aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir_ty/src
diff options
context:
space:
mode:
Diffstat (limited to 'crates/ra_hir_ty/src')
-rw-r--r--crates/ra_hir_ty/src/autoderef.rs108
-rw-r--r--crates/ra_hir_ty/src/db.rs119
-rw-r--r--crates/ra_hir_ty/src/diagnostics.rs91
-rw-r--r--crates/ra_hir_ty/src/display.rs93
-rw-r--r--crates/ra_hir_ty/src/expr.rs151
-rw-r--r--crates/ra_hir_ty/src/infer.rs723
-rw-r--r--crates/ra_hir_ty/src/infer/coerce.rs344
-rw-r--r--crates/ra_hir_ty/src/infer/expr.rs686
-rw-r--r--crates/ra_hir_ty/src/infer/pat.rs186
-rw-r--r--crates/ra_hir_ty/src/infer/path.rs268
-rw-r--r--crates/ra_hir_ty/src/infer/unify.rs162
-rw-r--r--crates/ra_hir_ty/src/lib.rs1138
-rw-r--r--crates/ra_hir_ty/src/lower.rs759
-rw-r--r--crates/ra_hir_ty/src/marks.rs9
-rw-r--r--crates/ra_hir_ty/src/method_resolution.rs353
-rw-r--r--crates/ra_hir_ty/src/op.rs50
-rw-r--r--crates/ra_hir_ty/src/primitive.rs193
-rw-r--r--crates/ra_hir_ty/src/test_db.rs146
-rw-r--r--crates/ra_hir_ty/src/tests.rs4958
-rw-r--r--crates/ra_hir_ty/src/tests/coercion.rs369
-rw-r--r--crates/ra_hir_ty/src/tests/never_type.rs246
-rw-r--r--crates/ra_hir_ty/src/traits.rs328
-rw-r--r--crates/ra_hir_ty/src/traits/chalk.rs900
-rw-r--r--crates/ra_hir_ty/src/utils.rs84
24 files changed, 12464 insertions, 0 deletions
diff --git a/crates/ra_hir_ty/src/autoderef.rs b/crates/ra_hir_ty/src/autoderef.rs
new file mode 100644
index 000000000..9d1d4e48c
--- /dev/null
+++ b/crates/ra_hir_ty/src/autoderef.rs
@@ -0,0 +1,108 @@
1//! In certain situations, rust automatically inserts derefs as necessary: for
2//! example, field accesses `foo.bar` still work when `foo` is actually a
3//! reference to a type with the field `bar`. This is an approximation of the
4//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
5
6use std::iter::successors;
7
8use hir_def::lang_item::LangItemTarget;
9use hir_expand::name;
10use log::{info, warn};
11use ra_db::CrateId;
12
13use crate::db::HirDatabase;
14
15use super::{
16 traits::{InEnvironment, Solution},
17 Canonical, Substs, Ty, TypeWalk,
18};
19
20const AUTODEREF_RECURSION_LIMIT: usize = 10;
21
22pub fn autoderef<'a>(
23 db: &'a impl HirDatabase,
24 krate: Option<CrateId>,
25 ty: InEnvironment<Canonical<Ty>>,
26) -> impl Iterator<Item = Canonical<Ty>> + 'a {
27 let InEnvironment { value: ty, environment } = ty;
28 successors(Some(ty), move |ty| {
29 deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() })
30 })
31 .take(AUTODEREF_RECURSION_LIMIT)
32}
33
34pub(crate) fn deref(
35 db: &impl HirDatabase,
36 krate: CrateId,
37 ty: InEnvironment<&Canonical<Ty>>,
38) -> Option<Canonical<Ty>> {
39 if let Some(derefed) = ty.value.value.builtin_deref() {
40 Some(Canonical { value: derefed, num_vars: ty.value.num_vars })
41 } else {
42 deref_by_trait(db, krate, ty)
43 }
44}
45
46fn deref_by_trait(
47 db: &impl HirDatabase,
48 krate: CrateId,
49 ty: InEnvironment<&Canonical<Ty>>,
50) -> Option<Canonical<Ty>> {
51 let deref_trait = match db.lang_item(krate.into(), "deref".into())? {
52 LangItemTarget::TraitId(it) => it,
53 _ => return None,
54 };
55 let target = db.trait_data(deref_trait).associated_type_by_name(&name::TARGET_TYPE)?;
56
57 let generic_params = db.generic_params(target.into());
58 if generic_params.count_params_including_parent() != 1 {
59 // the Target type + Deref trait should only have one generic parameter,
60 // namely Deref's Self type
61 return None;
62 }
63
64 // FIXME make the Canonical handling nicer
65
66 let parameters = Substs::build_for_generics(&generic_params)
67 .push(ty.value.value.clone().shift_bound_vars(1))
68 .build();
69
70 let projection = super::traits::ProjectionPredicate {
71 ty: Ty::Bound(0),
72 projection_ty: super::ProjectionTy { associated_ty: target, parameters },
73 };
74
75 let obligation = super::Obligation::Projection(projection);
76
77 let in_env = InEnvironment { value: obligation, environment: ty.environment };
78
79 let canonical = super::Canonical { num_vars: 1 + ty.value.num_vars, value: in_env };
80
81 let solution = db.trait_solve(krate.into(), canonical)?;
82
83 match &solution {
84 Solution::Unique(vars) => {
85 // FIXME: vars may contain solutions for any inference variables
86 // that happened to be inside ty. To correctly handle these, we
87 // would have to pass the solution up to the inference context, but
88 // that requires a larger refactoring (especially if the deref
89 // happens during method resolution). So for the moment, we just
90 // check that we're not in the situation we're we would actually
91 // need to handle the values of the additional variables, i.e.
92 // they're just being 'passed through'. In the 'standard' case where
93 // we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
94 // the case.
95 for i in 1..vars.0.num_vars {
96 if vars.0.value[i] != Ty::Bound((i - 1) as u32) {
97 warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution);
98 return None;
99 }
100 }
101 Some(Canonical { value: vars.0.value[0].clone(), num_vars: vars.0.num_vars })
102 }
103 Solution::Ambig(_) => {
104 info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution);
105 None
106 }
107 }
108}
diff --git a/crates/ra_hir_ty/src/db.rs b/crates/ra_hir_ty/src/db.rs
new file mode 100644
index 000000000..9ce154593
--- /dev/null
+++ b/crates/ra_hir_ty/src/db.rs
@@ -0,0 +1,119 @@
1//! FIXME: write short doc here
2
3use std::sync::Arc;
4
5use hir_def::{
6 db::DefDatabase, DefWithBodyId, GenericDefId, ImplId, LocalStructFieldId, TraitId, VariantId,
7};
8use ra_arena::map::ArenaMap;
9use ra_db::{salsa, CrateId};
10
11use crate::{
12 method_resolution::CrateImplBlocks,
13 traits::{AssocTyValue, Impl},
14 CallableDef, FnSig, GenericPredicate, ImplTy, InferenceResult, Substs, Ty, TyDefId, TypeCtor,
15 ValueTyDefId,
16};
17
18#[salsa::query_group(HirDatabaseStorage)]
19#[salsa::requires(salsa::Database)]
20pub trait HirDatabase: DefDatabase {
21 #[salsa::invoke(crate::infer_query)]
22 fn infer(&self, def: DefWithBodyId) -> Arc<InferenceResult>;
23
24 #[salsa::invoke(crate::lower::ty_query)]
25 fn ty(&self, def: TyDefId) -> Ty;
26
27 #[salsa::invoke(crate::lower::value_ty_query)]
28 fn value_ty(&self, def: ValueTyDefId) -> Ty;
29
30 #[salsa::invoke(crate::lower::impl_ty_query)]
31 fn impl_ty(&self, def: ImplId) -> ImplTy;
32
33 #[salsa::invoke(crate::lower::field_types_query)]
34 fn field_types(&self, var: VariantId) -> Arc<ArenaMap<LocalStructFieldId, Ty>>;
35
36 #[salsa::invoke(crate::callable_item_sig)]
37 fn callable_item_signature(&self, def: CallableDef) -> FnSig;
38
39 #[salsa::invoke(crate::lower::generic_predicates_for_param_query)]
40 fn generic_predicates_for_param(
41 &self,
42 def: GenericDefId,
43 param_idx: u32,
44 ) -> Arc<[GenericPredicate]>;
45
46 #[salsa::invoke(crate::lower::generic_predicates_query)]
47 fn generic_predicates(&self, def: GenericDefId) -> Arc<[GenericPredicate]>;
48
49 #[salsa::invoke(crate::lower::generic_defaults_query)]
50 fn generic_defaults(&self, def: GenericDefId) -> Substs;
51
52 #[salsa::invoke(crate::method_resolution::CrateImplBlocks::impls_in_crate_query)]
53 fn impls_in_crate(&self, krate: CrateId) -> Arc<CrateImplBlocks>;
54
55 #[salsa::invoke(crate::traits::impls_for_trait_query)]
56 fn impls_for_trait(&self, krate: CrateId, trait_: TraitId) -> Arc<[ImplId]>;
57
58 /// This provides the Chalk trait solver instance. Because Chalk always
59 /// works from a specific crate, this query is keyed on the crate; and
60 /// because Chalk does its own internal caching, the solver is wrapped in a
61 /// Mutex and the query does an untracked read internally, to make sure the
62 /// cached state is thrown away when input facts change.
63 #[salsa::invoke(crate::traits::trait_solver_query)]
64 fn trait_solver(&self, krate: CrateId) -> crate::traits::TraitSolver;
65
66 // Interned IDs for Chalk integration
67 #[salsa::interned]
68 fn intern_type_ctor(&self, type_ctor: TypeCtor) -> crate::TypeCtorId;
69 #[salsa::interned]
70 fn intern_chalk_impl(&self, impl_: Impl) -> crate::traits::GlobalImplId;
71 #[salsa::interned]
72 fn intern_assoc_ty_value(&self, assoc_ty_value: AssocTyValue) -> crate::traits::AssocTyValueId;
73
74 #[salsa::invoke(crate::traits::chalk::associated_ty_data_query)]
75 fn associated_ty_data(
76 &self,
77 id: chalk_ir::TypeId,
78 ) -> Arc<chalk_rust_ir::AssociatedTyDatum<chalk_ir::family::ChalkIr>>;
79
80 #[salsa::invoke(crate::traits::chalk::trait_datum_query)]
81 fn trait_datum(
82 &self,
83 krate: CrateId,
84 trait_id: chalk_ir::TraitId,
85 ) -> Arc<chalk_rust_ir::TraitDatum<chalk_ir::family::ChalkIr>>;
86
87 #[salsa::invoke(crate::traits::chalk::struct_datum_query)]
88 fn struct_datum(
89 &self,
90 krate: CrateId,
91 struct_id: chalk_ir::StructId,
92 ) -> Arc<chalk_rust_ir::StructDatum<chalk_ir::family::ChalkIr>>;
93
94 #[salsa::invoke(crate::traits::chalk::impl_datum_query)]
95 fn impl_datum(
96 &self,
97 krate: CrateId,
98 impl_id: chalk_ir::ImplId,
99 ) -> Arc<chalk_rust_ir::ImplDatum<chalk_ir::family::ChalkIr>>;
100
101 #[salsa::invoke(crate::traits::chalk::associated_ty_value_query)]
102 fn associated_ty_value(
103 &self,
104 krate: CrateId,
105 id: chalk_rust_ir::AssociatedTyValueId,
106 ) -> Arc<chalk_rust_ir::AssociatedTyValue<chalk_ir::family::ChalkIr>>;
107
108 #[salsa::invoke(crate::traits::trait_solve_query)]
109 fn trait_solve(
110 &self,
111 krate: CrateId,
112 goal: crate::Canonical<crate::InEnvironment<crate::Obligation>>,
113 ) -> Option<crate::traits::Solution>;
114}
115
116#[test]
117fn hir_database_is_object_safe() {
118 fn _assert_object_safe(_: &dyn HirDatabase) {}
119}
diff --git a/crates/ra_hir_ty/src/diagnostics.rs b/crates/ra_hir_ty/src/diagnostics.rs
new file mode 100644
index 000000000..4a13fac23
--- /dev/null
+++ b/crates/ra_hir_ty/src/diagnostics.rs
@@ -0,0 +1,91 @@
1//! FIXME: write short doc here
2
3use std::any::Any;
4
5use hir_expand::{db::AstDatabase, name::Name, HirFileId, Source};
6use ra_syntax::{ast, AstNode, AstPtr, SyntaxNodePtr};
7
8pub use hir_def::diagnostics::UnresolvedModule;
9pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink};
10
11#[derive(Debug)]
12pub struct NoSuchField {
13 pub file: HirFileId,
14 pub field: AstPtr<ast::RecordField>,
15}
16
17impl Diagnostic for NoSuchField {
18 fn message(&self) -> String {
19 "no such field".to_string()
20 }
21
22 fn source(&self) -> Source<SyntaxNodePtr> {
23 Source { file_id: self.file, value: self.field.into() }
24 }
25
26 fn as_any(&self) -> &(dyn Any + Send + 'static) {
27 self
28 }
29}
30
31#[derive(Debug)]
32pub struct MissingFields {
33 pub file: HirFileId,
34 pub field_list: AstPtr<ast::RecordFieldList>,
35 pub missed_fields: Vec<Name>,
36}
37
38impl Diagnostic for MissingFields {
39 fn message(&self) -> String {
40 use std::fmt::Write;
41 let mut message = String::from("Missing structure fields:\n");
42 for field in &self.missed_fields {
43 write!(message, "- {}\n", field).unwrap();
44 }
45 message
46 }
47 fn source(&self) -> Source<SyntaxNodePtr> {
48 Source { file_id: self.file, value: self.field_list.into() }
49 }
50 fn as_any(&self) -> &(dyn Any + Send + 'static) {
51 self
52 }
53}
54
55impl AstDiagnostic for MissingFields {
56 type AST = ast::RecordFieldList;
57
58 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
59 let root = db.parse_or_expand(self.source().file_id).unwrap();
60 let node = self.source().value.to_node(&root);
61 ast::RecordFieldList::cast(node).unwrap()
62 }
63}
64
65#[derive(Debug)]
66pub struct MissingOkInTailExpr {
67 pub file: HirFileId,
68 pub expr: AstPtr<ast::Expr>,
69}
70
71impl Diagnostic for MissingOkInTailExpr {
72 fn message(&self) -> String {
73 "wrap return expression in Ok".to_string()
74 }
75 fn source(&self) -> Source<SyntaxNodePtr> {
76 Source { file_id: self.file, value: self.expr.into() }
77 }
78 fn as_any(&self) -> &(dyn Any + Send + 'static) {
79 self
80 }
81}
82
83impl AstDiagnostic for MissingOkInTailExpr {
84 type AST = ast::Expr;
85
86 fn ast(&self, db: &impl AstDatabase) -> Self::AST {
87 let root = db.parse_or_expand(self.file).unwrap();
88 let node = self.source().value.to_node(&root);
89 ast::Expr::cast(node).unwrap()
90 }
91}
diff --git a/crates/ra_hir_ty/src/display.rs b/crates/ra_hir_ty/src/display.rs
new file mode 100644
index 000000000..9bb3ece6c
--- /dev/null
+++ b/crates/ra_hir_ty/src/display.rs
@@ -0,0 +1,93 @@
1//! FIXME: write short doc here
2
3use std::fmt;
4
5use crate::db::HirDatabase;
6
7pub struct HirFormatter<'a, 'b, DB> {
8 pub db: &'a DB,
9 fmt: &'a mut fmt::Formatter<'b>,
10 buf: String,
11 curr_size: usize,
12 max_size: Option<usize>,
13}
14
15pub trait HirDisplay {
16 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result;
17
18 fn display<'a, DB>(&'a self, db: &'a DB) -> HirDisplayWrapper<'a, DB, Self>
19 where
20 Self: Sized,
21 {
22 HirDisplayWrapper(db, self, None)
23 }
24
25 fn display_truncated<'a, DB>(
26 &'a self,
27 db: &'a DB,
28 max_size: Option<usize>,
29 ) -> HirDisplayWrapper<'a, DB, Self>
30 where
31 Self: Sized,
32 {
33 HirDisplayWrapper(db, self, max_size)
34 }
35}
36
37impl<'a, 'b, DB> HirFormatter<'a, 'b, DB>
38where
39 DB: HirDatabase,
40{
41 pub fn write_joined<T: HirDisplay>(
42 &mut self,
43 iter: impl IntoIterator<Item = T>,
44 sep: &str,
45 ) -> fmt::Result {
46 let mut first = true;
47 for e in iter {
48 if !first {
49 write!(self, "{}", sep)?;
50 }
51 first = false;
52 e.hir_fmt(self)?;
53 }
54 Ok(())
55 }
56
57 /// This allows using the `write!` macro directly with a `HirFormatter`.
