(&pcx.ty) => SmallVec::new(),
534 TyKind::Adt(..) | TyKind::Tuple(..) | TyKind::Ref(..) => smallvec![Single],
535 // This type is one for which we cannot list constructors, like `str` or `f64`.
536 _ => smallvec![NonExhaustive],
537 };
538 SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
539 }
540
541 /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
542 /// do what you want.
543 pub(super) fn split<'a>(
544 &mut self,
545 pcx: PatCtxt<'_>,
546 ctors: impl Iterator<Item = &'a Constructor> + Clone,
547 ) {
548 // Since `all_ctors` never contains wildcards, this won't recurse further.
549 self.all_ctors =
550 self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
551 self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
552 }
553
554 /// Whether there are any value constructors for this type that are not present in the matrix.
555 fn any_missing(&self, pcx: PatCtxt<'_>) -> bool {
556 self.iter_missing(pcx).next().is_some()
557 }
558
559 /// Iterate over the constructors for this type that are not present in the matrix.
560 pub(super) fn iter_missing<'a>(
561 &'a self,
562 pcx: PatCtxt<'a>,
563 ) -> impl Iterator<Item = &'a Constructor> {
564 self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
565 }
566
567 /// Return the set of constructors resulting from splitting the wildcard. As explained at the
568 /// top of the file, if any constructors are missing we can ignore the present ones.
569 fn into_ctors(self, pcx: PatCtxt<'_>) -> SmallVec<[Constructor; 1]> {
570 if self.any_missing(pcx) {
571 // Some constructors are missing, thus we can specialize with the special `Missing`
572 // constructor, which stands for those constructors that are not seen in the matrix,
573 // and matches the same rows as any of them (namely the wildcard rows). See the top of
574 // the file for details.
575 // However, when all constructors are missing we can also specialize with the full
576 // `Wildcard` constructor. The difference will depend on what we want in diagnostics.
577
578 // If some constructors are missing, we typically want to report those constructors,
579 // e.g.:
580 // ```
581 // enum Direction { N, S, E, W }
582 // let Direction::N = ...;
583 // ```
584 // we can report 3 witnesses: `S`, `E`, and `W`.
585 //
586 // However, if the user didn't actually specify a constructor
587 // in this arm, e.g., in
588 // ```
589 // let x: (Direction, Direction, bool) = ...;
590 // let (_, _, false) = x;
591 // ```
592 // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
593 // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
594 // prefer to report just a wildcard `_`.
595 //
596 // The exception is: if we are at the top-level, for example in an empty match, we
597 // sometimes prefer reporting the list of constructors instead of just `_`.
598 let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
599 let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
600 Missing
601 } else {
602 Wildcard
603 };
604 return smallvec![ctor];
605 }
606
607 // All the constructors are present in the matrix, so we just go through them all.
608 self.all_ctors
609 }
610}
611
612/// A value can be decomposed into a constructor applied to some fields. This struct represents
613/// those fields, generalized to allow patterns in each field. See also `Constructor`.
614/// This is constructed from a constructor using [`Fields::wildcards()`].
615///
616/// If a private or `non_exhaustive` field is uninhabited, the code mustn't observe that it is
617/// uninhabited. For that, we filter these fields out of the matrix. This is handled automatically
618/// in `Fields`. This filtering is uncommon in practice, because uninhabited fields are rarely used,
619/// so we avoid it when possible to preserve performance.
620#[derive(Debug, Clone)]
621pub(super) enum Fields {
622 /// Lists of patterns that don't contain any filtered fields.
623 /// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
624 /// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
625 /// have not measured if it really made a difference.
626 Vec(SmallVec<[PatId; 2]>),
627}
628
629impl Fields {
630 /// Internal use. Use `Fields::wildcards()` instead.
631 /// Must not be used if the pattern is a field of a struct/tuple/variant.
632 fn from_single_pattern(pat: PatId) -> Self {
633 Fields::Vec(smallvec![pat])
634 }
635
636 /// Convenience; internal use.
637 fn wildcards_from_tys<'a>(
638 cx: &MatchCheckCtx<'_>,
639 tys: impl IntoIterator<Item = &'a Ty>,
640 ) -> Self {
641 let wilds = tys.into_iter().map(Pat::wildcard_from_ty);
642 let pats = wilds.map(|pat| cx.alloc_pat(pat)).collect();
643 Fields::Vec(pats)
644 }
645
646 pub(crate) fn wildcards(pcx: PatCtxt<'_>, constructor: &Constructor) -> Self {
647 let ty = pcx.ty;
648 let cx = pcx.cx;
649 let wildcard_from_ty = |ty| cx.alloc_pat(Pat::wildcard_from_ty(ty));
650
651 let ret = match constructor {
652 Single | Variant(_) => match ty.kind(&Interner) {
653 TyKind::Tuple(_, substs) => {
654 let tys = substs.iter(&Interner).map(|ty| ty.assert_ty_ref(&Interner));
655 Fields::wildcards_from_tys(cx, tys)
656 }
657 TyKind::Ref(.., rty) => Fields::from_single_pattern(wildcard_from_ty(rty)),
658 TyKind::Adt(AdtId(adt), substs) => {
659 let adt_is_box = false; // TODO(iDawer): implement this
660 if adt_is_box {
661 // Use T as the sub pattern type of Box<T>.
662 let subst_ty = substs.at(&Interner, 0).assert_ty_ref(&Interner);
663 Fields::from_single_pattern(wildcard_from_ty(subst_ty))
664 } else {
665 let variant_id = constructor.variant_id_for_adt(*adt);
666 let adt_is_local =
667 variant_id.module(cx.db.upcast()).krate() == cx.module.krate();
668 // Whether we must not match the fields of this variant exhaustively.
669 let is_non_exhaustive =
670 is_field_list_non_exhaustive(variant_id, cx) && !adt_is_local;
671 let field_ty_arena = cx.db.field_types(variant_id);
672 let field_tys =
673 || field_ty_arena.iter().map(|(_, binders)| binders.skip_binders());
674 // In the following cases, we don't need to filter out any fields. This is
675 // the vast majority of real cases, since uninhabited fields are uncommon.
676 let has_no_hidden_fields = (matches!(adt, hir_def::AdtId::EnumId(_))
677 && !is_non_exhaustive)
678 || !field_tys().any(|ty| cx.is_uninhabited(ty));
679
680 if has_no_hidden_fields {
681 Fields::wildcards_from_tys(cx, field_tys())
682 } else {
683 //FIXME(iDawer): see MatchCheckCtx::is_uninhabited
684 unimplemented!("exhaustive_patterns feature")
685 }
686 }
687 }
688 _ => panic!("Unexpected type for `Single` constructor: {:?}", ty),
689 },
690 Slice(..) => {
691 unimplemented!()
692 }
693 Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque | Missing
694 | Wildcard => Fields::Vec(Default::default()),
695 };
696 ret
697 }
698
699 /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
700 /// must have as many elements as this constructor's arity.
701 ///
702 /// This is roughly the inverse of `specialize_constructor`.
703 ///
704 /// Examples:
705 /// `ctor`: `Constructor::Single`
706 /// `ty`: `Foo(u32, u32, u32)`
707 /// `self`: `[10, 20, _]`
708 /// returns `Foo(10, 20, _)`
709 ///
710 /// `ctor`: `Constructor::Variant(Option::Some)`
711 /// `ty`: `Option<bool>`
712 /// `self`: `[false]`
713 /// returns `Some(false)`
714 pub(super) fn apply(self, pcx: PatCtxt<'_>, ctor: &Constructor) -> Pat {
715 let subpatterns_and_indices = self.patterns_and_indices();
716 let mut subpatterns =
717 subpatterns_and_indices.iter().map(|&(_, p)| pcx.cx.pattern_arena.borrow()[p].clone());
718 // FIXME(iDawer) witnesses are not yet used
719 const UNHANDLED: PatKind = PatKind::Wild;
720
721 let pat = match ctor {
722 Single | Variant(_) => match pcx.ty.kind(&Interner) {
723 TyKind::Adt(..) | TyKind::Tuple(..) => {
724 // We want the real indices here.
725 let subpatterns = subpatterns_and_indices
726 .iter()
727 .map(|&(field, pat)| FieldPat {
728 field,
729 pattern: pcx.cx.pattern_arena.borrow()[pat].clone(),
730 })
731 .collect();
732
733 if let Some((adt, substs)) = pcx.ty.as_adt() {
734 if let hir_def::AdtId::EnumId(_) = adt {
735 let enum_variant = match ctor {
736 &Variant(id) => id,
737 _ => unreachable!(),
738 };
739 PatKind::Variant { substs: substs.clone(), enum_variant, subpatterns }
740 } else {
741 PatKind::Leaf { subpatterns }
742 }
743 } else {
744 PatKind::Leaf { subpatterns }
745 }
746 }
747 // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
748 // be careful to reconstruct the correct constant pattern here. However a string
749 // literal pattern will never be reported as a non-exhaustiveness witness, so we
750 // can ignore this issue.
751 TyKind::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
752 TyKind::Slice(..) | TyKind::Array(..) => {
753 panic!("bug: bad slice pattern {:?} {:?}", ctor, pcx.ty)
754 }
755 _ => PatKind::Wild,
756 },
757 Constructor::Slice(_) => UNHANDLED,
758 Str(_) => UNHANDLED,
759 FloatRange(..) => UNHANDLED,
760 Constructor::IntRange(_) => UNHANDLED,
761 NonExhaustive => PatKind::Wild,
762 Wildcard => return Pat::wildcard_from_ty(pcx.ty),
763 Opaque => panic!("bug: we should not try to apply an opaque constructor"),
764 Missing => {
765 panic!("bug: trying to apply the `Missing` constructor; this should have been done in `apply_constructors`")
766 }
767 };
768
769 Pat { ty: pcx.ty.clone(), kind: Box::new(pat) }
770 }
771
772 /// Returns the number of patterns. This is the same as the arity of the constructor used to
773 /// construct `self`.
774 pub(super) fn len(&self) -> usize {
775 match self {
776 Fields::Vec(pats) => pats.len(),
777 }
778 }
779
780 /// Returns the list of patterns along with the corresponding field indices.
781 fn patterns_and_indices(&self) -> SmallVec<[(LocalFieldId, PatId); 2]> {
782 match self {
783 Fields::Vec(pats) => pats
784 .iter()
785 .copied()
786 .enumerate()
787 .map(|(i, p)| (LocalFieldId::from_raw((i as u32).into()), p))
788 .collect(),
789 }
790 }
791
792 pub(super) fn into_patterns(self) -> SmallVec<[PatId; 2]> {
793 match self {
794 Fields::Vec(pats) => pats,
795 }
796 }
797
798 /// Overrides some of the fields with the provided patterns. Exactly like
799 /// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
800 fn replace_with_fieldpats(
801 &self,
802 new_pats: impl IntoIterator<Item = (LocalFieldId, PatId)>,
803 ) -> Self {
804 self.replace_fields_indexed(
805 new_pats.into_iter().map(|(field, pat)| (u32::from(field.into_raw()) as usize, pat)),
806 )
807 }
808
809 /// Overrides some of the fields with the provided patterns. This is used when a pattern
810 /// defines some fields but not all, for example `Foo { field1: Some(_), .. }`: here we start
811 /// with a `Fields` that is just one wildcard per field of the `Foo` struct, and override the
812 /// entry corresponding to `field1` with the pattern `Some(_)`. This is also used for slice
813 /// patterns for the same reason.
814 fn replace_fields_indexed(&self, new_pats: impl IntoIterator<Item = (usize, PatId)>) -> Self {
815 let mut fields = self.clone();
816
817 match &mut fields {
818 Fields::Vec(pats) => {
819 for (i, pat) in new_pats {
820 if let Some(p) = pats.get_mut(i) {
821 *p = pat;
822 }
823 }
824 }
825 }
826 fields
827 }
828
829 /// Replaces contained fields with the given list of patterns. There must be `len()` patterns
830 /// in `pats`.
831 pub(super) fn replace_fields(
832 &self,
833 cx: &MatchCheckCtx<'_>,
834 pats: impl IntoIterator<Item = Pat>,
835 ) -> Self {
836 let pats = pats.into_iter().map(|pat| cx.alloc_pat(pat)).collect();
837
838 match self {
839 Fields::Vec(_) => Fields::Vec(pats),
840 }
841 }
842
843 /// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
844 /// that is compatible with the constructor used to build `self`.
845 /// This is meant to be used on the result of `Fields::wildcards()`. The idea is that
846 /// `wildcards` constructs a list of fields where all entries are wildcards, and the pattern
847 /// provided to this function fills some of the fields with non-wildcards.
848 /// In the following example `Fields::wildcards` would return `[_, _, _, _]`. If we call
849 /// `replace_with_pattern_arguments` on it with the pattern, the result will be `[Some(0), _,
850 /// _, _]`.
851 /// ```rust
852 /// let x: [Option<u8>; 4] = foo();
853 /// match x {
854 /// [Some(0), ..] => {}
855 /// }
856 /// ```
857 /// This is guaranteed to preserve the number of patterns in `self`.