58 pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
59 // We write to a buffer first to track output size
60 self.buf.clear();
61 fmt::write(&mut self.buf, args)?;
62 self.curr_size += self.buf.len();
63
64 // Then we write to the internal formatter from the buffer
65 self.fmt.write_str(&self.buf)
66 }
67
68 pub fn should_truncate(&self) -> bool {
69 if let Some(max_size) = self.max_size {
70 self.curr_size >= max_size
71 } else {
72 false
73 }
74 }
75}
76
77pub struct HirDisplayWrapper<'a, DB, T>(&'a DB, &'a T, Option<usize>);
78
79impl<'a, DB, T> fmt::Display for HirDisplayWrapper<'a, DB, T>
80where
81 DB: HirDatabase,
82 T: HirDisplay,
83{
84 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85 self.1.hir_fmt(&mut HirFormatter {
86 db: self.0,
87 fmt: f,
88 buf: String::with_capacity(20),
89 curr_size: 0,
90 max_size: self.2,
91 })
92 }
93}
diff --git a/crates/ra_hir_ty/src/expr.rs b/crates/ra_hir_ty/src/expr.rs
new file mode 100644
index 000000000..5c65f9370
--- /dev/null
+++ b/crates/ra_hir_ty/src/expr.rs
@@ -0,0 +1,151 @@
1//! FIXME: write short doc here
2
3use std::sync::Arc;
4
5use hir_def::{
6 path::{known, Path},
7 resolver::HasResolver,
8 AdtId, FunctionId,
9};
10use hir_expand::{diagnostics::DiagnosticSink, name::Name};
11use ra_syntax::ast;
12use ra_syntax::AstPtr;
13use rustc_hash::FxHashSet;
14
15use crate::{
16 db::HirDatabase,
17 diagnostics::{MissingFields, MissingOkInTailExpr},
18 ApplicationTy, InferenceResult, Ty, TypeCtor,
19};
20
21pub use hir_def::{
22 body::{
23 scope::{ExprScopes, ScopeEntry, ScopeId},
24 Body, BodySourceMap, ExprPtr, ExprSource, PatPtr, PatSource,
25 },
26 expr::{
27 ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
28 MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp,
29 },
30};
31
32pub struct ExprValidator<'a, 'b: 'a> {
33 func: FunctionId,
34 infer: Arc<InferenceResult>,
35 sink: &'a mut DiagnosticSink<'b>,
36}
37
38impl<'a, 'b> ExprValidator<'a, 'b> {
39 pub fn new(
40 func: FunctionId,
41 infer: Arc<InferenceResult>,
42 sink: &'a mut DiagnosticSink<'b>,
43 ) -> ExprValidator<'a, 'b> {
44 ExprValidator { func, infer, sink }
45 }
46
47 pub fn validate_body(&mut self, db: &impl HirDatabase) {
48 let body = db.body(self.func.into());
49
50 for e in body.exprs.iter() {
51 if let (id, Expr::RecordLit { path, fields, spread }) = e {
52 self.validate_record_literal(id, path, fields, *spread, db);
53 }
54 }
55
56 let body_expr = &body[body.body_expr];
57 if let Expr::Block { statements: _, tail: Some(t) } = body_expr {
58 self.validate_results_in_tail_expr(body.body_expr, *t, db);
59 }
60 }
61
62 fn validate_record_literal(
63 &mut self,
64 id: ExprId,
65 _path: &Option<Path>,
66 fields: &[RecordLitField],
67 spread: Option<ExprId>,
68 db: &impl HirDatabase,
69 ) {
70 if spread.is_some() {
71 return;
72 }
73
74 let struct_def = match self.infer[id].as_adt() {
75 Some((AdtId::StructId(s), _)) => s,
76 _ => return,
77 };
78 let struct_data = db.struct_data(struct_def);
79
80 let lit_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect();
81 let missed_fields: Vec<Name> = struct_data
82 .variant_data
83 .fields()
84 .iter()
85 .filter_map(|(_f, d)| {
86 let name = d.name.clone();
87 if lit_fields.contains(&name) {
88 None
89 } else {
90 Some(name)
91 }
92 })
93 .collect();
94 if missed_fields.is_empty() {
95 return;
96 }
97 let (_, source_map) = db.body_with_source_map(self.func.into());
98
99 if let Some(source_ptr) = source_map.expr_syntax(id) {
100 if let Some(expr) = source_ptr.value.a() {
101 let root = source_ptr.file_syntax(db);
102 if let ast::Expr::RecordLit(record_lit) = expr.to_node(&root) {
103 if let Some(field_list) = record_lit.record_field_list() {
104 self.sink.push(MissingFields {
105 file: source_ptr.file_id,
106 field_list: AstPtr::new(&field_list),
107 missed_fields,
108 })
109 }
110 }
111 }
112 }
113 }
114
115 fn validate_results_in_tail_expr(
116 &mut self,
117 body_id: ExprId,
118 id: ExprId,
119 db: &impl HirDatabase,
120 ) {
121 // the mismatch will be on the whole block currently
122 let mismatch = match self.infer.type_mismatch_for_expr(body_id) {
123 Some(m) => m,
124 None => return,
125 };
126
127 let std_result_path = known::std_result_result();
128
129 let resolver = self.func.resolver(db);
130 let std_result_enum = match resolver.resolve_known_enum(db, &std_result_path) {
131 Some(it) => it,
132 _ => return,
133 };
134
135 let std_result_ctor = TypeCtor::Adt(AdtId::EnumId(std_result_enum));
136 let params = match &mismatch.expected {
137 Ty::Apply(ApplicationTy { ctor, parameters }) if ctor == &std_result_ctor => parameters,
138 _ => return,
139 };
140
141 if params.len() == 2 && &params[0] == &mismatch.actual {
142 let (_, source_map) = db.body_with_source_map(self.func.into());
143
144 if let Some(source_ptr) = source_map.expr_syntax(id) {
145 if let Some(expr) = source_ptr.value.a() {
146 self.sink.push(MissingOkInTailExpr { file: source_ptr.file_id, expr });
147 }
148 }
149 }
150 }
151}
diff --git a/crates/ra_hir_ty/src/infer.rs b/crates/ra_hir_ty/src/infer.rs
new file mode 100644
index 000000000..1e9f4b208
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer.rs
@@ -0,0 +1,723 @@
1//! Type inference, i.e. the process of walking through the code and determining
2//! the type of each expression and pattern.
3//!
4//! For type inference, compare the implementations in rustc (the various
5//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
6//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
7//! inference here is the `infer` function, which infers the types of all
8//! expressions in a given function.
9//!
10//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
11//! which represent currently unknown types; as we walk through the expressions,
12//! we might determine that certain variables need to be equal to each other, or
13//! to certain types. To record this, we use the union-find implementation from
14//! the `ena` crate, which is extracted from rustc.
15
16use std::borrow::Cow;
17use std::mem;
18use std::ops::Index;
19use std::sync::Arc;
20
21use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
22use rustc_hash::FxHashMap;
23
24use hir_def::{
25 body::Body,
26 data::{ConstData, FunctionData},
27 expr::{BindingAnnotation, ExprId, PatId},
28 path::{known, Path},
29 resolver::{HasResolver, Resolver, TypeNs},
30 type_ref::{Mutability, TypeRef},
31 AdtId, AssocItemId, DefWithBodyId, FunctionId, StructFieldId, TypeAliasId, VariantId,
32};
33use hir_expand::{diagnostics::DiagnosticSink, name};
34use ra_arena::map::ArenaMap;
35use ra_prof::profile;
36use test_utils::tested_by;
37
38use super::{
39 primitive::{FloatTy, IntTy},
40 traits::{Guidance, Obligation, ProjectionPredicate, Solution},
41 ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor,
42 TypeWalk, Uncertain,
43};
44use crate::{db::HirDatabase, infer::diagnostics::InferenceDiagnostic};
45
46macro_rules! ty_app {
47 ($ctor:pat, $param:pat) => {
48 crate::Ty::Apply(crate::ApplicationTy { ctor: $ctor, parameters: $param })
49 };
50 ($ctor:pat) => {
51 ty_app!($ctor, _)
52 };
53}
54
55mod unify;
56mod path;
57mod expr;
58mod pat;
59mod coerce;
60
61/// The entry point of type inference.
62pub fn infer_query(db: &impl HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
63 let _p = profile("infer_query");
64 let resolver = def.resolver(db);
65 let mut ctx = InferenceContext::new(db, def, resolver);
66
67 match def {
68 DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
69 DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)),
70 DefWithBodyId::StaticId(s) => ctx.collect_const(&db.static_data(s)),
71 }
72
73 ctx.infer_body();
74
75 Arc::new(ctx.resolve_all())
76}
77
78#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
79enum ExprOrPatId {
80 ExprId(ExprId),
81 PatId(PatId),
82}
83
84impl_froms!(ExprOrPatId: ExprId, PatId);
85
86/// Binding modes inferred for patterns.
87/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
88#[derive(Copy, Clone, Debug, Eq, PartialEq)]
89enum BindingMode {
90 Move,
91 Ref(Mutability),
92}
93
94impl BindingMode {
95 pub fn convert(annotation: BindingAnnotation) -> BindingMode {
96 match annotation {
97 BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
98 BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
99 BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
100 }
101 }
102}
103
104impl Default for BindingMode {
105 fn default() -> Self {
106 BindingMode::Move
107 }
108}
109
110/// A mismatch between an expected and an inferred type.
111#[derive(Clone, PartialEq, Eq, Debug, Hash)]
112pub struct TypeMismatch {
113 pub expected: Ty,
114 pub actual: Ty,
115}
116
117/// The result of type inference: A mapping from expressions and patterns to types.
118#[derive(Clone, PartialEq, Eq, Debug, Default)]
119pub struct InferenceResult {
120 /// For each method call expr, records the function it resolves to.
121 method_resolutions: FxHashMap<ExprId, FunctionId>,
122 /// For each field access expr, records the field it resolves to.
123 field_resolutions: FxHashMap<ExprId, StructFieldId>,
124 /// For each field in record literal, records the field it resolves to.
125 record_field_resolutions: FxHashMap<ExprId, StructFieldId>,
126 /// For each struct literal, records the variant it resolves to.
127 variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
128 /// For each associated item record what it resolves to
129 assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
130 diagnostics: Vec<InferenceDiagnostic>,
131 pub type_of_expr: ArenaMap<ExprId, Ty>,
132 pub type_of_pat: ArenaMap<PatId, Ty>,
133 pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
134}
135
136impl InferenceResult {
137 pub fn method_resolution(&self, expr: ExprId) -> Option<FunctionId> {
138 self.method_resolutions.get(&expr).copied()
139 }
140 pub fn field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
141 self.field_resolutions.get(&expr).copied()
142 }
143 pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
144 self.record_field_resolutions.get(&expr).copied()
145 }
146 pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
147 self.variant_resolutions.get(&id.into()).copied()
148 }
149 pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
150 self.variant_resolutions.get(&id.into()).copied()
151 }
152 pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
153 self.assoc_resolutions.get(&id.into()).copied()
154 }
155 pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
156 self.assoc_resolutions.get(&id.into()).copied()
157 }
158 pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
159 self.type_mismatches.get(expr)
160 }
161 pub fn add_diagnostics(
162 &self,
163 db: &impl HirDatabase,
164 owner: FunctionId,
165 sink: &mut DiagnosticSink,
166 ) {
167 self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
168 }
169}
170
171impl Index<ExprId> for InferenceResult {
172 type Output = Ty;
173
174 fn index(&self, expr: ExprId) -> &Ty {
175 self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
176 }
177}
178
179impl Index<PatId> for InferenceResult {
180 type Output = Ty;
181
182 fn index(&self, pat: PatId) -> &Ty {
183 self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
184 }
185}
186
187/// The inference context contains all information needed during type inference.
188#[derive(Clone, Debug)]
189struct InferenceContext<'a, D: HirDatabase> {
190 db: &'a D,
191 owner: DefWithBodyId,
192 body: Arc<Body>,
193 resolver: Resolver,
194 var_unification_table: InPlaceUnificationTable<TypeVarId>,
195 trait_env: Arc<TraitEnvironment>,
196 obligations: Vec<Obligation>,
197 result: InferenceResult,
198 /// The return type of the function being inferred.
199 return_ty: Ty,
200
201 /// Impls of `CoerceUnsized` used in coercion.
202 /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
203 // FIXME: Use trait solver for this.
204 // Chalk seems unable to work well with builtin impl of `Unsize` now.