858 pub(super) fn replace_with_pattern_arguments(
859 &self,
860 pat: PatId,
861 cx: &MatchCheckCtx<'_>,
862 ) -> Self {
863 // FIXME(iDawer): these alocations and clones are so unfortunate (+1 for switching to references)
864 let mut arena = cx.pattern_arena.borrow_mut();
865 match arena[pat].kind.as_ref() {
866 PatKind::Deref { subpattern } => {
867 assert_eq!(self.len(), 1);
868 let subpattern = subpattern.clone();
869 Fields::from_single_pattern(arena.alloc(subpattern))
870 }
871 PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
872 let subpatterns = subpatterns.clone();
873 let subpatterns = subpatterns
874 .iter()
875 .map(|field_pat| (field_pat.field, arena.alloc(field_pat.pattern.clone())));
876 self.replace_with_fieldpats(subpatterns)
877 }
878
879 PatKind::Wild
880 | PatKind::Binding { .. }
881 | PatKind::LiteralBool { .. }
882 | PatKind::Or { .. } => self.clone(),
883 }
884 }
885}
886
887fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_>) -> bool {
888 let attr_def_id = match variant_id {
889 VariantId::EnumVariantId(id) => id.into(),
890 VariantId::StructId(id) => id.into(),
891 VariantId::UnionId(id) => id.into(),
892 };
893 cx.db.attrs(attr_def_id).by_key("non_exhaustive").exists()
894}
diff --git a/crates/hir_ty/src/diagnostics/match_check/pat_util.rs b/crates/hir_ty/src/diagnostics/match_check/pat_util.rs
new file mode 100644
index 000000000..eb0b07a52
--- /dev/null
+++ b/crates/hir_ty/src/diagnostics/match_check/pat_util.rs
@@ -0,0 +1,52 @@
1use std::iter::{Enumerate, ExactSizeIterator};
2
3pub(crate) struct EnumerateAndAdjust<I> {
4 enumerate: Enumerate<I>,
5 gap_pos: usize,
6 gap_len: usize,
7}
8
9impl<I> Iterator for EnumerateAndAdjust<I>
10where
11 I: Iterator,
12{
13 type Item = (usize, <I as Iterator>::Item);
14
15 fn next(&mut self) -> Option<(usize, <I as Iterator>::Item)> {
16 self.enumerate
17 .next()
18 .map(|(i, elem)| (if i < self.gap_pos { i } else { i + self.gap_len }, elem))
19 }
20
21 fn size_hint(&self) -> (usize, Option<usize>) {
22 self.enumerate.size_hint()
23 }
24}
25
26pub(crate) trait EnumerateAndAdjustIterator {
27 fn enumerate_and_adjust(
28 self,
29 expected_len: usize,
30 gap_pos: Option<usize>,
31 ) -> EnumerateAndAdjust<Self>
32 where
33 Self: Sized;
34}
35
36impl<T: ExactSizeIterator> EnumerateAndAdjustIterator for T {
37 fn enumerate_and_adjust(
38 self,
39 expected_len: usize,
40 gap_pos: Option<usize>,
41 ) -> EnumerateAndAdjust<Self>
42 where
43 Self: Sized,
44 {
45 let actual_len = self.len();
46 EnumerateAndAdjust {
47 enumerate: self.enumerate(),
48 gap_pos: gap_pos.unwrap_or(expected_len),
49 gap_len: expected_len - actual_len,
50 }
51 }
52}
diff --git a/crates/hir_ty/src/diagnostics/match_check/usefulness.rs b/crates/hir_ty/src/diagnostics/match_check/usefulness.rs
new file mode 100644
index 000000000..b01e3557c
--- /dev/null
+++ b/crates/hir_ty/src/diagnostics/match_check/usefulness.rs
@@ -0,0 +1,1180 @@
1//! Based on rust-lang/rust 1.52.0-nightly (25c15cdbe 2021-04-22)
2//! https://github.com/rust-lang/rust/blob/25c15cdbe/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
3//!
4//! -----
5//!
6//! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
7//! Specifically, given a list of patterns for a type, we can tell whether:
8//! (a) each pattern is reachable (reachability)
9//! (b) the patterns cover every possible value for the type (exhaustiveness)
10//!
11//! The algorithm implemented here is a modified version of the one described in [this
12//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
13//! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
14//! without being as rigorous.
15//!
16//!
17//! # Summary
18//!
19//! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
20//! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
21//! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
22//! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
23//! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
24//! file is to compute it efficiently.
25//!
26//! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
27//! is useful w.r.t. the patterns above it:
28//! ```rust
29//! match x {
30//! Some(_) => ...,
31//! None => ..., // reachable: `None` is matched by this but not the branch above
32//! Some(0) => ..., // unreachable: all the values this matches are already matched by
33//! // `Some(_)` above
34//! }
35//! ```
36//!
37//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
38//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
39//! are used to tell the user which values are missing.
40//! ```rust
41//! match x {
42//! Some(0) => ...,
43//! None => ...,
44//! // not exhaustive: `_` is useful because it matches `Some(1)`
45//! }
46//! ```
47//!
48//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
49//! reachability for each match branch and exhaustiveness for the whole match.
50//!
51//!
52//! # Constructors and fields
53//!
54//! Note: we will often abbreviate "constructor" as "ctor".
55//!
56//! The idea that powers everything that is done in this file is the following: a (matcheable)
57//! value is made from a constructor applied to a number of subvalues. Examples of constructors are
58//! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
59//! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
60//! pattern-matching, and this is the basis for what follows.
61//!
62//! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
63//! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
64//! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
65//! `enum`, with one variant for each number. This allows us to see any matcheable value as made up
66//! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
67//! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
68//!
69//! This idea can be extended to patterns: they are also made from constructors applied to fields.
70//! A pattern for a given type is allowed to use all the ctors for values of that type (which we
71//! call "value constructors"), but there are also pattern-only ctors. The most important one is
72//! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
73//! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
74//! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
75//! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
76//!
77//! From this deconstruction we can compute whether a given value matches a given pattern; we
78//! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
79//! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
80//! we compare their fields recursively. A few representative examples:
81//!
82//! - `matches!(v, _) := true`
83//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
84//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
85//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
86//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
87//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
88//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
89//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
90//! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
91//!
92//! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
93//!
94//! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
95//! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
96//! infinitude of constructors. There are also subtleties with visibility of fields and
97//! uninhabitedness and various other things. The constructors idea can be extended to handle most
98//! of these subtleties though; caveats are documented where relevant throughout the code.
99//!
100//! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
101//!
102//!
103//! # Specialization
104//!
105//! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
106//! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
107//! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
108//! enumerate all possible values. From the discussion above we see that we can proceed
109//! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
110//! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
111//! say from knowing only the first constructor of our candidate value.
112//!
113//! Let's take the following example:
114//! ```
115//! match x {
116//! Enum::Variant1(_) => {} // `p1`
117//! Enum::Variant2(None, 0) => {} // `p2`
118//! Enum::Variant2(Some(_), 0) => {} // `q`
119//! }
120//! ```
121//!
122//! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
123//! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
124//! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
125//! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
126//!
127//! ```
128//! match x {
129//! (None, 0) => {} // `p2'`
130//! (Some(_), 0) => {} // `q'`
131//! }
132//! ```
133//!
134//! This motivates a new step in computing usefulness, that we call _specialization_.
135//! Specialization consist of filtering a list of patterns for those that match a constructor, and
136//! then looking into the constructor's fields. This enables usefulness to be computed recursively.
137//!
138//! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
139//! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
140//! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
141//! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
142//! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
143//! happening:
144//! ```
145//! [Enum::Variant1(_)]
146//! [Enum::Variant2(None, 0)]
147//! [Enum::Variant2(Some(_), 0)]
148//! //==>> specialize with `Variant2`
149//! [None, 0]
150//! [Some(_), 0]
151//! //==>> specialize with `Some`
152//! [_, 0]
153//! //==>> specialize with `true` (say the type was `bool`)
154//! [0]
155//! //==>> specialize with `0`
156//! []
157//! ```
158//!
159//! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
160//! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
161//! otherwise if returns the fields of the constructor. This only returns more than one
162//! pattern-stack if `p` has a pattern-only constructor.
163//!
164//! - Specializing for the wrong constructor returns nothing
165//!
166//! `specialize(None, Some(p0)) := []`
167//!
168//! - Specializing for the correct constructor returns a single row with the fields
169//!
170//! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
171//!
172//! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
173//!
174//! - For or-patterns, we specialize each branch and concatenate the results
175//!
176//! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
177//!
178//! - We treat the other pattern constructors as if they were a large or-pattern of all the
179//! possibilities:
180//!
181//! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
182//!
183//! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
184//!
185//! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
186//!
187//! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
188//! the discussion about constructor splitting in [`super::deconstruct_pat`].
189//!
190//!
191//! We then extend this function to work with pattern-stacks as input, by acting on the first
192//! column and keeping the other columns untouched.
193//!
194//! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
195//! or-patterns in the first column are expanded before being stored in the matrix. Specialization
196//! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
197//! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
198//! [`Fields`] struct.
199//!
200//!
201//! # Computing usefulness
202//!
203//! We now have all we need to compute usefulness. The inputs to usefulness are a list of
204//! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
205//! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
206//! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
207//! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
208//!
209//! - base case: `n_columns == 0`.
210//! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
211//! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
212//!
213//! - inductive case: `n_columns > 0`.
214//! We need a way to list the constructors we want to try. We will be more clever in the next
215//! section but for now assume we list all value constructors for the type of the first column.
216//!
217//! - for each such ctor `c`:
218//!
219//! - for each `q'` returned by `specialize(c, q)`:
220//!
221//! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
222//!
223//! - for each witness found, we revert specialization by pushing the constructor `c` on top.
224//!
225//! - We return the concatenation of all the witnesses found, if any.
226//!
227//! Example:
228//! ```
229//! [Some(true)] // p_1
230//! [None] // p_2
231//! [Some(_)] // q
232//! //==>> try `None`: `specialize(None, q)` returns nothing
233//! //==>> try `Some`: `specialize(Some, q)` returns a single row
234//! [true] // p_1'
235//! [_] // q'
236//! //==>> try `true`: `specialize(true, q')` returns a single row
237//! [] // p_1''
238//! [] // q''
239//! //==>> base case; `n != 0` so `q''` is not useful.
240//! //==>> go back up a step
241//! [true] // p_1'
242//! [_] // q'
243//! //==>> try `false`: `specialize(false, q')` returns a single row
244//! [] // q''
245//! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
246//! witnesses:
247//! []
248//! //==>> undo the specialization with `false`
249//! witnesses:
250//! [false]
251//! //==>> undo the specialization with `Some`
252//! witnesses:
253//! [Some(false)]
254//! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
255//! ```
256//!
257//! This computation is done in [`is_useful`]. In practice we don't care about the list of
258//! witnesses when computing reachability; we only need to know whether any exist. We do keep the
259//! witnesses when computing exhaustiveness to report them to the user.
260//!
261//!
262//! # Making usefulness tractable: constructor splitting
263//!
264//! We're missing one last detail: which constructors do we list? Naively listing all value
265//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
266//! first obvious insight is that we only want to list constructors that are covered by the head
267//! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
268//! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
269//! group together constructors that behave the same.
270//!
271//! The details are not necessary to understand this file, so we explain them in
272//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
273
274use std::{cell::RefCell, iter::FromIterator};
275
276use hir_def::{expr::ExprId, HasModule, ModuleId};
277use la_arena::Arena;
278use once_cell::unsync::OnceCell;
279use rustc_hash::FxHashMap;
280use smallvec::{smallvec, SmallVec};
281
282use crate::{db::HirDatabase, InferenceResult, Interner, Ty};
283
284use super::{
285 deconstruct_pat::{Constructor, Fields, SplitWildcard},
286 Pat, PatId, PatKind, PatternFoldable, PatternFolder,
287};
288
289use self::{helper::PatIdExt, Usefulness::*, WitnessPreference::*};
290
291pub(crate) struct MatchCheckCtx<'a> {
292 pub(crate) module: ModuleId,
293 pub(crate) match_expr: ExprId,
294 pub(crate) infer: &'a InferenceResult,
295 pub(crate) db: &'a dyn HirDatabase,
296 /// Lowered patterns from self.body.pats plus generated by the check.
297 pub(crate) pattern_arena: &'a RefCell<PatternArena>,
298}
299
300impl<'a> MatchCheckCtx<'a> {
301 pub(super) fn is_uninhabited(&self, _ty: &Ty) -> bool {
302 // FIXME(iDawer) implement exhaustive_patterns feature. More info in:
303 // Tracking issue for RFC 1872: exhaustive_patterns feature https://github.com/rust-lang/rust/issues/51085
304 false
305 }
306
307 /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
308 pub(super) fn is_foreign_non_exhaustive_enum(&self, enum_id: hir_def::EnumId) -> bool {
309 let has_non_exhaustive_attr =
310 self.db.attrs(enum_id.into()).by_key("non_exhaustive").exists();
311 let is_local =
312 hir_def::AdtId::from(enum_id).module(self.db.upcast()).krate() == self.module.krate();
313 has_non_exhaustive_attr && !is_local
314 }
315
316 // Rust feature described as "Allows exhaustive pattern matching on types that contain uninhabited types."
317 pub(super) fn feature_exhaustive_patterns(&self) -> bool {
318 // TODO
319 false
320 }
321
322 pub(super) fn alloc_pat(&self, pat: Pat) -> PatId {
323 self.pattern_arena.borrow_mut().alloc(pat)
324 }
325
326 /// Get type of a pattern. Handles expanded patterns.
327 pub(super) fn type_of(&self, pat: PatId) -> Ty {
328 self.pattern_arena.borrow()[pat].ty.clone()
329 }
330}
331
332#[derive(Copy, Clone)]
333pub(super) struct PatCtxt<'a> {
334 pub(super) cx: &'a MatchCheckCtx<'a>,
335 /// Type of the current column under investigation.
336 pub(super) ty: &'a Ty,
337 /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
338 /// subpattern.
339 pub(super) is_top_level: bool,
340}
341
342pub(crate) fn expand_pattern(pat: Pat) -> Pat {
343 LiteralExpander.fold_pattern(&pat)
344}
345
346struct LiteralExpander;
347
348impl PatternFolder for LiteralExpander {
349 fn fold_pattern(&mut self, pat: &Pat) -> Pat {
350 match (pat.ty.kind(&Interner), pat.kind.as_ref()) {
351 (_, PatKind::Binding { subpattern: Some(s), .. }) => s.fold_with(self),
352 _ => pat.super_fold_with(self),
353 }
354 }
355}
356
357impl Pat {
358 fn _is_wildcard(&self) -> bool {
359 matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
360 }
361}
362
363impl PatIdExt for PatId {
364 fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool {
365 matches!(*cx.pattern_arena.borrow()[self].kind, PatKind::Or { .. })
366 }
367
368 /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
369 fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self> {
370 fn expand(pat: PatId, vec: &mut Vec<PatId>, pat_arena: &mut PatternArena) {
371 if let PatKind::Or { pats } = pat_arena[pat].kind.as_ref() {
372 let pats = pats.clone();
373 for pat in pats {
374 // FIXME(iDawer): Ugh, I want to go back to references (PatId -> &Pat)
375 let pat = pat_arena.alloc(pat.clone());
376 expand(pat, vec, pat_arena);
377 }
378 } else {
379 vec.push(pat)
380 }
381 }
382
383 let mut pat_arena = cx.pattern_arena.borrow_mut();
384 let mut pats = Vec::new();
385 expand(self, &mut pats, &mut pat_arena);
386 pats
387 }
388}
389
390/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
391/// works well.
392#[derive(Clone)]
393pub(super) struct PatStack {
394 pats: SmallVec<[PatId; 2]>,
395 /// Cache for the constructor of the head
396 head_ctor: OnceCell<Constructor>,
397}
398
399impl PatStack {
400 fn from_pattern(pat: PatId) -> Self {
401 Self::from_vec(smallvec![pat])
402 }
403
404 fn from_vec(vec: SmallVec<[PatId; 2]>) -> Self {
405 PatStack { pats: vec, head_ctor: OnceCell::new() }
406 }
407
408 fn is_empty(&self) -> bool {
409 self.pats.is_empty()
410 }
411
412 fn len(&self) -> usize {
413 self.pats.len()
414 }
415
416 fn head(&self) -> PatId {
417 self.pats[0]
418 }
419
420 #[inline]
421 fn head_ctor(&self, cx: &MatchCheckCtx<'_>) -> &Constructor {
422 self.head_ctor.get_or_init(|| Constructor::from_pat(cx, self.head()))
423 }
424
425 // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
426 // or-pattern. Panics if `self` is empty.