205 coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
206}
207
208impl<'a, D: HirDatabase> InferenceContext<'a, D> {
209 fn new(db: &'a D, owner: DefWithBodyId, resolver: Resolver) -> Self {
210 InferenceContext {
211 result: InferenceResult::default(),
212 var_unification_table: InPlaceUnificationTable::new(),
213 obligations: Vec::default(),
214 return_ty: Ty::Unknown, // set in collect_fn_signature
215 trait_env: TraitEnvironment::lower(db, &resolver),
216 coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
217 db,
218 owner,
219 body: db.body(owner.into()),
220 resolver,
221 }
222 }
223
224 fn resolve_all(mut self) -> InferenceResult {
225 // FIXME resolve obligations as well (use Guidance if necessary)
226 let mut result = mem::replace(&mut self.result, InferenceResult::default());
227 let mut tv_stack = Vec::new();
228 for ty in result.type_of_expr.values_mut() {
229 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
230 *ty = resolved;
231 }
232 for ty in result.type_of_pat.values_mut() {
233 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
234 *ty = resolved;
235 }
236 result
237 }
238
239 fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
240 self.result.type_of_expr.insert(expr, ty);
241 }
242
243 fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId) {
244 self.result.method_resolutions.insert(expr, func);
245 }
246
247 fn write_field_resolution(&mut self, expr: ExprId, field: StructFieldId) {
248 self.result.field_resolutions.insert(expr, field);
249 }
250
251 fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
252 self.result.variant_resolutions.insert(id, variant);
253 }
254
255 fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
256 self.result.assoc_resolutions.insert(id, item.into());
257 }
258
259 fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
260 self.result.type_of_pat.insert(pat, ty);
261 }
262
263 fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
264 self.result.diagnostics.push(diagnostic);
265 }
266
267 fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
268 let ty = Ty::from_hir(
269 self.db,
270 // FIXME use right resolver for block
271 &self.resolver,
272 type_ref,
273 );
274 let ty = self.insert_type_vars(ty);
275 self.normalize_associated_types_in(ty)
276 }
277
278 fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
279 substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
280 }
281
282 fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
283 self.unify_inner(ty1, ty2, 0)
284 }
285
286 fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
287 if depth > 1000 {
288 // prevent stackoverflows
289 panic!("infinite recursion in unification");
290 }
291 if ty1 == ty2 {
292 return true;
293 }
294 // try to resolve type vars first
295 let ty1 = self.resolve_ty_shallow(ty1);
296 let ty2 = self.resolve_ty_shallow(ty2);
297 match (&*ty1, &*ty2) {
298 (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
299 self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
300 }
301 _ => self.unify_inner_trivial(&ty1, &ty2),
302 }
303 }
304
305 fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
306 match (ty1, ty2) {
307 (Ty::Unknown, _) | (_, Ty::Unknown) => true,
308
309 (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
310 | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
311 | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
312 | (
313 Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
314 Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
315 ) => {
316 // both type vars are unknown since we tried to resolve them
317 self.var_unification_table.union(*tv1, *tv2);
318 true
319 }
320
321 // The order of MaybeNeverTypeVar matters here.
322 // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
323 // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
324 (Ty::Infer(InferTy::TypeVar(tv)), other)
325 | (other, Ty::Infer(InferTy::TypeVar(tv)))
326 | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
327 | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
328 | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
329 | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
330 | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
331 | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
332 // the type var is unknown since we tried to resolve it
333 self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
334 true
335 }
336
337 _ => false,
338 }
339 }
340
341 fn new_type_var(&mut self) -> Ty {
342 Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
343 }
344
345 fn new_integer_var(&mut self) -> Ty {
346 Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
347 }
348
349 fn new_float_var(&mut self) -> Ty {
350 Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
351 }
352
353 fn new_maybe_never_type_var(&mut self) -> Ty {
354 Ty::Infer(InferTy::MaybeNeverTypeVar(
355 self.var_unification_table.new_key(TypeVarValue::Unknown),
356 ))
357 }
358
359 /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
360 fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
361 match ty {
362 Ty::Unknown => self.new_type_var(),
363 Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
364 self.new_integer_var()
365 }
366 Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
367 self.new_float_var()
368 }
369 _ => ty,
370 }
371 }
372
373 fn insert_type_vars(&mut self, ty: Ty) -> Ty {
374 ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
375 }
376
377 fn resolve_obligations_as_possible(&mut self) {
378 let obligations = mem::replace(&mut self.obligations, Vec::new());
379 for obligation in obligations {
380 let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
381 let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
382 let solution = self
383 .db
384 .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
385
386 match solution {
387 Some(Solution::Unique(substs)) => {
388 canonicalized.apply_solution(self, substs.0);
389 }
390 Some(Solution::Ambig(Guidance::Definite(substs))) => {
391 canonicalized.apply_solution(self, substs.0);
392 self.obligations.push(obligation);
393 }
394 Some(_) => {
395 // FIXME use this when trying to resolve everything at the end
396 self.obligations.push(obligation);
397 }
398 None => {
399 // FIXME obligation cannot be fulfilled => diagnostic
400 }
401 };
402 }
403 }
404
405 /// Resolves the type as far as currently possible, replacing type variables
406 /// by their known types. All types returned by the infer_* functions should
407 /// be resolved as far as possible, i.e. contain no type variables with
408 /// known type.
409 fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
410 self.resolve_obligations_as_possible();
411
412 ty.fold(&mut |ty| match ty {
413 Ty::Infer(tv) => {
414 let inner = tv.to_inner();
415 if tv_stack.contains(&inner) {
416 tested_by!(type_var_cycles_resolve_as_possible);
417 // recursive type
418 return tv.fallback_value();
419 }
420 if let Some(known_ty) =
421 self.var_unification_table.inlined_probe_value(inner).known()
422 {
423 // known_ty may contain other variables that are known by now
424 tv_stack.push(inner);
425 let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
426 tv_stack.pop();
427 result
428 } else {
429 ty
430 }
431 }
432 _ => ty,
433 })
434 }
435
436 /// If `ty` is a type variable with known type, returns that type;
437 /// otherwise, return ty.
438 fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
439 let mut ty = Cow::Borrowed(ty);
440 // The type variable could resolve to a int/float variable. Hence try
441 // resolving up to three times; each type of variable shouldn't occur
442 // more than once
443 for i in 0..3 {
444 if i > 0 {
445 tested_by!(type_var_resolves_to_int_var);
446 }
447 match &*ty {
448 Ty::Infer(tv) => {
449 let inner = tv.to_inner();
450 match self.var_unification_table.inlined_probe_value(inner).known() {
451 Some(known_ty) => {
452 // The known_ty can't be a type var itself
453 ty = Cow::Owned(known_ty.clone());
454 }
455 _ => return ty,
456 }
457 }
458 _ => return ty,
459 }
460 }
461 log::error!("Inference variable still not resolved: {:?}", ty);
462 ty
463 }
464
465 /// Recurses through the given type, normalizing associated types mentioned
466 /// in it by replacing them by type variables and registering obligations to
467 /// resolve later. This should be done once for every type we get from some
468 /// type annotation (e.g. from a let type annotation, field type or function
469 /// call). `make_ty` handles this already, but e.g. for field types we need
470 /// to do it as well.
471 fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
472 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
473 ty.fold(&mut |ty| match ty {
474 Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
475 _ => ty,
476 })
477 }
478
479 fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
480 let var = self.new_type_var();
481 let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
482 let obligation = Obligation::Projection(predicate);
483 self.obligations.push(obligation);
484 var
485 }
486
487 /// Resolves the type completely; type variables without known type are
488 /// replaced by Ty::Unknown.
489 fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
490 ty.fold(&mut |ty| match ty {
491 Ty::Infer(tv) => {
492 let inner = tv.to_inner();
493 if tv_stack.contains(&inner) {
494 tested_by!(type_var_cycles_resolve_completely);
495 // recursive type
496 return tv.fallback_value();
497 }
498 if let Some(known_ty) =
499 self.var_unification_table.inlined_probe_value(inner).known()
500 {
501 // known_ty may contain other variables that are known by now
502 tv_stack.push(inner);
503 let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
504 tv_stack.pop();
505 result
506 } else {
507 tv.fallback_value()
508 }
509 }
510 _ => ty,
511 })
512 }
513
514 fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantId>) {
515 let path = match path {
516 Some(path) => path,
517 None => return (Ty::Unknown, None),
518 };
519 let resolver = &self.resolver;
520 // FIXME: this should resolve assoc items as well, see this example:
521 // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
522 match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
523 Some(TypeNs::AdtId(AdtId::StructId(strukt))) => {
524 let substs = Ty::substs_from_path(self.db, resolver, path, strukt.into());
525 let ty = self.db.ty(strukt.into());
526 let ty = self.insert_type_vars(ty.apply_substs(substs));
527 (ty, Some(strukt.into()))
528 }
529 Some(TypeNs::EnumVariantId(var)) => {
530 let substs = Ty::substs_from_path(self.db, resolver, path, var.into());
531 let ty = self.db.ty(var.parent.into());
532 let ty = self.insert_type_vars(ty.apply_substs(substs));
533 (ty, Some(var.into()))
534 }
535 Some(_) | None => (Ty::Unknown, None),
536 }
537 }
538
539 fn collect_const(&mut self, data: &ConstData) {
540 self.return_ty = self.make_ty(&data.type_ref);
541 }
542
543 fn collect_fn(&mut self, data: &FunctionData) {
544 let body = Arc::clone(&self.body); // avoid borrow checker problem
545 for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
546 let ty = self.make_ty(type_ref);
547
548 self.infer_pat(*pat, &ty, BindingMode::default());
549 }
550 self.return_ty = self.make_ty(&data.ret_type);
551 }
552
553 fn infer_body(&mut self) {
554 self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
555 }
556
557 fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
558 let path = known::std_iter_into_iterator();
559 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
560 self.db.trait_data(trait_).associated_type_by_name(&name::ITEM_TYPE)
561 }
562
563 fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
564 let path = known::std_ops_try();
565 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
566 self.db.trait_data(trait_).associated_type_by_name(&name::OK_TYPE)
567 }
568
569 fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
570 let path = known::std_future_future();
571 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
572 self.db.trait_data(trait_).associated_type_by_name(&name::OUTPUT_TYPE)
573 }
574
575 fn resolve_boxed_box(&self) -> Option<AdtId> {
576 let path = known::std_boxed_box();
577 let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
578 Some(struct_.into())
579 }
580}
581
582/// The ID of a type variable.
583#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
584pub struct TypeVarId(pub(super) u32);
585
586impl UnifyKey for TypeVarId {
587 type Value = TypeVarValue;
588
589 fn index(&self) -> u32 {
590 self.0
591 }
592
593 fn from_index(i: u32) -> Self {
594 TypeVarId(i)
595 }
596
597 fn tag() -> &'static str {
598 "TypeVarId"
599 }
600}
601
602/// The value of a type variable: either we already know the type, or we don't
603/// know it yet.
604#[derive(Clone, PartialEq, Eq, Debug)]
605pub enum TypeVarValue {
606 Known(Ty),
607 Unknown,
608}
609
610impl TypeVarValue {
611 fn known(&self) -> Option<&Ty> {
612 match self {
613 TypeVarValue::Known(ty) => Some(ty),
614 TypeVarValue::Unknown => None,
615 }
616 }
617}
618
619impl UnifyValue for TypeVarValue {
620 type Error = NoError;
621
622 fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
623 match (value1, value2) {
624 // We should never equate two type variables, both of which have
625 // known types. Instead, we recursively equate those types.
626 (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
627 "equating two type variables, both of which have known types: {:?} and {:?}",
628 t1, t2
629 ),
630
631 // If one side is known, prefer that one.
632 (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
633 (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
634
635 (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
636 }
637 }
638}
639
640/// The kinds of placeholders we need during type inference. There's separate
641/// values for general types, and for integer and float variables. The latter
642/// two are used for inference of literal values (e.g. `100` could be one of
643/// several integer types).
644#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
645pub enum InferTy {
646 TypeVar(TypeVarId),
647 IntVar(TypeVarId),
648 FloatVar(TypeVarId),
649 MaybeNeverTypeVar(TypeVarId),
650}
651
652impl InferTy {
653 fn to_inner(self) -> TypeVarId {
654 match self {
655 InferTy::TypeVar(ty)
656 | InferTy::IntVar(ty)
657 | InferTy::FloatVar(ty)
658 | InferTy::MaybeNeverTypeVar(ty) => ty,
659 }
660 }
661
662 fn fallback_value(self) -> Ty {
663 match self {
664 InferTy::TypeVar(..) => Ty::Unknown,
665 InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
666 InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
667 InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
668 }
669 }
670}
671
672/// When inferring an expression, we propagate downward whatever type hint we
673/// are able in the form of an `Expectation`.
674#[derive(Clone, PartialEq, Eq, Debug)]
675struct Expectation {
676 ty: Ty,
677 // FIXME: In some cases, we need to be aware whether the expectation is that
678 // the type match exactly what we passed, or whether it just needs to be
679 // coercible to the expected type. See Expectation::rvalue_hint in rustc.
680}
681
682impl Expectation {
683 /// The expectation that the type of the expression needs to equal the given
684 /// type.
685 fn has_type(ty: Ty) -> Self {
686 Expectation { ty }
687 }
688
689 /// This expresses no expectation on the type.
690 fn none() -> Self {
691 Expectation { ty: Ty::Unknown }
692 }
693}
694
695mod diagnostics {
696 use hir_def::{expr::ExprId, FunctionId, HasSource, Lookup};
697 use hir_expand::diagnostics::DiagnosticSink;
698
699 use crate::{db::HirDatabase, diagnostics::NoSuchField};
700
701 #[derive(Debug, PartialEq, Eq, Clone)]
702 pub(super) enum InferenceDiagnostic {
703 NoSuchField { expr: ExprId, field: usize },
704 }
705
706 impl InferenceDiagnostic {
707 pub(super) fn add_to(
708 &self,
709 db: &impl HirDatabase,
710 owner: FunctionId,
711 sink: &mut DiagnosticSink,
712 ) {
713 match self {
714 InferenceDiagnostic::NoSuchField { expr, field } => {
715 let file = owner.lookup(db).source(db).file_id;
716 let (_, source_map) = db.body_with_source_map(owner.into());
717 let field = source_map.field_syntax(*expr, *field);
718 sink.push(NoSuchField { file, field })
719 }
720 }
721 }
722 }
723}
diff --git a/crates/ra_hir_ty/src/infer/coerce.rs b/crates/ra_hir_ty/src/infer/coerce.rs
new file mode 100644
index 000000000..719a0f395
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer/coerce.rs
@@ -0,0 +1,344 @@
1//! Coercion logic. Coercions are certain type conversions that can implicitly
2//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
3//! like going from `&Vec<T>` to `&[T]`.
4//!
5//! See: https://doc.rust-lang.org/nomicon/coercions.html
6
7use hir_def::{lang_item::LangItemTarget, resolver::Resolver, type_ref::Mutability, AdtId};
8use rustc_hash::FxHashMap;
9use test_utils::tested_by;
10
11use crate::{autoderef, db::HirDatabase, ImplTy, Substs, Ty, TypeCtor, TypeWalk};
12
13use super::{InEnvironment, InferTy, InferenceContext, TypeVarValue};
14
15impl<'a, D: HirDatabase> InferenceContext<'a, D> {
16 /// Unify two types, but may coerce the first one to the second one
17 /// using "implicit coercion rules" if needed.
18 pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
19 let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
20 let to_ty = self.resolve_ty_shallow(to_ty);
21 self.coerce_inner(from_ty, &to_ty)
22 }
23
24 /// Merge two types from different branches, with possible implicit coerce.
25 ///
26 /// Note that it is only possible that one type are coerced to another.
27 /// Coercing both types to another least upper bound type is not possible in rustc,
28 /// which will simply result in "incompatible types" error.
29 pub(super) fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
30 if self.coerce(ty1, ty2) {
31 ty2.clone()
32 } else if self.coerce(ty2, ty1) {
33 ty1.clone()
34 } else {
35 tested_by!(coerce_merge_fail_fallback);
36 // For incompatible types, we use the latter one as result
37 // to be better recovery for `if` without `else`.