427 fn expand_or_pat(&self, cx: &MatchCheckCtx<'_>) -> impl Iterator<Item = PatStack> + '_ {
428 self.head().expand_or_pat(cx).into_iter().map(move |pat| {
429 let mut new_patstack = PatStack::from_pattern(pat);
430 new_patstack.pats.extend_from_slice(&self.pats[1..]);
431 new_patstack
432 })
433 }
434
435 /// This computes `S(self.head_ctor(), self)`. See top of the file for explanations.
436 ///
437 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
438 /// fields filled with wild patterns.
439 ///
440 /// This is roughly the inverse of `Constructor::apply`.
441 fn pop_head_constructor(
442 &self,
443 ctor_wild_subpatterns: &Fields,
444 cx: &MatchCheckCtx<'_>,
445 ) -> PatStack {
446 // We pop the head pattern and push the new fields extracted from the arguments of
447 // `self.head()`.
448 let mut new_fields =
449 ctor_wild_subpatterns.replace_with_pattern_arguments(self.head(), cx).into_patterns();
450 new_fields.extend_from_slice(&self.pats[1..]);
451 PatStack::from_vec(new_fields)
452 }
453}
454
455impl Default for PatStack {
456 fn default() -> Self {
457 Self::from_vec(smallvec![])
458 }
459}
460
461impl PartialEq for PatStack {
462 fn eq(&self, other: &Self) -> bool {
463 self.pats == other.pats
464 }
465}
466
467impl FromIterator<PatId> for PatStack {
468 fn from_iter<T>(iter: T) -> Self
469 where
470 T: IntoIterator<Item = PatId>,
471 {
472 Self::from_vec(iter.into_iter().collect())
473 }
474}
475
476/// A 2D matrix.
477#[derive(Clone)]
478pub(super) struct Matrix {
479 patterns: Vec<PatStack>,
480}
481
482impl Matrix {
483 fn empty() -> Self {
484 Matrix { patterns: vec![] }
485 }
486
487 /// Number of columns of this matrix. `None` is the matrix is empty.
488 pub(super) fn _column_count(&self) -> Option<usize> {
489 self.patterns.get(0).map(|r| r.len())
490 }
491
492 /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
493 /// expands it.
494 fn push(&mut self, row: PatStack, cx: &MatchCheckCtx<'_>) {
495 if !row.is_empty() && row.head().is_or_pat(cx) {
496 for row in row.expand_or_pat(cx) {
497 self.patterns.push(row);
498 }
499 } else {
500 self.patterns.push(row);
501 }
502 }
503
504 /// Iterate over the first component of each row
505 fn heads(&self) -> impl Iterator<Item = PatId> + '_ {
506 self.patterns.iter().map(|r| r.head())
507 }
508
509 /// Iterate over the first constructor of each row.
510 fn head_ctors<'a>(
511 &'a self,
512 cx: &'a MatchCheckCtx<'_>,
513 ) -> impl Iterator<Item = &'a Constructor> + Clone {
514 self.patterns.iter().map(move |r| r.head_ctor(cx))
515 }
516
517 /// This computes `S(constructor, self)`. See top of the file for explanations.
518 fn specialize_constructor(
519 &self,
520 pcx: PatCtxt<'_>,
521 ctor: &Constructor,
522 ctor_wild_subpatterns: &Fields,
523 ) -> Matrix {
524 let rows = self
525 .patterns
526 .iter()
527 .filter(|r| ctor.is_covered_by(pcx, r.head_ctor(pcx.cx)))
528 .map(|r| r.pop_head_constructor(ctor_wild_subpatterns, pcx.cx));
529 Matrix::from_iter(rows, pcx.cx)
530 }
531
532 fn from_iter(rows: impl IntoIterator<Item = PatStack>, cx: &MatchCheckCtx<'_>) -> Matrix {
533 let mut matrix = Matrix::empty();
534 for x in rows {
535 // Using `push` ensures we correctly expand or-patterns.
536 matrix.push(x, cx);
537 }
538 matrix
539 }
540}
541
542/// Given a pattern or a pattern-stack, this struct captures a set of its subpatterns. We use that
543/// to track reachable sub-patterns arising from or-patterns. In the absence of or-patterns this
544/// will always be either `Empty` (the whole pattern is unreachable) or `Full` (the whole pattern
545/// is reachable). When there are or-patterns, some subpatterns may be reachable while others
546/// aren't. In this case the whole pattern still counts as reachable, but we will lint the
547/// unreachable subpatterns.
548///
549/// This supports a limited set of operations, so not all possible sets of subpatterns can be
550/// represented. That's ok, we only want the ones that make sense for our usage.
551///
552/// What we're doing is illustrated by this:
553/// ```
554/// match (true, 0) {
555/// (true, 0) => {}
556/// (_, 1) => {}
557/// (true | false, 0 | 1) => {}
558/// }
559/// ```
560/// When we try the alternatives of the `true | false` or-pattern, the last `0` is reachable in the
561/// `false` alternative but not the `true`. So overall it is reachable. By contrast, the last `1`
562/// is not reachable in either alternative, so we want to signal this to the user.
563/// Therefore we take the union of sets of reachable patterns coming from different alternatives in
564/// order to figure out which subpatterns are overall reachable.
565///
566/// Invariant: we try to construct the smallest representation we can. In particular if
567/// `self.is_empty()` we ensure that `self` is `Empty`, and same with `Full`. This is not important
568/// for correctness currently.
569#[derive(Debug, Clone)]
570enum SubPatSet {
571 /// The empty set. This means the pattern is unreachable.
572 Empty,
573 /// The set containing the full pattern.
574 Full,
575 /// If the pattern is a pattern with a constructor or a pattern-stack, we store a set for each
576 /// of its subpatterns. Missing entries in the map are implicitly full, because that's the
577 /// common case.
578 Seq { subpats: FxHashMap<usize, SubPatSet> },
579 /// If the pattern is an or-pattern, we store a set for each of its alternatives. Missing
580 /// entries in the map are implicitly empty. Note: we always flatten nested or-patterns.
581 Alt {
582 subpats: FxHashMap<usize, SubPatSet>,
583 /// Counts the total number of alternatives in the pattern
584 alt_count: usize,
585 /// We keep the pattern around to retrieve spans.
586 pat: PatId,
587 },
588}
589
590impl SubPatSet {
591 fn full() -> Self {
592 SubPatSet::Full
593 }
594
595 fn empty() -> Self {
596 SubPatSet::Empty
597 }
598
599 fn is_empty(&self) -> bool {
600 match self {
601 SubPatSet::Empty => true,
602 SubPatSet::Full => false,
603 // If any subpattern in a sequence is unreachable, the whole pattern is unreachable.
604 SubPatSet::Seq { subpats } => subpats.values().any(|set| set.is_empty()),
605 // An or-pattern is reachable if any of its alternatives is.
606 SubPatSet::Alt { subpats, .. } => subpats.values().all(|set| set.is_empty()),
607 }
608 }
609
610 fn is_full(&self) -> bool {
611 match self {
612 SubPatSet::Empty => false,
613 SubPatSet::Full => true,
614 // The whole pattern is reachable only when all its alternatives are.
615 SubPatSet::Seq { subpats } => subpats.values().all(|sub_set| sub_set.is_full()),
616 // The whole or-pattern is reachable only when all its alternatives are.
617 SubPatSet::Alt { subpats, alt_count, .. } => {
618 subpats.len() == *alt_count && subpats.values().all(|set| set.is_full())
619 }
620 }
621 }
622
623 /// Union `self` with `other`, mutating `self`.
624 fn union(&mut self, other: Self) {
625 use SubPatSet::*;
626 // Union with full stays full; union with empty changes nothing.
627 if self.is_full() || other.is_empty() {
628 return;
629 } else if self.is_empty() {
630 *self = other;
631 return;
632 } else if other.is_full() {
633 *self = Full;
634 return;
635 }
636
637 match (&mut *self, other) {
638 (Seq { subpats: s_set }, Seq { subpats: mut o_set }) => {
639 s_set.retain(|i, s_sub_set| {
640 // Missing entries count as full.
641 let o_sub_set = o_set.remove(&i).unwrap_or(Full);
642 s_sub_set.union(o_sub_set);
643 // We drop full entries.
644 !s_sub_set.is_full()
645 });
646 // Everything left in `o_set` is missing from `s_set`, i.e. counts as full. Since
647 // unioning with full returns full, we can drop those entries.
648 }
649 (Alt { subpats: s_set, .. }, Alt { subpats: mut o_set, .. }) => {
650 s_set.retain(|i, s_sub_set| {
651 // Missing entries count as empty.
652 let o_sub_set = o_set.remove(&i).unwrap_or(Empty);
653 s_sub_set.union(o_sub_set);
654 // We drop empty entries.
655 !s_sub_set.is_empty()
656 });
657 // Everything left in `o_set` is missing from `s_set`, i.e. counts as empty. Since
658 // unioning with empty changes nothing, we can take those entries as is.
659 s_set.extend(o_set);
660 }
661 _ => panic!("bug"),
662 }
663
664 if self.is_full() {
665 *self = Full;
666 }
667 }
668
669 /// Returns a list of the unreachable subpatterns. If `self` is empty (i.e. the
670 /// whole pattern is unreachable) we return `None`.
671 fn list_unreachable_subpatterns(&self, cx: &MatchCheckCtx<'_>) -> Option<Vec<PatId>> {
672 /// Panics if `set.is_empty()`.
673 fn fill_subpats(
674 set: &SubPatSet,
675 unreachable_pats: &mut Vec<PatId>,
676 cx: &MatchCheckCtx<'_>,
677 ) {
678 match set {
679 SubPatSet::Empty => panic!("bug"),
680 SubPatSet::Full => {}
681 SubPatSet::Seq { subpats } => {
682 for (_, sub_set) in subpats {
683 fill_subpats(sub_set, unreachable_pats, cx);
684 }
685 }
686 SubPatSet::Alt { subpats, pat, alt_count, .. } => {
687 let expanded = pat.expand_or_pat(cx);
688 for i in 0..*alt_count {
689 let sub_set = subpats.get(&i).unwrap_or(&SubPatSet::Empty);
690 if sub_set.is_empty() {
691 // Found a unreachable subpattern.
692 unreachable_pats.push(expanded[i]);
693 } else {
694 fill_subpats(sub_set, unreachable_pats, cx);
695 }
696 }
697 }
698 }
699 }
700
701 if self.is_empty() {
702 return None;
703 }
704 if self.is_full() {
705 // No subpatterns are unreachable.
706 return Some(Vec::new());
707 }
708 let mut unreachable_pats = Vec::new();
709 fill_subpats(self, &mut unreachable_pats, cx);
710 Some(unreachable_pats)
711 }
712
713 /// When `self` refers to a patstack that was obtained from specialization, after running
714 /// `unspecialize` it will refer to the original patstack before specialization.
715 fn unspecialize(self, arity: usize) -> Self {
716 use SubPatSet::*;
717 match self {
718 Full => Full,
719 Empty => Empty,
720 Seq { subpats } => {
721 // We gather the first `arity` subpatterns together and shift the remaining ones.
722 let mut new_subpats = FxHashMap::default();
723 let mut new_subpats_first_col = FxHashMap::default();
724 for (i, sub_set) in subpats {
725 if i < arity {
726 // The first `arity` indices are now part of the pattern in the first
727 // column.
728 new_subpats_first_col.insert(i, sub_set);
729 } else {
730 // Indices after `arity` are simply shifted
731 new_subpats.insert(i - arity + 1, sub_set);
732 }
733 }
734 // If `new_subpats_first_col` has no entries it counts as full, so we can omit it.
735 if !new_subpats_first_col.is_empty() {
736 new_subpats.insert(0, Seq { subpats: new_subpats_first_col });
737 }
738 Seq { subpats: new_subpats }
739 }
740 Alt { .. } => panic!("bug"),
741 }
742 }
743
744 /// When `self` refers to a patstack that was obtained from splitting an or-pattern, after
745 /// running `unspecialize` it will refer to the original patstack before splitting.
746 ///
747 /// For example:
748 /// ```
749 /// match Some(true) {
750 /// Some(true) => {}
751 /// None | Some(true | false) => {}
752 /// }
753 /// ```
754 /// Here `None` would return the full set and `Some(true | false)` would return the set
755 /// containing `false`. After `unsplit_or_pat`, we want the set to contain `None` and `false`.
756 /// This is what this function does.
757 fn unsplit_or_pat(mut self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
758 use SubPatSet::*;
759 if self.is_empty() {
760 return Empty;
761 }
762
763 // Subpatterns coming from inside the or-pattern alternative itself, e.g. in `None | Some(0
764 // | 1)`.
765 let set_first_col = match &mut self {
766 Full => Full,
767 Seq { subpats } => subpats.remove(&0).unwrap_or(Full),
768 Empty => unreachable!(),
769 Alt { .. } => panic!("bug"), // `self` is a patstack
770 };
771 let mut subpats_first_col = FxHashMap::default();
772 subpats_first_col.insert(alt_id, set_first_col);
773 let set_first_col = Alt { subpats: subpats_first_col, pat, alt_count };
774
775 let mut subpats = match self {
776 Full => FxHashMap::default(),
777 Seq { subpats } => subpats,
778 Empty => unreachable!(),
779 Alt { .. } => panic!("bug"), // `self` is a patstack
780 };
781 subpats.insert(0, set_first_col);
782 Seq { subpats }
783 }
784}
785
786/// This carries the results of computing usefulness, as described at the top of the file. When
787/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
788/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
789/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
790/// witnesses of non-exhaustiveness when there are any.
791/// Which variant to use is dictated by `WitnessPreference`.
792#[derive(Clone, Debug)]
793enum Usefulness {
794 /// Carries a set of subpatterns that have been found to be reachable. If empty, this indicates
795 /// the whole pattern is unreachable. If not, this indicates that the pattern is reachable but
796 /// that some sub-patterns may be unreachable (due to or-patterns). In the absence of
797 /// or-patterns this will always be either `Empty` (the whole pattern is unreachable) or `Full`
798 /// (the whole pattern is reachable).
799 NoWitnesses(SubPatSet),
800 /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
801 /// pattern is unreachable.