38 ty2.clone()
39 }
40 }
41
42 pub(super) fn init_coerce_unsized_map(
43 db: &'a D,
44 resolver: &Resolver,
45 ) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
46 let krate = resolver.krate().unwrap();
47 let impls = match db.lang_item(krate.into(), "coerce_unsized".into()) {
48 Some(LangItemTarget::TraitId(trait_)) => {
49 db.impls_for_trait(krate.into(), trait_.into())
50 }
51 _ => return FxHashMap::default(),
52 };
53
54 impls
55 .iter()
56 .filter_map(|&impl_id| {
57 let trait_ref = match db.impl_ty(impl_id) {
58 ImplTy::TraitRef(it) => it,
59 ImplTy::Inherent(_) => return None,
60 };
61
62 // `CoerseUnsized` has one generic parameter for the target type.
63 let cur_from_ty = trait_ref.substs.0.get(0)?;
64 let cur_to_ty = trait_ref.substs.0.get(1)?;
65
66 match (&cur_from_ty, cur_to_ty) {
67 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
68 // FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
69 // This works for smart-pointer-like coercion, which covers all impls from std.
70 st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
71 match (ty1, ty2) {
72 (Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
73 if p1 != p2 =>
74 {
75 Some(((*ctor1, *ctor2), i))
76 }
77 _ => None,
78 }
79 })
80 }
81 _ => None,
82 }
83 })
84 .collect()
85 }
86
87 fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
88 match (&from_ty, to_ty) {
89 // Never type will make type variable to fallback to Never Type instead of Unknown.
90 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
91 let var = self.new_maybe_never_type_var();
92 self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
93 return true;
94 }
95 (ty_app!(TypeCtor::Never), _) => return true,
96
97 // Trivial cases, this should go after `never` check to
98 // avoid infer result type to be never
99 _ => {
100 if self.unify_inner_trivial(&from_ty, &to_ty) {
101 return true;
102 }
103 }
104 }
105
106 // Pointer weakening and function to pointer
107 match (&mut from_ty, to_ty) {
108 // `*mut T`, `&mut T, `&T`` -> `*const T`
109 // `&mut T` -> `&T`
110 // `&mut T` -> `*mut T`
111 (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
112 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
113 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
114 | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
115 *c1 = *c2;
116 }
117
118 // Illegal mutablity conversion
119 (
120 ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
121 ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
122 )
123 | (
124 ty_app!(TypeCtor::Ref(Mutability::Shared)),
125 ty_app!(TypeCtor::Ref(Mutability::Mut)),
126 ) => return false,
127
128 // `{function_type}` -> `fn()`
129 (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
130 match from_ty.callable_sig(self.db) {
131 None => return false,
132 Some(sig) => {
133 let num_args = sig.params_and_return.len() as u16 - 1;
134 from_ty =
135 Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
136 }
137 }
138 }
139
140 _ => {}
141 }
142
143 if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
144 return ret;
145 }
146
147 // Auto Deref if cannot coerce
148 match (&from_ty, to_ty) {
149 // FIXME: DerefMut
150 (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
151 self.unify_autoderef_behind_ref(&st1[0], &st2[0])
152 }
153
154 // Otherwise, normal unify
155 _ => self.unify(&from_ty, to_ty),
156 }
157 }
158
159 /// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
160 ///
161 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
162 fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
163 let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
164 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
165 _ => return None,
166 };
167
168 let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
169
170 // Check `Unsize` first
171 match self.check_unsize_and_coerce(
172 st1.0.get(coerce_generic_index)?,
173 st2.0.get(coerce_generic_index)?,
174 0,
175 ) {
176 Some(true) => {}
177 ret => return ret,
178 }
179
180 let ret = st1
181 .iter()
182 .zip(st2.iter())
183 .enumerate()
184 .filter(|&(idx, _)| idx != coerce_generic_index)
185 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
186
187 Some(ret)
188 }
189
190 /// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
191 ///
192 /// It should not be directly called. It is only used by `try_coerce_unsized`.
193 ///
194 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
195 fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
196 if depth > 1000 {
197 panic!("Infinite recursion in coercion");
198 }
199
200 match (&from_ty, &to_ty) {
201 // `[T; N]` -> `[T]`
202 (ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
203 Some(self.unify(&st1[0], &st2[0]))
204 }
205
206 // `T` -> `dyn Trait` when `T: Trait`
207 (_, Ty::Dyn(_)) => {
208 // FIXME: Check predicates
209 Some(true)
210 }
211
212 // `(..., T)` -> `(..., U)` when `T: Unsize<U>`
213 (
214 ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
215 ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
216 ) => {
217 if len1 != len2 || *len1 == 0 {
218 return None;
219 }
220
221 match self.check_unsize_and_coerce(
222 st1.last().unwrap(),
223 st2.last().unwrap(),
224 depth + 1,
225 ) {
226 Some(true) => {}
227 ret => return ret,
228 }
229
230 let ret = st1[..st1.len() - 1]
231 .iter()
232 .zip(&st2[..st2.len() - 1])
233 .all(|(ty1, ty2)| self.unify(ty1, ty2));
234
235 Some(ret)
236 }
237
238 // Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
239 // - T: Unsize<U>
240 // - Foo is a struct
241 // - Only the last field of Foo has a type involving T
242 // - T is not part of the type of any other fields
243 // - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
244 (
245 ty_app!(TypeCtor::Adt(AdtId::StructId(struct1)), st1),
246 ty_app!(TypeCtor::Adt(AdtId::StructId(struct2)), st2),
247 ) if struct1 == struct2 => {
248 let field_tys = self.db.field_types((*struct1).into());
249 let struct_data = self.db.struct_data(*struct1);
250
251 let mut fields = struct_data.variant_data.fields().iter();
252 let (last_field_id, _data) = fields.next_back()?;
253
254 // Get the generic parameter involved in the last field.
255 let unsize_generic_index = {
256 let mut index = None;
257 let mut multiple_param = false;
258 field_tys[last_field_id].walk(&mut |ty| match ty {
259 &Ty::Param { idx, .. } => {
260 if index.is_none() {
261 index = Some(idx);
262 } else if Some(idx) != index {
263 multiple_param = true;
264 }
265 }
266 _ => {}
267 });
268
269 if multiple_param {
270 return None;
271 }
272 index?
273 };
274
275 // Check other fields do not involve it.
276 let mut multiple_used = false;
277 fields.for_each(|(field_id, _data)| {
278 field_tys[field_id].walk(&mut |ty| match ty {
279 &Ty::Param { idx, .. } if idx == unsize_generic_index => {
280 multiple_used = true
281 }
282 _ => {}
283 })
284 });
285 if multiple_used {
286 return None;
287 }
288
289 let unsize_generic_index = unsize_generic_index as usize;
290
291 // Check `Unsize` first
292 match self.check_unsize_and_coerce(
293 st1.get(unsize_generic_index)?,
294 st2.get(unsize_generic_index)?,
295 depth + 1,
296 ) {
297 Some(true) => {}
298 ret => return ret,
299 }
300
301 // Then unify other parameters
302 let ret = st1
303 .iter()
304 .zip(st2.iter())
305 .enumerate()
306 .filter(|&(idx, _)| idx != unsize_generic_index)
307 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
308
309 Some(ret)
310 }
311
312 _ => None,
313 }
314 }
315
316 /// Unify `from_ty` to `to_ty` with optional auto Deref
317 ///
318 /// Note that the parameters are already stripped the outer reference.
319 fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
320 let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
321 let to_ty = self.resolve_ty_shallow(&to_ty);
322 // FIXME: Auto DerefMut
323 for derefed_ty in autoderef::autoderef(
324 self.db,
325 self.resolver.krate(),
326 InEnvironment {
327 value: canonicalized.value.clone(),
328 environment: self.trait_env.clone(),
329 },
330 ) {
331 let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
332 match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
333 // Stop when constructor matches.
334 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
335 // It will not recurse to `coerce`.
336 return self.unify_substs(st1, st2, 0);
337 }
338 _ => {}
339 }
340 }
341
342 false
343 }
344}
diff --git a/crates/ra_hir_ty/src/infer/expr.rs b/crates/ra_hir_ty/src/infer/expr.rs
new file mode 100644
index 000000000..2f9ca4bbb
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer/expr.rs
@@ -0,0 +1,686 @@
1//! Type inference for expressions.
2
3use std::iter::{repeat, repeat_with};
4use std::sync::Arc;
5
6use hir_def::{
7 builtin_type::Signedness,
8 expr::{Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
9 generics::GenericParams,
10 path::{GenericArg, GenericArgs},
11 resolver::resolver_for_expr,
12 AdtId, ContainerId, Lookup, StructFieldId,
13};
14use hir_expand::name::{self, Name};
15
16use crate::{
17 autoderef, db::HirDatabase, method_resolution, op, traits::InEnvironment, utils::variant_data,
18 CallableDef, InferTy, IntTy, Mutability, Obligation, ProjectionPredicate, ProjectionTy, Substs,
19 TraitRef, Ty, TypeCtor, TypeWalk, Uncertain,
20};
21
22use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
23
24impl<'a, D: HirDatabase> InferenceContext<'a, D> {
25 pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
26 let ty = self.infer_expr_inner(tgt_expr, expected);
27 let could_unify = self.unify(&ty, &expected.ty);
28 if !could_unify {
29 self.result.type_mismatches.insert(
30 tgt_expr,
31 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
32 );
33 }
34 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
35 ty
36 }
37
38 /// Infer type of expression with possibly implicit coerce to the expected type.
39 /// Return the type after possible coercion.
40 fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
41 let ty = self.infer_expr_inner(expr, &expected);
42 let ty = if !self.coerce(&ty, &expected.ty) {
43 self.result
44 .type_mismatches
45 .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
46 // Return actual type when type mismatch.
47 // This is needed for diagnostic when return type mismatch.
48 ty
49 } else if expected.ty == Ty::Unknown {
50 ty
51 } else {
52 expected.ty.clone()
53 };
54
55 self.resolve_ty_as_possible(&mut vec![], ty)
56 }
57
58 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
59 let body = Arc::clone(&self.body); // avoid borrow checker problem
60 let ty = match &body[tgt_expr] {
61 Expr::Missing => Ty::Unknown,
62 Expr::If { condition, then_branch, else_branch } => {
63 // if let is desugared to match, so this is always simple if
64 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
65
66 let then_ty = self.infer_expr_inner(*then_branch, &expected);
67 let else_ty = match else_branch {
68 Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
69 None => Ty::unit(),
70 };
71
72 self.coerce_merge_branch(&then_ty, &else_ty)
73 }
74 Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
75 Expr::TryBlock { body } => {
76 let _inner = self.infer_expr(*body, expected);
77 // FIXME should be std::result::Result<{inner}, _>
78 Ty::Unknown
79 }
80 Expr::Loop { body } => {
81 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
82 // FIXME handle break with value
83 Ty::simple(TypeCtor::Never)
84 }
85 Expr::While { condition, body } => {
86 // while let is desugared to a match loop, so this is always simple while
87 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
88 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
89 Ty::unit()
90 }
91 Expr::For { iterable, body, pat } => {
92 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
93
94 let pat_ty = match self.resolve_into_iter_item() {
95 Some(into_iter_item_alias) => {
96 let pat_ty = self.new_type_var();
97 let projection = ProjectionPredicate {
98 ty: pat_ty.clone(),
99 projection_ty: ProjectionTy {
100 associated_ty: into_iter_item_alias,
101 parameters: Substs::single(iterable_ty),
102 },
103 };
104 self.obligations.push(Obligation::Projection(projection));
105 self.resolve_ty_as_possible(&mut vec![], pat_ty)
106 }
107 None => Ty::Unknown,
108 };
109
110 self.infer_pat(*pat, &pat_ty, BindingMode::default());
111 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
112 Ty::unit()
113 }
114 Expr::Lambda { body, args, arg_types } => {
115 assert_eq!(args.len(), arg_types.len());
116
117 let mut sig_tys = Vec::new();
118
119 for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
120 let expected = if let Some(type_ref) = arg_type {
121 self.make_ty(type_ref)
122 } else {
123 Ty::Unknown
124 };
125 let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
126 sig_tys.push(arg_ty);
127 }
128
129 // add return type
130 let ret_ty = self.new_type_var();
131 sig_tys.push(ret_ty.clone());
132 let sig_ty = Ty::apply(
133 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
134 Substs(sig_tys.into()),
135 );
136 let closure_ty = Ty::apply_one(
137 TypeCtor::Closure { def: self.owner.into(), expr: tgt_expr },
138 sig_ty,
139 );
140
141 // Eagerly try to relate the closure type with the expected
142 // type, otherwise we often won't have enough information to
143 // infer the body.
144 self.coerce(&closure_ty, &expected.ty);
145
146 self.infer_expr(*body, &Expectation::has_type(ret_ty));
147 closure_ty
148 }
149 Expr::Call { callee, args } => {
150 let callee_ty = self.infer_expr(*callee, &Expectation::none());
151 let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
152 Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
153 None => {
154 // Not callable
155 // FIXME: report an error
156 (Vec::new(), Ty::Unknown)
157 }
158 };
159 self.register_obligations_for_call(&callee_ty);
160 self.check_call_arguments(args, &param_tys);
161 let ret_ty = self.normalize_associated_types_in(ret_ty);
162 ret_ty
163 }
164 Expr::MethodCall { receiver, args, method_name, generic_args } => self
165 .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
166 Expr::Match { expr, arms } => {
167 let input_ty = self.infer_expr(*expr, &Expectation::none());
168
169 let mut result_ty = self.new_maybe_never_type_var();
170
171 for arm in arms {
172 for &pat in &arm.pats {
173 let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
174 }
175 if let Some(guard_expr) = arm.guard {
176 self.infer_expr(
177 guard_expr,
178 &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
179 );
180 }
181
182 let arm_ty = self.infer_expr_inner(arm.expr, &expected);
183 result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
184 }
185
186 result_ty
187 }
188 Expr::Path(p) => {
189 // FIXME this could be more efficient...
190 let resolver = resolver_for_expr(self.db, self.owner.into(), tgt_expr);
191 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
192 }
193 Expr::Continue => Ty::simple(TypeCtor::Never),
194 Expr::Break { expr } => {
195 if let Some(expr) = expr {
196 // FIXME handle break with value
197 self.infer_expr(*expr, &Expectation::none());
198 }
199 Ty::simple(TypeCtor::Never)
200 }
201 Expr::Return { expr } => {
202 if let Some(expr) = expr {
203 self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
204 }
205 Ty::simple(TypeCtor::Never)
206 }
207 Expr::RecordLit { path, fields, spread } => {
208 let (ty, def_id) = self.resolve_variant(path.as_ref());
209 if let Some(variant) = def_id {
210 self.write_variant_resolution(tgt_expr.into(), variant);
211 }
212
213 self.unify(&ty, &expected.ty);
214
215 let substs = ty.substs().unwrap_or_else(Substs::empty);
216 let field_types =
217 def_id.map(|it| self.db.field_types(it.into())).unwrap_or_default();
218 let variant_data = def_id.map(|it| variant_data(self.db, it));
219 for (field_idx, field) in fields.iter().enumerate() {
220 let field_def =
221 variant_data.as_ref().and_then(|it| match it.field(&field.name) {
222 Some(local_id) => {
223 Some(StructFieldId { parent: def_id.unwrap(), local_id })
224 }
225 None => {
226 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
227 expr: tgt_expr,
228 field: field_idx,
229 });
230 None
231 }
232 });
233 if let Some(field_def) = field_def {
234 self.result.record_field_resolutions.insert(field.expr, field_def);
235 }
236 let field_ty = field_def
237 .map_or(Ty::Unknown, |it| field_types[it.local_id].clone())
238 .subst(&substs);
239 self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
240 }
241 if let Some(expr) = spread {
242 self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
243 }
244 ty
245 }
246 Expr::Field { expr, name } => {
247 let receiver_ty = self.infer_expr(*expr, &Expectation::none());
248 let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
249 let ty = autoderef::autoderef(
250 self.db,
251 self.resolver.krate(),
252 InEnvironment {
253 value: canonicalized.value.clone(),
254 environment: self.trait_env.clone(),
255 },
256 )
257 .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
258 Ty::Apply(a_ty) => match a_ty.ctor {
259 TypeCtor::Tuple { .. } => name
260 .as_tuple_index()
261 .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
262 TypeCtor::Adt(AdtId::StructId(s)) => {
263 self.db.struct_data(s).variant_data.field(name).map(|local_id| {
264 let field = StructFieldId { parent: s.into(), local_id }.into();
265 self.write_field_resolution(tgt_expr, field);
266 self.db.field_types(s.into())[field.local_id]
267 .clone()
268 .subst(&a_ty.parameters)
269 })
270 }
271 // FIXME:
272 TypeCtor::Adt(AdtId::UnionId(_)) => None,
273 _ => None,
274 },
275 _ => None,
276 })
277 .unwrap_or(Ty::Unknown);
278 let ty = self.insert_type_vars(ty);
279 self.normalize_associated_types_in(ty)
280 }
281 Expr::Await { expr } => {
282 let inner_ty = self.infer_expr(*expr, &Expectation::none());
283 let ty = match self.resolve_future_future_output() {
284 Some(future_future_output_alias) => {
285 let ty = self.new_type_var();
286 let projection = ProjectionPredicate {
287 ty: ty.clone(),
288 projection_ty: ProjectionTy {
289 associated_ty: future_future_output_alias,
290 parameters: Substs::single(inner_ty),
291 },
292 };
293 self.obligations.push(Obligation::Projection(projection));
294 self.resolve_ty_as_possible(&mut vec![], ty)
295 }
296 None => Ty::Unknown,
297 };
298 ty
299 }
300 Expr::Try { expr } => {
301 let inner_ty = self.infer_expr(*expr, &Expectation::none());
302 let ty = match self.resolve_ops_try_ok() {
303 Some(ops_try_ok_alias) => {
304 let ty = self.new_type_var();
305 let projection = ProjectionPredicate {
306 ty: ty.clone(),
307 projection_ty: ProjectionTy {
308 associated_ty: ops_try_ok_alias,
309 parameters: Substs::single(inner_ty),
310 },
311 };
312 self.obligations.push(Obligation::Projection(projection));
313 self.resolve_ty_as_possible(&mut vec![], ty)
314 }
315 None => Ty::Unknown,
316 };
317 ty
318 }
319 Expr::Cast { expr, type_ref } => {
320 let _inner_ty = self.infer_expr(*expr, &Expectation::none());
321 let cast_ty = self.make_ty(type_ref);
322 // FIXME check the cast...
323 cast_ty
324 }
325 Expr::Ref { expr, mutability } => {
326 let expectation =
327 if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
328 if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
329 // FIXME: throw type error - expected mut reference but found shared ref,
330 // which cannot be coerced
331 }
332 Expectation::has_type(Ty::clone(exp_inner))
333 } else {
334 Expectation::none()
335 };
336 // FIXME reference coercions etc.
337 let inner_ty = self.infer_expr(*expr, &expectation);
338 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
339 }
340 Expr::Box { expr } => {
341 let inner_ty = self.infer_expr(*expr, &Expectation::none());
342 if let Some(box_) = self.resolve_boxed_box() {
343 Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
344 } else {
345 Ty::Unknown
346 }
347 }
348 Expr::UnaryOp { expr, op } => {
349 let inner_ty = self.infer_expr(*expr, &Expectation::none());
350 match op {
351 UnaryOp::Deref => match self.resolver.krate() {
352 Some(krate) => {
353 let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
354 match autoderef::deref(
355 self.db,
356 krate,
357 InEnvironment {
358 value: &canonicalized.value,
359 environment: self.trait_env.clone(),
360 },
361 ) {
362 Some(derefed_ty) => {
363 canonicalized.decanonicalize_ty(derefed_ty.value)
364 }
365 None => Ty::Unknown,
366 }
367 }
368 None => Ty::Unknown,
369 },
370 UnaryOp::Neg => {
371 match &inner_ty {
372 Ty::Apply(a_ty) => match a_ty.ctor {
373 TypeCtor::Int(Uncertain::Unknown)
374 | TypeCtor::Int(Uncertain::Known(IntTy {
375 signedness: Signedness::Signed,
376 ..
377 }))
378 | TypeCtor::Float(..) => inner_ty,
379 _ => Ty::Unknown,
380 },
381 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
382 inner_ty
383 }
384 // FIXME: resolve ops::Neg trait
385 _ => Ty::Unknown,
386 }
387 }
388 UnaryOp::Not => {
389 match &inner_ty {
390 Ty::Apply(a_ty) => match a_ty.ctor {
391 TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
392 _ => Ty::Unknown,
393 },
394 Ty::Infer(InferTy::IntVar(..)) => inner_ty,
395 // FIXME: resolve ops::Not trait for inner_ty
396 _ => Ty::Unknown,
397 }
398 }
399 }
400 }
401 Expr::BinaryOp { lhs, rhs, op } => match op {
402 Some(op) => {
403 let lhs_expectation = match op {
404 BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
405 _ => Expectation::none(),
406 };
407 let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
408 // FIXME: find implementation of trait corresponding to operation
409 // symbol and resolve associated `Output` type
410 let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
411 let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
412
413 // FIXME: similar as above, return ty is often associated trait type
414 op::binary_op_return_ty(*op, rhs_ty)
415 }
416 _ => Ty::Unknown,
417 },
418 Expr::Index { base, index } => {
419 let _base_ty = self.infer_expr(*base, &Expectation::none());
420 let _index_ty = self.infer_expr(*index, &Expectation::none());
421 // FIXME: use `std::ops::Index::Output` to figure out the real return type
422 Ty::Unknown
423 }
424 Expr::Tuple { exprs } => {
425 let mut tys = match &expected.ty {
426 ty_app!(TypeCtor::Tuple { .. }, st) => st
427 .iter()
428 .cloned()
429 .chain(repeat_with(|| self.new_type_var()))
430 .take(exprs.len())
431 .collect::<Vec<_>>(),
432 _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
433 };
434
435 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
436 self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
437 }
438
439 Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
440 }
441 Expr::Array(array) => {
442 let elem_ty = match &expected.ty {
443 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
444 st.as_single().clone()
445 }
446 _ => self.new_type_var(),
447 };
448
449 match array {
450 Array::ElementList(items) => {
451 for expr in items.iter() {
452 self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
453 }
454 }
455 Array::Repeat { initializer, repeat } => {
456 self.infer_expr_coerce(
457 *initializer,
458 &Expectation::has_type(elem_ty.clone()),
459 );
460 self.infer_expr(
461 *repeat,
462 &Expectation::has_type(Ty::simple(TypeCtor::Int(Uncertain::Known(
463 IntTy::usize(),
464 )))),
465 );
466 }
467 }
468
469 Ty::apply_one(TypeCtor::Array, elem_ty)
470 }
471 Expr::Literal(lit) => match lit {
472 Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
473 Literal::String(..) => {
474 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
475 }
476 Literal::ByteString(..) => {
477 let byte_type = Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::u8())));
478 let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
479 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
480 }
481 Literal::Char(..) => Ty::simple(TypeCtor::Char),
482 Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int((*ty).into())),
483 Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float((*ty).into())),
484 },
485 };
486 // use a new type variable if we got Ty::Unknown here
487 let ty = self.insert_type_vars_shallow(ty);
488 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
489 self.write_expr_ty(tgt_expr, ty.clone());
490 ty
491 }
492
493 fn infer_block(
494 &mut self,
495 statements: &[Statement],
496 tail: Option<ExprId>,
497 expected: &Expectation,
498 ) -> Ty {
499 let mut diverges = false;
500 for stmt in statements {
501 match stmt {
502 Statement::Let { pat, type_ref, initializer } => {
503 let decl_ty =
504 type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
505
506 // Always use the declared type when specified
507 let mut ty = decl_ty.clone();
508
509 if let Some(expr) = initializer {
510 let actual_ty =
511 self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
512 if decl_ty == Ty::Unknown {
513 ty = actual_ty;
514 }
515 }
516
517 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
518 self.infer_pat(*pat, &ty, BindingMode::default());
519 }
520 Statement::Expr(expr) => {
521 if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
522 diverges = true;
523 }
524 }
525 }
526 }
527
528 let ty = if let Some(expr) = tail {
529 self.infer_expr_coerce(expr, expected)
530 } else {
531 self.coerce(&Ty::unit(), &expected.ty);
532 Ty::unit()
533 };
534 if diverges {
535 Ty::simple(TypeCtor::Never)
536 } else {
537 ty
538 }
539 }
540
541 fn infer_method_call(
542 &mut self,
543 tgt_expr: ExprId,
544 receiver: ExprId,
545 args: &[ExprId],
546 method_name: &Name,
547 generic_args: Option<&GenericArgs>,
548 ) -> Ty {
549 let receiver_ty = self.infer_expr(receiver, &Expectation::none());
550 let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
551 let resolved = method_resolution::lookup_method(
552 &canonicalized_receiver.value,
553 self.db,
554 method_name,
555 &self.resolver,
556 );
557 let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
558 Some((ty, func)) => {
559 let ty = canonicalized_receiver.decanonicalize_ty(ty);
560 self.write_method_resolution(tgt_expr, func);
561 (ty, self.db.value_ty(func.into()), Some(self.db.generic_params(func.into())))
562 }
563 None => (receiver_ty, Ty::Unknown, None),
564 };
565 let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
566 let method_ty = method_ty.apply_substs(substs);
567 let method_ty = self.insert_type_vars(method_ty);
568 self.register_obligations_for_call(&method_ty);
569 let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
570 Some(sig) => {
571 if !sig.params().is_empty() {
572 (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
573 } else {
574 (Ty::Unknown, Vec::new(), sig.ret().clone())
575 }
576 }
577 None => (Ty::Unknown, Vec::new(), Ty::Unknown),
578 };
579 // Apply autoref so the below unification works correctly
580 // FIXME: return correct autorefs from lookup_method
581 let actual_receiver_ty = match expected_receiver_ty.as_reference() {
582 Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
583 _ => derefed_receiver_ty,
584 };
585 self.unify(&expected_receiver_ty, &actual_receiver_ty);
586
587 self.check_call_arguments(args, &param_tys);
588 let ret_ty = self.normalize_associated_types_in(ret_ty);
589 ret_ty
590 }
591
592 fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
593 // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
594 // We do this in a pretty awful way: first we type-check any arguments
595 // that are not closures, then we type-check the closures. This is so
596 // that we have more information about the types of arguments when we
597 // type-check the functions. This isn't really the right way to do this.
598 for &check_closures in &[false, true] {
599 let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
600 for (&arg, param_ty) in args.iter().zip(param_iter) {
601 let is_closure = match &self.body[arg] {
602 Expr::Lambda { .. } => true,
603 _ => false,
604 };
605
606 if is_closure != check_closures {
607 continue;
608 }
609
610 let param_ty = self.normalize_associated_types_in(param_ty);
611 self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
612 }
613 }
614 }
615
616 fn substs_for_method_call(
617 &mut self,
618 def_generics: Option<Arc<GenericParams>>,
619 generic_args: Option<&GenericArgs>,
620 receiver_ty: &Ty,
621 ) -> Substs {
622 let (parent_param_count, param_count) =
623 def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
624 let mut substs = Vec::with_capacity(parent_param_count + param_count);
625 // Parent arguments are unknown, except for the receiver type
626 if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
627 for param in &parent_generics.params {
628 if param.name == name::SELF_TYPE {
629 substs.push(receiver_ty.clone());
630 } else {
631 substs.push(Ty::Unknown);
632 }
633 }
634 }
635 // handle provided type arguments
636 if let Some(generic_args) = generic_args {
637 // if args are provided, it should be all of them, but we can't rely on that
638 for arg in generic_args.args.iter().take(param_count) {
639 match arg {
640 GenericArg::Type(type_ref) => {
641 let ty = self.make_ty(type_ref);
642 substs.push(ty);
643 }
644 }
645 }
646 };
647 let supplied_params = substs.len();
648 for _ in supplied_params..parent_param_count + param_count {
649 substs.push(Ty::Unknown);
650 }
651 assert_eq!(substs.len(), parent_param_count + param_count);
652 Substs(substs.into())
653 }
654
655 fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
656 if let Ty::Apply(a_ty) = callable_ty {
657 if let TypeCtor::FnDef(def) = a_ty.ctor {
658 let generic_predicates = self.db.generic_predicates(def.into());
659 for predicate in generic_predicates.iter() {
660 let predicate = predicate.clone().subst(&a_ty.parameters);
661 if let Some(obligation) = Obligation::from_predicate(predicate) {
662 self.obligations.push(obligation);
663 }
664 }
665 // add obligation for trait implementation, if this is a trait method
666 match def {
667 CallableDef::FunctionId(f) => {
668 if let ContainerId::TraitId(trait_) = f.lookup(self.db).container {
669 // construct a TraitDef
670 let substs = a_ty.parameters.prefix(
671 self.db
672 .generic_params(trait_.into())
673 .count_params_including_parent(),
674 );
675 self.obligations.push(Obligation::Trait(TraitRef {
676 trait_: trait_.into(),
677 substs,
678 }));
679 }
680 }
681 CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {}
682 }
683 }
684 }
685 }
686}
diff --git a/crates/ra_hir_ty/src/infer/pat.rs b/crates/ra_hir_ty/src/infer/pat.rs
new file mode 100644
index 000000000..1ebb36239
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer/pat.rs
@@ -0,0 +1,186 @@
1//! Type inference for patterns.