802 WithWitnesses(Vec<Witness>),
803}
804
805impl Usefulness {
806 fn new_useful(preference: WitnessPreference) -> Self {
807 match preference {
808 ConstructWitness => WithWitnesses(vec![Witness(vec![])]),
809 LeaveOutWitness => NoWitnesses(SubPatSet::full()),
810 }
811 }
812 fn new_not_useful(preference: WitnessPreference) -> Self {
813 match preference {
814 ConstructWitness => WithWitnesses(vec![]),
815 LeaveOutWitness => NoWitnesses(SubPatSet::empty()),
816 }
817 }
818
819 /// Combine usefulnesses from two branches. This is an associative operation.
820 fn extend(&mut self, other: Self) {
821 match (&mut *self, other) {
822 (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
823 (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
824 (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
825 (NoWitnesses(s), NoWitnesses(o)) => s.union(o),
826 _ => unreachable!(),
827 }
828 }
829
830 /// When trying several branches and each returns a `Usefulness`, we need to combine the
831 /// results together.
832 fn merge(pref: WitnessPreference, usefulnesses: impl Iterator<Item = Self>) -> Self {
833 let mut ret = Self::new_not_useful(pref);
834 for u in usefulnesses {
835 ret.extend(u);
836 if let NoWitnesses(subpats) = &ret {
837 if subpats.is_full() {
838 // Once we reach the full set, more unions won't change the result.
839 return ret;
840 }
841 }
842 }
843 ret
844 }
845
846 /// After calculating the usefulness for a branch of an or-pattern, call this to make this
847 /// usefulness mergeable with those from the other branches.
848 fn unsplit_or_pat(self, alt_id: usize, alt_count: usize, pat: PatId) -> Self {
849 match self {
850 NoWitnesses(subpats) => NoWitnesses(subpats.unsplit_or_pat(alt_id, alt_count, pat)),
851 WithWitnesses(_) => panic!("bug"),
852 }
853 }
854
855 /// After calculating usefulness after a specialization, call this to recontruct a usefulness
856 /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
857 /// with the results of specializing with the other constructors.
858 fn apply_constructor(
859 self,
860 pcx: PatCtxt<'_>,
861 matrix: &Matrix,
862 ctor: &Constructor,
863 ctor_wild_subpatterns: &Fields,
864 ) -> Self {
865 match self {
866 WithWitnesses(witnesses) if witnesses.is_empty() => WithWitnesses(witnesses),
867 WithWitnesses(witnesses) => {
868 let new_witnesses = if matches!(ctor, Constructor::Missing) {
869 let mut split_wildcard = SplitWildcard::new(pcx);
870 split_wildcard.split(pcx, matrix.head_ctors(pcx.cx));
871 // Construct for each missing constructor a "wild" version of this
872 // constructor, that matches everything that can be built with
873 // it. For example, if `ctor` is a `Constructor::Variant` for
874 // `Option::Some`, we get the pattern `Some(_)`.
875 let new_patterns: Vec<_> = split_wildcard
876 .iter_missing(pcx)
877 .map(|missing_ctor| {
878 Fields::wildcards(pcx, missing_ctor).apply(pcx, missing_ctor)
879 })
880 .collect();
881 witnesses
882 .into_iter()
883 .flat_map(|witness| {
884 new_patterns.iter().map(move |pat| {
885 let mut witness = witness.clone();
886 witness.0.push(pat.clone());
887 witness
888 })
889 })
890 .collect()
891 } else {
892 witnesses
893 .into_iter()
894 .map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns))
895 .collect()
896 };
897 WithWitnesses(new_witnesses)
898 }
899 NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor_wild_subpatterns.len())),
900 }
901 }
902}
903
904#[derive(Copy, Clone, Debug)]
905enum WitnessPreference {
906 ConstructWitness,
907 LeaveOutWitness,
908}
909
910/// A witness of non-exhaustiveness for error reporting, represented
911/// as a list of patterns (in reverse order of construction) with
912/// wildcards inside to represent elements that can take any inhabitant
913/// of the type as a value.
914///
915/// A witness against a list of patterns should have the same types
916/// and length as the pattern matched against. Because Rust `match`
917/// is always against a single pattern, at the end the witness will
918/// have length 1, but in the middle of the algorithm, it can contain
919/// multiple patterns.
920///
921/// For example, if we are constructing a witness for the match against
922///
923/// ```
924/// struct Pair(Option<(u32, u32)>, bool);
925///
926/// match (p: Pair) {
927/// Pair(None, _) => {}
928/// Pair(_, false) => {}
929/// }
930/// ```
931///
932/// We'll perform the following steps:
933/// 1. Start with an empty witness
934/// `Witness(vec![])`
935/// 2. Push a witness `true` against the `false`
936/// `Witness(vec![true])`
937/// 3. Push a witness `Some(_)` against the `None`
938/// `Witness(vec![true, Some(_)])`
939/// 4. Apply the `Pair` constructor to the witnesses
940/// `Witness(vec![Pair(Some(_), true)])`
941///
942/// The final `Pair(Some(_), true)` is then the resulting witness.
943#[derive(Clone, Debug)]
944pub(crate) struct Witness(Vec<Pat>);
945
946impl Witness {
947 /// Asserts that the witness contains a single pattern, and returns it.
948 fn single_pattern(self) -> Pat {
949 assert_eq!(self.0.len(), 1);
950 self.0.into_iter().next().unwrap()
951 }
952
953 /// Constructs a partial witness for a pattern given a list of
954 /// patterns expanded by the specialization step.
955 ///
956 /// When a pattern P is discovered to be useful, this function is used bottom-up
957 /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
958 /// of values, V, where each value in that set is not covered by any previously
959 /// used patterns and is covered by the pattern P'. Examples:
960 ///
961 /// left_ty: tuple of 3 elements
962 /// pats: [10, 20, _] => (10, 20, _)
963 ///
964 /// left_ty: struct X { a: (bool, &'static str), b: usize}
965 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
966 fn apply_constructor(
967 mut self,
968 pcx: PatCtxt<'_>,
969 ctor: &Constructor,
970 ctor_wild_subpatterns: &Fields,
971 ) -> Self {
972 let pat = {
973 let len = self.0.len();
974 let arity = ctor_wild_subpatterns.len();
975 let pats = self.0.drain((len - arity)..).rev();
976 ctor_wild_subpatterns.replace_fields(pcx.cx, pats).apply(pcx, ctor)
977 };
978
979 self.0.push(pat);
980
981 self
982 }
983}
984
985/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
986/// The algorithm from the paper has been modified to correctly handle empty
987/// types. The changes are:
988/// (0) We don't exit early if the pattern matrix has zero rows. We just
989/// continue to recurse over columns.
990/// (1) all_constructors will only return constructors that are statically
991/// possible. E.g., it will only return `Ok` for `Result<T, !>`.
992///
993/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
994/// to a set of such vectors `m` - this is defined as there being a set of
995/// inputs that will match `v` but not any of the sets in `m`.
996///
997/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
998///
999/// This is used both for reachability checking (if a pattern isn't useful in
1000/// relation to preceding patterns, it is not reachable) and exhaustiveness
1001/// checking (if a wildcard pattern is useful in relation to a matrix, the
1002/// matrix isn't exhaustive).
1003///
1004/// `is_under_guard` is used to inform if the pattern has a guard. If it
1005/// has one it must not be inserted into the matrix. This shouldn't be
1006/// relied on for soundness.
1007fn is_useful(
1008 cx: &MatchCheckCtx<'_>,
1009 matrix: &Matrix,
1010 v: &PatStack,
1011 witness_preference: WitnessPreference,
1012 is_under_guard: bool,
1013 is_top_level: bool,
1014) -> Usefulness {
1015 let Matrix { patterns: rows, .. } = matrix;
1016
1017 // The base case. We are pattern-matching on () and the return value is
1018 // based on whether our matrix has a row or not.