2
3use std::iter::repeat;
4use std::sync::Arc;
5
6use hir_def::{
7 expr::{BindingAnnotation, Pat, PatId, RecordFieldPat},
8 path::Path,
9 type_ref::Mutability,
10};
11use hir_expand::name::Name;
12use test_utils::tested_by;
13
14use super::{BindingMode, InferenceContext};
15use crate::{db::HirDatabase, utils::variant_data, Substs, Ty, TypeCtor, TypeWalk};
16
17impl<'a, D: HirDatabase> InferenceContext<'a, D> {
18 fn infer_tuple_struct_pat(
19 &mut self,
20 path: Option<&Path>,
21 subpats: &[PatId],
22 expected: &Ty,
23 default_bm: BindingMode,
24 ) -> Ty {
25 let (ty, def) = self.resolve_variant(path);
26 let var_data = def.map(|it| variant_data(self.db, it));
27 self.unify(&ty, expected);
28
29 let substs = ty.substs().unwrap_or_else(Substs::empty);
30
31 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
32
33 for (i, &subpat) in subpats.iter().enumerate() {
34 let expected_ty = var_data
35 .as_ref()
36 .and_then(|d| d.field(&Name::new_tuple_field(i)))
37 .map_or(Ty::Unknown, |field| field_tys[field].clone())
38 .subst(&substs);
39 let expected_ty = self.normalize_associated_types_in(expected_ty);
40 self.infer_pat(subpat, &expected_ty, default_bm);
41 }
42
43 ty
44 }
45
46 fn infer_record_pat(
47 &mut self,
48 path: Option<&Path>,
49 subpats: &[RecordFieldPat],
50 expected: &Ty,
51 default_bm: BindingMode,
52 id: PatId,
53 ) -> Ty {
54 let (ty, def) = self.resolve_variant(path);
55 let var_data = def.map(|it| variant_data(self.db, it));
56 if let Some(variant) = def {
57 self.write_variant_resolution(id.into(), variant);
58 }
59
60 self.unify(&ty, expected);
61
62 let substs = ty.substs().unwrap_or_else(Substs::empty);
63
64 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
65 for subpat in subpats {
66 let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name));
67 let expected_ty =
68 matching_field.map_or(Ty::Unknown, |field| field_tys[field].clone()).subst(&substs);
69 let expected_ty = self.normalize_associated_types_in(expected_ty);
70 self.infer_pat(subpat.pat, &expected_ty, default_bm);
71 }
72
73 ty
74 }
75
76 pub(super) fn infer_pat(
77 &mut self,
78 pat: PatId,
79 mut expected: &Ty,
80 mut default_bm: BindingMode,
81 ) -> Ty {
82 let body = Arc::clone(&self.body); // avoid borrow checker problem
83
84 let is_non_ref_pat = match &body[pat] {
85 Pat::Tuple(..)
86 | Pat::TupleStruct { .. }
87 | Pat::Record { .. }
88 | Pat::Range { .. }
89 | Pat::Slice { .. } => true,
90 // FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
91 Pat::Path(..) | Pat::Lit(..) => true,
92 Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
93 };
94 if is_non_ref_pat {
95 while let Some((inner, mutability)) = expected.as_reference() {
96 expected = inner;
97 default_bm = match default_bm {
98 BindingMode::Move => BindingMode::Ref(mutability),
99 BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
100 BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
101 }
102 }
103 } else if let Pat::Ref { .. } = &body[pat] {
104 tested_by!(match_ergonomics_ref);
105 // When you encounter a `&pat` pattern, reset to Move.
106 // This is so that `w` is by value: `let (_, &w) = &(1, &2);`
107 default_bm = BindingMode::Move;
108 }
109
110 // Lose mutability.
111 let default_bm = default_bm;
112 let expected = expected;
113
114 let ty = match &body[pat] {
115 Pat::Tuple(ref args) => {
116 let expectations = match expected.as_tuple() {
117 Some(parameters) => &*parameters.0,
118 _ => &[],
119 };
120 let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
121
122 let inner_tys = args
123 .iter()
124 .zip(expectations_iter)
125 .map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
126 .collect();
127
128 Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
129 }
130 Pat::Ref { pat, mutability } => {
131 let expectation = match expected.as_reference() {
132 Some((inner_ty, exp_mut)) => {
133 if *mutability != exp_mut {
134 // FIXME: emit type error?
135 }
136 inner_ty
137 }
138 _ => &Ty::Unknown,
139 };
140 let subty = self.infer_pat(*pat, expectation, default_bm);
141 Ty::apply_one(TypeCtor::Ref(*mutability), subty)
142 }
143 Pat::TupleStruct { path: p, args: subpats } => {
144 self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
145 }
146 Pat::Record { path: p, args: fields } => {
147 self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
148 }
149 Pat::Path(path) => {
150 // FIXME use correct resolver for the surrounding expression
151 let resolver = self.resolver.clone();
152 self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
153 }
154 Pat::Bind { mode, name: _, subpat } => {
155 let mode = if mode == &BindingAnnotation::Unannotated {
156 default_bm
157 } else {
158 BindingMode::convert(*mode)
159 };
160 let inner_ty = if let Some(subpat) = subpat {
161 self.infer_pat(*subpat, expected, default_bm)
162 } else {
163 expected.clone()
164 };
165 let inner_ty = self.insert_type_vars_shallow(inner_ty);
166
167 let bound_ty = match mode {
168 BindingMode::Ref(mutability) => {
169 Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
170 }
171 BindingMode::Move => inner_ty.clone(),
172 };
173 let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
174 self.write_pat_ty(pat, bound_ty);
175 return inner_ty;
176 }
177 _ => Ty::Unknown,
178 };
179 // use a new type variable if we got Ty::Unknown here
180 let ty = self.insert_type_vars_shallow(ty);
181 self.unify(&ty, expected);
182 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
183 self.write_pat_ty(pat, ty.clone());
184 ty
185 }
186}
diff --git a/crates/ra_hir_ty/src/infer/path.rs b/crates/ra_hir_ty/src/infer/path.rs
new file mode 100644
index 000000000..14be66836
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer/path.rs
@@ -0,0 +1,268 @@
1//! Path expression resolution.
2
3use hir_def::{
4 path::{Path, PathKind, PathSegment},
5 resolver::{ResolveValueResult, Resolver, TypeNs, ValueNs},
6 AssocItemId, ContainerId, Lookup,
7};
8use hir_expand::name::Name;
9
10use crate::{db::HirDatabase, method_resolution, Substs, Ty, TypeWalk, ValueTyDefId};
11
12use super::{ExprOrPatId, InferenceContext, TraitRef};
13
14impl<'a, D: HirDatabase> InferenceContext<'a, D> {
15 pub(super) fn infer_path(
16 &mut self,
17 resolver: &Resolver,
18 path: &Path,
19 id: ExprOrPatId,
20 ) -> Option<Ty> {
21 let ty = self.resolve_value_path(resolver, path, id)?;
22 let ty = self.insert_type_vars(ty);
23 let ty = self.normalize_associated_types_in(ty);
24 Some(ty)
25 }
26
27 fn resolve_value_path(
28 &mut self,
29 resolver: &Resolver,
30 path: &Path,
31 id: ExprOrPatId,
32 ) -> Option<Ty> {
33 let (value, self_subst) = if let PathKind::Type(type_ref) = &path.kind {
34 if path.segments.is_empty() {
35 // This can't actually happen syntax-wise
36 return None;
37 }
38 let ty = self.make_ty(type_ref);
39 let remaining_segments_for_ty = &path.segments[..path.segments.len() - 1];
40 let ty = Ty::from_type_relative_path(self.db, resolver, ty, remaining_segments_for_ty);
41 self.resolve_ty_assoc_item(
42 ty,
43 &path.segments.last().expect("path had at least one segment").name,
44 id,
45 )?
46 } else {
47 let value_or_partial = resolver.resolve_path_in_value_ns(self.db, &path)?;
48
49 match value_or_partial {
50 ResolveValueResult::ValueNs(it) => (it, None),
51 ResolveValueResult::Partial(def, remaining_index) => {
52 self.resolve_assoc_item(def, path, remaining_index, id)?
53 }
54 }
55 };
56
57 let typable: ValueTyDefId = match value {
58 ValueNs::LocalBinding(pat) => {
59 let ty = self.result.type_of_pat.get(pat)?.clone();
60 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
61 return Some(ty);
62 }
63 ValueNs::FunctionId(it) => it.into(),
64 ValueNs::ConstId(it) => it.into(),
65 ValueNs::StaticId(it) => it.into(),
66 ValueNs::StructId(it) => it.into(),
67 ValueNs::EnumVariantId(it) => it.into(),
68 };
69
70 let mut ty = self.db.value_ty(typable);
71 if let Some(self_subst) = self_subst {
72 ty = ty.subst(&self_subst);
73 }
74 let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
75 let ty = ty.subst(&substs);
76 Some(ty)
77 }
78
79 fn resolve_assoc_item(
80 &mut self,
81 def: TypeNs,
82 path: &Path,
83 remaining_index: usize,
84 id: ExprOrPatId,
85 ) -> Option<(ValueNs, Option<Substs>)> {
86 assert!(remaining_index < path.segments.len());
87 // there may be more intermediate segments between the resolved one and
88 // the end. Only the last segment needs to be resolved to a value; from
89 // the segments before that, we need to get either a type or a trait ref.
90
91 let resolved_segment = &path.segments[remaining_index - 1];
92 let remaining_segments = &path.segments[remaining_index..];
93 let is_before_last = remaining_segments.len() == 1;
94
95 match (def, is_before_last) {
96 (TypeNs::TraitId(trait_), true) => {
97 let segment =
98 remaining_segments.last().expect("there should be at least one segment here");
99 let trait_ref = TraitRef::from_resolved_path(
100 self.db,
101 &self.resolver,
102 trait_.into(),
103 resolved_segment,
104 None,
105 );
106 self.resolve_trait_assoc_item(trait_ref, segment, id)
107 }
108 (def, _) => {
109 // Either we already have a type (e.g. `Vec::new`), or we have a
110 // trait but it's not the last segment, so the next segment
111 // should resolve to an associated type of that trait (e.g. `<T
112 // as Iterator>::Item::default`)
113 let remaining_segments_for_ty = &remaining_segments[..remaining_segments.len() - 1];
114 let ty = Ty::from_partly_resolved_hir_path(
115 self.db,
116 &self.resolver,
117 def,
118 resolved_segment,
119 remaining_segments_for_ty,
120 );
121 if let Ty::Unknown = ty {
122 return None;
123 }
124
125 let ty = self.insert_type_vars(ty);
126 let ty = self.normalize_associated_types_in(ty);
127
128 let segment =
129 remaining_segments.last().expect("there should be at least one segment here");
130
131 self.resolve_ty_assoc_item(ty, &segment.name, id)
132 }
133 }
134 }
135
136 fn resolve_trait_assoc_item(
137 &mut self,
138 trait_ref: TraitRef,
139 segment: &PathSegment,
140 id: ExprOrPatId,
141 ) -> Option<(ValueNs, Option<Substs>)> {
142 let trait_ = trait_ref.trait_;
143 let item = self
144 .db
145 .trait_data(trait_)
146 .items
147 .iter()
148 .map(|(_name, id)| (*id).into())
149 .find_map(|item| match item {
150 AssocItemId::FunctionId(func) => {
151 if segment.name == self.db.function_data(func).name {
152 Some(AssocItemId::FunctionId(func))
153 } else {
154 None
155 }
156 }
157
158 AssocItemId::ConstId(konst) => {
159 if self.db.const_data(konst).name.as_ref().map_or(false, |n| n == &segment.name)
160 {
161 Some(AssocItemId::ConstId(konst))
162 } else {
163 None
164 }
165 }
166 AssocItemId::TypeAliasId(_) => None,
167 })?;
168 let def = match item {
169 AssocItemId::FunctionId(f) => ValueNs::FunctionId(f),
170 AssocItemId::ConstId(c) => ValueNs::ConstId(c),
171 AssocItemId::TypeAliasId(_) => unreachable!(),
172 };
173 let substs = Substs::build_for_def(self.db, item)
174 .use_parent_substs(&trait_ref.substs)
175 .fill_with_params()
176 .build();
177
178 self.write_assoc_resolution(id, item);
179 Some((def, Some(substs)))
180 }
181
182 fn resolve_ty_assoc_item(
183 &mut self,
184 ty: Ty,
185 name: &Name,
186 id: ExprOrPatId,
187 ) -> Option<(ValueNs, Option<Substs>)> {
188 if let Ty::Unknown = ty {
189 return None;
190 }
191
192 let canonical_ty = self.canonicalizer().canonicalize_ty(ty.clone());
193
194 method_resolution::iterate_method_candidates(
195 &canonical_ty.value,
196 self.db,
197 &self.resolver.clone(),
198 Some(name),
199 method_resolution::LookupMode::Path,
200 move |_ty, item| {
201 let (def, container) = match item {
202 AssocItemId::FunctionId(f) => {
203 (ValueNs::FunctionId(f), f.lookup(self.db).container)
204 }
205 AssocItemId::ConstId(c) => (ValueNs::ConstId(c), c.lookup(self.db).container),
206 AssocItemId::TypeAliasId(_) => unreachable!(),
207 };
208 let substs = match container {
209 ContainerId::ImplId(_) => self.find_self_types(&def, ty.clone()),
210 ContainerId::TraitId(trait_) => {
211 // we're picking this method
212 let trait_substs = Substs::build_for_def(self.db, trait_)
213 .push(ty.clone())
214 .fill(std::iter::repeat_with(|| self.new_type_var()))
215 .build();
216 let substs = Substs::build_for_def(self.db, item)
217 .use_parent_substs(&trait_substs)
218 .fill_with_params()
219 .build();
220 self.obligations.push(super::Obligation::Trait(TraitRef {
221 trait_,
222 substs: trait_substs,
223 }));
224 Some(substs)
225 }
226 ContainerId::ModuleId(_) => None,
227 };
228
229 self.write_assoc_resolution(id, item.into());
230 Some((def, substs))
231 },
232 )
233 }
234
235 fn find_self_types(&self, def: &ValueNs, actual_def_ty: Ty) -> Option<Substs> {
236 if let ValueNs::FunctionId(func) = *def {
237 // We only do the infer if parent has generic params
238 let gen = self.db.generic_params(func.into());
239 if gen.count_parent_params() == 0 {
240 return None;
241 }
242
243 let impl_id = match func.lookup(self.db).container {
244 ContainerId::ImplId(it) => it,
245 _ => return None,
246 };
247 let self_ty = self.db.impl_ty(impl_id).self_type().clone();
248 let self_ty_substs = self_ty.substs()?;
249 let actual_substs = actual_def_ty.substs()?;
250
251 let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
252
253 // The following code *link up* the function actual parma type
254 // and impl_block type param index
255 self_ty_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
256 if let Ty::Param { idx, .. } = param {
257 if let Some(s) = new_substs.get_mut(*idx as usize) {
258 *s = pty.clone();
259 }
260 }
261 });
262
263 Some(Substs(new_substs.into()))
264 } else {
265 None
266 }
267 }
268}
diff --git a/crates/ra_hir_ty/src/infer/unify.rs b/crates/ra_hir_ty/src/infer/unify.rs
new file mode 100644
index 000000000..f3a875678
--- /dev/null
+++ b/crates/ra_hir_ty/src/infer/unify.rs
@@ -0,0 +1,162 @@
1//! Unification and canonicalization logic.
2
3use super::{InferenceContext, Obligation};
4use crate::{
5 db::HirDatabase, utils::make_mut_slice, Canonical, InEnvironment, InferTy, ProjectionPredicate,
6 ProjectionTy, Substs, TraitRef, Ty, TypeWalk,
7};
8
9impl<'a, D: HirDatabase> InferenceContext<'a, D> {
10 pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
11 where
12 'a: 'b,
13 {
14 Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
15 }
16}
17
18pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
19where
20 'a: 'b,
21{
22 ctx: &'b mut InferenceContext<'a, D>,
23 free_vars: Vec<InferTy>,
24 /// A stack of type variables that is used to detect recursive types (which
25 /// are an error, but we need to protect against them to avoid stack
26 /// overflows).
27 var_stack: Vec<super::TypeVarId>,
28}
29
30pub(super) struct Canonicalized<T> {
31 pub value: Canonical<T>,
32 free_vars: Vec<InferTy>,
33}
34
35impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D>
36where
37 'a: 'b,
38{
39 fn add(&mut self, free_var: InferTy) -> usize {
40 self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
41 let next_index = self.free_vars.len();
42 self.free_vars.push(free_var);
43 next_index
44 })
45 }
46
47 fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty {
48 ty.fold(&mut |ty| match ty {
49 Ty::Infer(tv) => {
50 let inner = tv.to_inner();
51 if self.var_stack.contains(&inner) {
52 // recursive type
53 return tv.fallback_value();
54 }
55 if let Some(known_ty) =
56 self.ctx.var_unification_table.inlined_probe_value(inner).known()
57 {
58 self.var_stack.push(inner);
59 let result = self.do_canonicalize_ty(known_ty.clone());
60 self.var_stack.pop();
61 result
62 } else {
63 let root = self.ctx.var_unification_table.find(inner);
64 let free_var = match tv {
65 InferTy::TypeVar(_) => InferTy::TypeVar(root),
66 InferTy::IntVar(_) => InferTy::IntVar(root),
67 InferTy::FloatVar(_) => InferTy::FloatVar(root),
68 InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
69 };
70 let position = self.add(free_var);
71 Ty::Bound(position as u32)
72 }
73 }
74 _ => ty,
75 })
76 }
77
78 fn do_canonicalize_trait_ref(&mut self, mut trait_ref: TraitRef) -> TraitRef {
79 for ty in make_mut_slice(&mut trait_ref.substs.0) {
80 *ty = self.do_canonicalize_ty(ty.clone());
81 }
82 trait_ref
83 }
84
85 fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
86 Canonicalized {
87 value: Canonical { value: result, num_vars: self.free_vars.len() },
88 free_vars: self.free_vars,
89 }
90 }
91
92 fn do_canonicalize_projection_ty(&mut self, mut projection_ty: ProjectionTy) -> ProjectionTy {
93 for ty in make_mut_slice(&mut projection_ty.parameters.0) {
94 *ty = self.do_canonicalize_ty(ty.clone());
95 }
96 projection_ty
97 }
98
99 fn do_canonicalize_projection_predicate(
100 &mut self,
101 projection: ProjectionPredicate,
102 ) -> ProjectionPredicate {
103 let ty = self.do_canonicalize_ty(projection.ty);
104 let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty);
105
106 ProjectionPredicate { ty, projection_ty }
107 }
108
109 // FIXME: add some point, we need to introduce a `Fold` trait that abstracts
110 // over all the things that can be canonicalized (like Chalk and rustc have)
111
112 pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
113 let result = self.do_canonicalize_ty(ty);
114 self.into_canonicalized(result)
115 }
116
117 pub(crate) fn canonicalize_obligation(
118 mut self,
119 obligation: InEnvironment<Obligation>,
120 ) -> Canonicalized<InEnvironment<Obligation>> {
121 let result = match obligation.value {
122 Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)),
123 Obligation::Projection(pr) => {
124 Obligation::Projection(self.do_canonicalize_projection_predicate(pr))
125 }
126 };
127 self.into_canonicalized(InEnvironment {
128 value: result,
129 environment: obligation.environment,
130 })
131 }
132}
133
134impl<T> Canonicalized<T> {
135 pub fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
136 ty.walk_mut_binders(
137 &mut |ty, binders| match ty {
138 &mut Ty::Bound(idx) => {
139 if idx as usize >= binders && (idx as usize - binders) < self.free_vars.len() {
140 *ty = Ty::Infer(self.free_vars[idx as usize - binders]);
141 }
142 }
143 _ => {}
144 },
145 0,
146 );
147 ty
148 }
149
150 pub fn apply_solution(
151 &self,
152 ctx: &mut InferenceContext<'_, impl HirDatabase>,
153 solution: Canonical<Vec<Ty>>,
154 ) {
155 // the solution may contain new variables, which we need to convert to new inference vars
156 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.new_type_var()).collect());
157 for (i, ty) in solution.value.into_iter().enumerate() {
158 let var = self.free_vars[i];
159 ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
160 }
161 }
162}
diff --git a/crates/ra_hir_ty/src/lib.rs b/crates/ra_hir_ty/src/lib.rs
new file mode 100644
index 000000000..b45c8f82f
--- /dev/null
+++ b/crates/ra_hir_ty/src/lib.rs
@@ -0,0 +1,1138 @@
1//! The type system. We currently use this to infer types for completion, hover
2//! information and various assists.
3
4macro_rules! impl_froms {
5 ($e:ident: $($v:ident $(($($sv:ident),*))?),*) => {
6 $(
7 impl From<$v> for $e {
8 fn from(it: $v) -> $e {
9 $e::$v(it)
10 }
11 }
12 $($(
13 impl From<$sv> for $e {
14 fn from(it: $sv) -> $e {
15 $e::$v($v::$sv(it))
16 }
17 }
18 )*)?
19 )*
20 }
21}
22
23mod autoderef;
24pub mod primitive;
25pub mod traits;
26pub mod method_resolution;
27mod op;
28mod lower;
29mod infer;
30pub mod display;
31pub(crate) mod utils;
32pub mod db;
33pub mod diagnostics;
34pub mod expr;
35
36#[cfg(test)]
37mod tests;
38#[cfg(test)]
39mod test_db;
40mod marks;
41
42use std::ops::Deref;
43use std::sync::Arc;
44use std::{fmt, iter, mem};
45
46use hir_def::{
47 expr::ExprId, generics::GenericParams, type_ref::Mutability, AdtId, ContainerId, DefWithBodyId,
48 GenericDefId, HasModule, Lookup, TraitId, TypeAliasId,
49};
50use hir_expand::name::Name;
51use ra_db::{impl_intern_key, salsa, CrateId};
52
53use crate::{
54 db::HirDatabase,
55 primitive::{FloatTy, IntTy, Uncertain},
56 utils::make_mut_slice,
57};
58use display::{HirDisplay, HirFormatter};
59
60pub use autoderef::autoderef;
61pub use infer::{infer_query, InferTy, InferenceResult};
62pub use lower::CallableDef;
63pub use lower::{callable_item_sig, TyDefId, ValueTyDefId};
64pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
65
66/// A type constructor or type name: this might be something like the primitive
67/// type `bool`, a struct like `Vec`, or things like function pointers or
68/// tuples.
69#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
70pub enum TypeCtor {
71 /// The primitive boolean type. Written as `bool`.
72 Bool,
73
74 /// The primitive character type; holds a Unicode scalar value
75 /// (a non-surrogate code point). Written as `char`.
76 Char,
77
78 /// A primitive integer type. For example, `i32`.
79 Int(Uncertain<IntTy>),
80
81 /// A primitive floating-point type. For example, `f64`.
82 Float(Uncertain<FloatTy>),
83
84 /// Structures, enumerations and unions.
85 Adt(AdtId),
86
87 /// The pointee of a string slice. Written as `str`.
88 Str,
89
90 /// The pointee of an array slice. Written as `[T]`.
91 Slice,
92
93 /// An array with the given length. Written as `[T; n]`.
94 Array,
95
96 /// A raw pointer. Written as `*mut T` or `*const T`
97 RawPtr(Mutability),
98
99 /// A reference; a pointer with an associated lifetime. Written as
100 /// `&'a mut T` or `&'a T`.
101 Ref(Mutability),
102
103 /// The anonymous type of a function declaration/definition. Each
104 /// function has a unique type, which is output (for a function
105 /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
106 ///
107 /// This includes tuple struct / enum variant constructors as well.
108 ///
109 /// For example the type of `bar` here:
110 ///
111 /// ```
112 /// fn foo() -> i32 { 1 }
113 /// let bar = foo; // bar: fn() -> i32 {foo}
114 /// ```
115 FnDef(CallableDef),
116
117 /// A pointer to a function. Written as `fn() -> i32`.
118 ///
119 /// For example the type of `bar` here:
120 ///
121 /// ```
122 /// fn foo() -> i32 { 1 }
123 /// let bar: fn() -> i32 = foo;
124 /// ```
125 FnPtr { num_args: u16 },
126
127 /// The never type `!`.
128 Never,
129
130 /// A tuple type. For example, `(i32, bool)`.
131 Tuple { cardinality: u16 },
132
133 /// Represents an associated item like `Iterator::Item`. This is used
134 /// when we have tried to normalize a projection like `T::Item` but
135 /// couldn't find a better representation. In that case, we generate
136 /// an **application type** like `(Iterator::Item)<T>`.
137 AssociatedType(TypeAliasId),
138
139 /// The type of a specific closure.
140 ///
141 /// The closure signature is stored in a `FnPtr` type in the first type
142 /// parameter.
143 Closure { def: DefWithBodyId, expr: ExprId },
144}
145
146/// This exists just for Chalk, because Chalk just has a single `StructId` where
147/// we have different kinds of ADTs, primitive types and special type
148/// constructors like tuples and function pointers.
149#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
150pub struct TypeCtorId(salsa::InternId);
151impl_intern_key!(TypeCtorId);
152
153impl TypeCtor {
154 pub fn num_ty_params(self, db: &impl HirDatabase) -> usize {
155 match self {
156 TypeCtor::Bool
157 | TypeCtor::Char
158 | TypeCtor::Int(_)
159 | TypeCtor::Float(_)
160 | TypeCtor::Str
161 | TypeCtor::Never => 0,
162 TypeCtor::Slice
163 | TypeCtor::Array
164 | TypeCtor::RawPtr(_)
165 | TypeCtor::Ref(_)
166 | TypeCtor::Closure { .. } // 1 param representing the signature of the closure
167 => 1,
168 TypeCtor::Adt(adt) => {
169 let generic_params = db.generic_params(AdtId::from(adt).into());
170 generic_params.count_params_including_parent()
171 }
172 TypeCtor::FnDef(callable) => {
173 let generic_params = db.generic_params(callable.into());
174 generic_params.count_params_including_parent()
175 }
176 TypeCtor::AssociatedType(type_alias) => {
177 let generic_params = db.generic_params(type_alias.into());
178 generic_params.count_params_including_parent()
179 }
180 TypeCtor::FnPtr { num_args } => num_args as usize + 1,
181 TypeCtor::Tuple { cardinality } => cardinality as usize,
182 }
183 }
184
185 pub fn krate(self, db: &impl HirDatabase) -> Option<CrateId> {
186 match self {
187 TypeCtor::Bool
188 | TypeCtor::Char
189 | TypeCtor::Int(_)
190 | TypeCtor::Float(_)
191 | TypeCtor::Str
192 | TypeCtor::Never
193 | TypeCtor::Slice
194 | TypeCtor::Array
195 | TypeCtor::RawPtr(_)
196 | TypeCtor::Ref(_)
197 | TypeCtor::FnPtr { .. }
198 | TypeCtor::Tuple { .. } => None,
199 // Closure's krate is irrelevant for coherence I would think?
200 TypeCtor::Closure { .. } => None,
201 TypeCtor::Adt(adt) => Some(adt.module(db).krate),
202 TypeCtor::FnDef(callable) => Some(callable.krate(db)),
203 TypeCtor::AssociatedType(type_alias) => Some(type_alias.lookup(db).module(db).krate),
204 }
205 }
206
207 pub fn as_generic_def(self) -> Option<GenericDefId> {
208 match self {
209 TypeCtor::Bool
210 | TypeCtor::Char
211 | TypeCtor::Int(_)
212 | TypeCtor::Float(_)
213 | TypeCtor::Str
214 | TypeCtor::Never
215 | TypeCtor::Slice
216 | TypeCtor::Array
217 | TypeCtor::RawPtr(_)
218 | TypeCtor::Ref(_)
219 | TypeCtor::FnPtr { .. }
220 | TypeCtor::Tuple { .. }
221 | TypeCtor::Closure { .. } => None,
222 TypeCtor::Adt(adt) => Some(adt.into()),
223 TypeCtor::FnDef(callable) => Some(callable.into()),
224 TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
225 }
226 }
227}
228
229/// A nominal type with (maybe 0) type parameters. This might be a primitive
230/// type like `bool`, a struct, tuple, function pointer, reference or
231/// several other things.
232#[derive(Clone, PartialEq, Eq, Debug, Hash)]
233pub struct ApplicationTy {
234 pub ctor: TypeCtor,
235 pub parameters: Substs,
236}
237
238/// A "projection" type corresponds to an (unnormalized)
239/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
240/// trait and all its parameters are fully known.
241#[derive(Clone, PartialEq, Eq, Debug, Hash)]
242pub struct ProjectionTy {
243 pub associated_ty: TypeAliasId,
244 pub parameters: Substs,
245}
246
247impl ProjectionTy {
248 pub fn trait_ref(&self, db: &impl HirDatabase) -> TraitRef {
249 TraitRef { trait_: self.trait_(db).into(), substs: self.parameters.clone() }
250 }
251
252 fn trait_(&self, db: &impl HirDatabase) -> TraitId {
253 match self.associated_ty.lookup(db).container {
254 ContainerId::TraitId(it) => it,
255 _ => panic!("projection ty without parent trait"),
256 }
257 }
258}
259
260impl TypeWalk for ProjectionTy {
261 fn walk(&self, f: &mut impl FnMut(&Ty)) {
262 self.parameters.walk(f);
263 }
264
265 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
266 self.parameters.walk_mut_binders(f, binders);
267 }
268}
269
270/// A type.
271///
272/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
273/// the same thing (but in a different way).
274///
275/// This should be cheap to clone.
276#[derive(Clone, PartialEq, Eq, Debug, Hash)]
277pub enum Ty {
278 /// A nominal type with (maybe 0) type parameters. This might be a primitive
279 /// type like `bool`, a struct, tuple, function pointer, reference or
280 /// several other things.
281 Apply(ApplicationTy),
282
283 /// A "projection" type corresponds to an (unnormalized)
284 /// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
285 /// trait and all its parameters are fully known.
286 Projection(ProjectionTy),
287
288 /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
289 Param {
290 /// The index of the parameter (starting with parameters from the
291 /// surrounding impl, then the current function).
292 idx: u32,
293 /// The name of the parameter, for displaying.
294 // FIXME get rid of this
295 name: Name,
296 },
297
298 /// A bound type variable. Used during trait resolution to represent Chalk
299 /// variables, and in `Dyn` and `Opaque` bounds to represent the `Self` type.
300 Bound(u32),
301
302 /// A type variable used during type checking. Not to be confused with a
303 /// type parameter.
304 Infer(InferTy),
305
306 /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
307 ///
308 /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
309 /// represents the `Self` type inside the bounds. This is currently
310 /// implicit; Chalk has the `Binders` struct to make it explicit, but it
311 /// didn't seem worth the overhead yet.
312 Dyn(Arc<[GenericPredicate]>),
313
314 /// An opaque type (`impl Trait`).
315 ///
316 /// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
317 /// more.
318 Opaque(Arc<[GenericPredicate]>),
319
320 /// A placeholder for a type which could not be computed; this is propagated
321 /// to avoid useless error messages. Doubles as a placeholder where type
322 /// variables are inserted before type checking, since we want to try to
323 /// infer a better type here anyway -- for the IDE use case, we want to try
324 /// to infer as much as possible even in the presence of type errors.