1019 // NOTE: This could potentially be optimized by checking rows.is_empty()
1020 // first and then, if v is non-empty, the return value is based on whether
1021 // the type of the tuple we're checking is inhabited or not.
1022 if v.is_empty() {
1023 let ret = if rows.is_empty() {
1024 Usefulness::new_useful(witness_preference)
1025 } else {
1026 Usefulness::new_not_useful(witness_preference)
1027 };
1028 return ret;
1029 }
1030
1031 assert!(rows.iter().all(|r| r.len() == v.len()));
1032
1033 // FIXME(Nadrieril): Hack to work around type normalization issues (see rust-lang/rust#72476).
1034 let ty = matrix.heads().next().map_or(cx.type_of(v.head()), |r| cx.type_of(r));
1035 let pcx = PatCtxt { cx, ty: &ty, is_top_level };
1036
1037 // If the first pattern is an or-pattern, expand it.
1038 let ret = if v.head().is_or_pat(cx) {
1039 //expanding or-pattern
1040 let v_head = v.head();
1041 let vs: Vec<_> = v.expand_or_pat(cx).collect();
1042 let alt_count = vs.len();
1043 // We try each or-pattern branch in turn.
1044 let mut matrix = matrix.clone();
1045 let usefulnesses = vs.into_iter().enumerate().map(|(i, v)| {
1046 let usefulness = is_useful(cx, &matrix, &v, witness_preference, is_under_guard, false);
1047 // If pattern has a guard don't add it to the matrix.
1048 if !is_under_guard {
1049 // We push the already-seen patterns into the matrix in order to detect redundant
1050 // branches like `Some(_) | Some(0)`.
1051 matrix.push(v, cx);
1052 }
1053 usefulness.unsplit_or_pat(i, alt_count, v_head)
1054 });
1055 Usefulness::merge(witness_preference, usefulnesses)
1056 } else {
1057 let v_ctor = v.head_ctor(cx);
1058 // if let Constructor::IntRange(ctor_range) = v_ctor {
1059 // // Lint on likely incorrect range patterns (#63987)
1060 // ctor_range.lint_overlapping_range_endpoints(
1061 // pcx,
1062 // matrix.head_ctors_and_spans(cx),
1063 // matrix.column_count().unwrap_or(0),
1064 // hir_id,
1065 // )
1066 // }
1067
1068 // We split the head constructor of `v`.
1069 let split_ctors = v_ctor.split(pcx, matrix.head_ctors(cx));
1070 // For each constructor, we compute whether there's a value that starts with it that would
1071 // witness the usefulness of `v`.
1072 let start_matrix = matrix;
1073 let usefulnesses = split_ctors.into_iter().map(|ctor| {
1074 // debug!("specialize({:?})", ctor);
1075 // We cache the result of `Fields::wildcards` because it is used a lot.
1076 let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
1077 let spec_matrix =
1078 start_matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
1079 let v = v.pop_head_constructor(&ctor_wild_subpatterns, cx);
1080 let usefulness =
1081 is_useful(cx, &spec_matrix, &v, witness_preference, is_under_guard, false);
1082 usefulness.apply_constructor(pcx, start_matrix, &ctor, &ctor_wild_subpatterns)
1083 });
1084 Usefulness::merge(witness_preference, usefulnesses)
1085 };
1086
1087 ret
1088}
1089
1090/// The arm of a match expression.
1091#[derive(Clone, Copy)]
1092pub(crate) struct MatchArm {
1093 pub(crate) pat: PatId,
1094 pub(crate) has_guard: bool,
1095}
1096
1097/// Indicates whether or not a given arm is reachable.
1098#[derive(Clone, Debug)]
1099pub(crate) enum Reachability {
1100 /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
1101 /// found to be unreachable despite the overall arm being reachable. Used only in the presence
1102 /// of or-patterns, otherwise it stays empty.
1103 Reachable(Vec<PatId>),
1104 /// The arm is unreachable.
1105 Unreachable,
1106}
1107
1108/// The output of checking a match for exhaustiveness and arm reachability.
1109pub(crate) struct UsefulnessReport {
1110 /// For each arm of the input, whether that arm is reachable after the arms above it.
1111 pub(crate) _arm_usefulness: Vec<(MatchArm, Reachability)>,
1112 /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
1113 /// exhaustiveness.
1114 pub(crate) non_exhaustiveness_witnesses: Vec<Pat>,
1115}
1116
1117/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
1118/// of its arms are reachable.
1119///
1120/// Note: the input patterns must have been lowered through
1121/// `check_match::MatchVisitor::lower_pattern`.
1122pub(crate) fn compute_match_usefulness(
1123 cx: &MatchCheckCtx<'_>,
1124 arms: &[MatchArm],
1125) -> UsefulnessReport {
1126 let mut matrix = Matrix::empty();
1127 let arm_usefulness: Vec<_> = arms
1128 .iter()
1129 .copied()
1130 .map(|arm| {
1131 let v = PatStack::from_pattern(arm.pat);
1132 let usefulness = is_useful(cx, &matrix, &v, LeaveOutWitness, arm.has_guard, true);
1133 if !arm.has_guard {
1134 matrix.push(v, cx);
1135 }
1136 let reachability = match usefulness {
1137 NoWitnesses(subpats) if subpats.is_empty() => Reachability::Unreachable,
1138 NoWitnesses(subpats) => {
1139 Reachability::Reachable(subpats.list_unreachable_subpatterns(cx).unwrap())
1140 }
1141 WithWitnesses(..) => panic!("bug"),
1142 };
1143 (arm, reachability)
1144 })
1145 .collect();
1146
1147 let wild_pattern =
1148 cx.pattern_arena.borrow_mut().alloc(Pat::wildcard_from_ty(&cx.infer[cx.match_expr]));
1149 let v = PatStack::from_pattern(wild_pattern);
1150 let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, false, true);
1151 let non_exhaustiveness_witnesses = match usefulness {
1152 WithWitnesses(pats) => pats.into_iter().map(Witness::single_pattern).collect(),
1153 NoWitnesses(_) => panic!("bug"),
1154 };
1155 UsefulnessReport { _arm_usefulness: arm_usefulness, non_exhaustiveness_witnesses }
1156}
1157
1158pub(crate) type PatternArena = Arena<Pat>;
1159
1160mod helper {
1161 use super::MatchCheckCtx;
1162
1163 pub(super) trait PatIdExt: Sized {
1164 // fn is_wildcard(self, cx: &MatchCheckCtx<'_>) -> bool;
1165 fn is_or_pat(self, cx: &MatchCheckCtx<'_>) -> bool;
1166 fn expand_or_pat(self, cx: &MatchCheckCtx<'_>) -> Vec<Self>;
1167 }
1168
1169 // Copy-pasted from rust/compiler/rustc_data_structures/src/captures.rs
1170 /// "Signaling" trait used in impl trait to tag lifetimes that you may
1171 /// need to capture but don't really need for other reasons.
1172 /// Basically a workaround; see [this comment] for details.
1173 ///
1174 /// [this comment]: https://github.com/rust-lang/rust/issues/34511#issuecomment-373423999
1175 // FIXME(eddyb) false positive, the lifetime parameter is "phantom" but needed.
1176 #[allow(unused_lifetimes)]
1177 pub(crate) trait Captures<'a> {}
1178
1179 impl<'a, T: ?Sized> Captures<'a> for T {}
1180}