325 Unknown,
326}
327
328/// A list of substitutions for generic parameters.
329#[derive(Clone, PartialEq, Eq, Debug, Hash)]
330pub struct Substs(Arc<[Ty]>);
331
332impl TypeWalk for Substs {
333 fn walk(&self, f: &mut impl FnMut(&Ty)) {
334 for t in self.0.iter() {
335 t.walk(f);
336 }
337 }
338
339 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
340 for t in make_mut_slice(&mut self.0) {
341 t.walk_mut_binders(f, binders);
342 }
343 }
344}
345
346impl Substs {
347 pub fn empty() -> Substs {
348 Substs(Arc::new([]))
349 }
350
351 pub fn single(ty: Ty) -> Substs {
352 Substs(Arc::new([ty]))
353 }
354
355 pub fn prefix(&self, n: usize) -> Substs {
356 Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
357 }
358
359 pub fn as_single(&self) -> &Ty {
360 if self.0.len() != 1 {
361 panic!("expected substs of len 1, got {:?}", self);
362 }
363 &self.0[0]
364 }
365
366 /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
367 pub fn identity(generic_params: &GenericParams) -> Substs {
368 Substs(
369 generic_params
370 .params_including_parent()
371 .into_iter()
372 .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() })
373 .collect(),
374 )
375 }
376
377 /// Return Substs that replace each parameter by a bound variable.
378 pub fn bound_vars(generic_params: &GenericParams) -> Substs {
379 Substs(
380 generic_params
381 .params_including_parent()
382 .into_iter()
383 .map(|p| Ty::Bound(p.idx))
384 .collect(),
385 )
386 }
387
388 pub fn build_for_def(db: &impl HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
389 let def = def.into();
390 let params = db.generic_params(def);
391 let param_count = params.count_params_including_parent();
392 Substs::builder(param_count)
393 }
394
395 pub fn build_for_generics(generic_params: &GenericParams) -> SubstsBuilder {
396 Substs::builder(generic_params.count_params_including_parent())
397 }
398
399 pub fn build_for_type_ctor(db: &impl HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
400 Substs::builder(type_ctor.num_ty_params(db))
401 }
402
403 fn builder(param_count: usize) -> SubstsBuilder {
404 SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
405 }
406}
407
408#[derive(Debug, Clone)]
409pub struct SubstsBuilder {
410 vec: Vec<Ty>,
411 param_count: usize,
412}
413
414impl SubstsBuilder {
415 pub fn build(self) -> Substs {
416 assert_eq!(self.vec.len(), self.param_count);
417 Substs(self.vec.into())
418 }
419
420 pub fn push(mut self, ty: Ty) -> Self {
421 self.vec.push(ty);
422 self
423 }
424
425 fn remaining(&self) -> usize {
426 self.param_count - self.vec.len()
427 }
428
429 pub fn fill_with_bound_vars(self, starting_from: u32) -> Self {
430 self.fill((starting_from..).map(Ty::Bound))
431 }
432
433 pub fn fill_with_params(self) -> Self {
434 let start = self.vec.len() as u32;
435 self.fill((start..).map(|idx| Ty::Param { idx, name: Name::missing() }))
436 }
437
438 pub fn fill_with_unknown(self) -> Self {
439 self.fill(iter::repeat(Ty::Unknown))
440 }
441
442 pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
443 self.vec.extend(filler.take(self.remaining()));
444 assert_eq!(self.remaining(), 0);
445 self
446 }
447
448 pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
449 assert!(self.vec.is_empty());
450 assert!(parent_substs.len() <= self.param_count);
451 self.vec.extend(parent_substs.iter().cloned());
452 self
453 }
454}
455
456impl Deref for Substs {
457 type Target = [Ty];
458
459 fn deref(&self) -> &[Ty] {
460 &self.0
461 }
462}
463
464/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
465/// Name to be bikeshedded: TraitBound? TraitImplements?
466#[derive(Clone, PartialEq, Eq, Debug, Hash)]
467pub struct TraitRef {
468 /// FIXME name?
469 pub trait_: TraitId,
470 pub substs: Substs,
471}
472
473impl TraitRef {
474 pub fn self_ty(&self) -> &Ty {
475 &self.substs[0]
476 }
477}
478
479impl TypeWalk for TraitRef {
480 fn walk(&self, f: &mut impl FnMut(&Ty)) {
481 self.substs.walk(f);
482 }
483
484 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
485 self.substs.walk_mut_binders(f, binders);
486 }
487}
488
489#[derive(Clone, PartialEq, Eq, Debug)]
490pub enum ImplTy {
491 Inherent(Ty),
492 TraitRef(TraitRef),
493}
494
495impl ImplTy {
496 pub(crate) fn self_type(&self) -> &Ty {
497 match self {
498 ImplTy::Inherent(it) => it,
499 ImplTy::TraitRef(tr) => &tr.substs[0],
500 }
501 }
502}
503
504/// Like `generics::WherePredicate`, but with resolved types: A condition on the
505/// parameters of a generic item.
506#[derive(Debug, Clone, PartialEq, Eq, Hash)]
507pub enum GenericPredicate {
508 /// The given trait needs to be implemented for its type parameters.
509 Implemented(TraitRef),
510 /// An associated type bindings like in `Iterator<Item = T>`.
511 Projection(ProjectionPredicate),
512 /// We couldn't resolve the trait reference. (If some type parameters can't
513 /// be resolved, they will just be Unknown).
514 Error,
515}
516
517impl GenericPredicate {
518 pub fn is_error(&self) -> bool {
519 match self {
520 GenericPredicate::Error => true,
521 _ => false,
522 }
523 }
524
525 pub fn is_implemented(&self) -> bool {
526 match self {
527 GenericPredicate::Implemented(_) => true,
528 _ => false,
529 }
530 }
531
532 pub fn trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> {
533 match self {
534 GenericPredicate::Implemented(tr) => Some(tr.clone()),
535 GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
536 GenericPredicate::Error => None,
537 }
538 }
539}
540
541impl TypeWalk for GenericPredicate {
542 fn walk(&self, f: &mut impl FnMut(&Ty)) {
543 match self {
544 GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
545 GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
546 GenericPredicate::Error => {}
547 }
548 }
549
550 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
551 match self {
552 GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
553 GenericPredicate::Projection(projection_pred) => {
554 projection_pred.walk_mut_binders(f, binders)
555 }
556 GenericPredicate::Error => {}
557 }
558 }
559}
560
561/// Basically a claim (currently not validated / checked) that the contained
562/// type / trait ref contains no inference variables; any inference variables it
563/// contained have been replaced by bound variables, and `num_vars` tells us how
564/// many there are. This is used to erase irrelevant differences between types
565/// before using them in queries.
566#[derive(Debug, Clone, PartialEq, Eq, Hash)]
567pub struct Canonical<T> {
568 pub value: T,
569 pub num_vars: usize,
570}
571
572/// A function signature as seen by type inference: Several parameter types and
573/// one return type.
574#[derive(Clone, PartialEq, Eq, Debug)]
575pub struct FnSig {
576 params_and_return: Arc<[Ty]>,
577}
578
579impl FnSig {
580 pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
581 params.push(ret);
582 FnSig { params_and_return: params.into() }
583 }
584
585 pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
586 FnSig { params_and_return: Arc::clone(&substs.0) }
587 }
588
589 pub fn params(&self) -> &[Ty] {
590 &self.params_and_return[0..self.params_and_return.len() - 1]
591 }
592
593 pub fn ret(&self) -> &Ty {
594 &self.params_and_return[self.params_and_return.len() - 1]
595 }
596}
597
598impl TypeWalk for FnSig {
599 fn walk(&self, f: &mut impl FnMut(&Ty)) {
600 for t in self.params_and_return.iter() {
601 t.walk(f);
602 }
603 }
604
605 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
606 for t in make_mut_slice(&mut self.params_and_return) {
607 t.walk_mut_binders(f, binders);
608 }
609 }
610}
611
612impl Ty {
613 pub fn simple(ctor: TypeCtor) -> Ty {
614 Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
615 }
616 pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
617 Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
618 }
619 pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
620 Ty::Apply(ApplicationTy { ctor, parameters })
621 }
622 pub fn unit() -> Self {
623 Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
624 }
625
626 pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
627 match self {
628 Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
629 Some((parameters.as_single(), *mutability))
630 }
631 _ => None,
632 }
633 }
634
635 pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
636 match self {
637 Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
638 Some((*adt_def, parameters))
639 }
640 _ => None,
641 }
642 }
643
644 pub fn as_tuple(&self) -> Option<&Substs> {
645 match self {
646 Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
647 Some(parameters)
648 }
649 _ => None,
650 }
651 }
652
653 pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
654 match self {
655 Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
656 Some((*callable_def, parameters))
657 }
658 _ => None,
659 }
660 }
661
662 fn builtin_deref(&self) -> Option<Ty> {
663 match self {
664 Ty::Apply(a_ty) => match a_ty.ctor {
665 TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
666 TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
667 _ => None,
668 },
669 _ => None,
670 }
671 }
672
673 fn callable_sig(&self, db: &impl HirDatabase) -> Option<FnSig> {
674 match self {
675 Ty::Apply(a_ty) => match a_ty.ctor {
676 TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
677 TypeCtor::FnDef(def) => {
678 let sig = db.callable_item_signature(def);
679 Some(sig.subst(&a_ty.parameters))
680 }
681 TypeCtor::Closure { .. } => {
682 let sig_param = &a_ty.parameters[0];
683 sig_param.callable_sig(db)
684 }
685 _ => None,
686 },
687 _ => None,
688 }
689 }
690
691 /// If this is a type with type parameters (an ADT or function), replaces
692 /// the `Substs` for these type parameters with the given ones. (So e.g. if
693 /// `self` is `Option<_>` and the substs contain `u32`, we'll have
694 /// `Option<u32>` afterwards.)
695 pub fn apply_substs(self, substs: Substs) -> Ty {
696 match self {
697 Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
698 assert_eq!(previous_substs.len(), substs.len());
699 Ty::Apply(ApplicationTy { ctor, parameters: substs })
700 }
701 _ => self,
702 }
703 }
704
705 /// Returns the type parameters of this type if it has some (i.e. is an ADT
706 /// or function); so if `self` is `Option<u32>`, this returns the `u32`.
707 pub fn substs(&self) -> Option<Substs> {
708 match self {
709 Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
710 _ => None,
711 }
712 }
713
714 /// If this is an `impl Trait` or `dyn Trait`, returns that trait.
715 pub fn inherent_trait(&self) -> Option<TraitId> {
716 match self {
717 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
718 predicates.iter().find_map(|pred| match pred {
719 GenericPredicate::Implemented(tr) => Some(tr.trait_),
720 _ => None,
721 })
722 }
723 _ => None,
724 }
725 }
726}
727
728/// This allows walking structures that contain types to do something with those
729/// types, similar to Chalk's `Fold` trait.
730pub trait TypeWalk {
731 fn walk(&self, f: &mut impl FnMut(&Ty));
732 fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
733 self.walk_mut_binders(&mut |ty, _binders| f(ty), 0);
734 }
735 /// Walk the type, counting entered binders.
736 ///
737 /// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
738 /// to the innermost binder, 1 to the next, etc.. So when we want to
739 /// substitute a certain bound variable, we can't just walk the whole type
740 /// and blindly replace each instance of a certain index; when we 'enter'
741 /// things that introduce new bound variables, we have to keep track of
742 /// that. Currently, the only thing that introduces bound variables on our
743 /// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
744 /// variable for the self type.
745 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize);
746
747 fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
748 where
749 Self: Sized,
750 {
751 self.walk_mut(&mut |ty_mut| {
752 let ty = mem::replace(ty_mut, Ty::Unknown);
753 *ty_mut = f(ty);
754 });
755 self
756 }
757
758 /// Replaces type parameters in this type using the given `Substs`. (So e.g.
759 /// if `self` is `&[T]`, where type parameter T has index 0, and the
760 /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
761 fn subst(self, substs: &Substs) -> Self
762 where
763 Self: Sized,
764 {
765 self.fold(&mut |ty| match ty {
766 Ty::Param { idx, name } => {
767 substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name })
768 }
769 ty => ty,
770 })
771 }
772
773 /// Substitutes `Ty::Bound` vars (as opposed to type parameters).
774 fn subst_bound_vars(mut self, substs: &Substs) -> Self
775 where
776 Self: Sized,
777 {
778 self.walk_mut_binders(
779 &mut |ty, binders| match ty {
780 &mut Ty::Bound(idx) => {
781 if idx as usize >= binders && (idx as usize - binders) < substs.len() {
782 *ty = substs.0[idx as usize - binders].clone();
783 }
784 }
785 _ => {}
786 },
787 0,
788 );
789 self
790 }
791
792 /// Shifts up `Ty::Bound` vars by `n`.
793 fn shift_bound_vars(self, n: i32) -> Self
794 where
795 Self: Sized,
796 {
797 self.fold(&mut |ty| match ty {
798 Ty::Bound(idx) => {
799 assert!(idx as i32 >= -n);
800 Ty::Bound((idx as i32 + n) as u32)
801 }
802 ty => ty,
803 })
804 }
805}
806
807impl TypeWalk for Ty {
808 fn walk(&self, f: &mut impl FnMut(&Ty)) {
809 match self {
810 Ty::Apply(a_ty) => {
811 for t in a_ty.parameters.iter() {
812 t.walk(f);
813 }
814 }
815 Ty::Projection(p_ty) => {
816 for t in p_ty.parameters.iter() {
817 t.walk(f);
818 }
819 }
820 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
821 for p in predicates.iter() {
822 p.walk(f);
823 }
824 }
825 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
826 }
827 f(self);
828 }
829
830 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
831 match self {
832 Ty::Apply(a_ty) => {
833 a_ty.parameters.walk_mut_binders(f, binders);
834 }
835 Ty::Projection(p_ty) => {
836 p_ty.parameters.walk_mut_binders(f, binders);
837 }
838 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
839 for p in make_mut_slice(predicates) {
840 p.walk_mut_binders(f, binders + 1);
841 }
842 }
843 Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
844 }
845 f(self, binders);
846 }
847}
848
849impl HirDisplay for &Ty {
850 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
851 HirDisplay::hir_fmt(*self, f)
852 }
853}
854
855impl HirDisplay for ApplicationTy {
856 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
857 if f.should_truncate() {
858 return write!(f, "…");
859 }
860
861 match self.ctor {
862 TypeCtor::Bool => write!(f, "bool")?,
863 TypeCtor::Char => write!(f, "char")?,
864 TypeCtor::Int(t) => write!(f, "{}", t)?,
865 TypeCtor::Float(t) => write!(f, "{}", t)?,
866 TypeCtor::Str => write!(f, "str")?,
867 TypeCtor::Slice => {
868 let t = self.parameters.as_single();
869 write!(f, "[{}]", t.display(f.db))?;
870 }
871 TypeCtor::Array => {
872 let t = self.parameters.as_single();
873 write!(f, "[{};_]", t.display(f.db))?;
874 }
875 TypeCtor::RawPtr(m) => {
876 let t = self.parameters.as_single();
877 write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
878 }
879 TypeCtor::Ref(m) => {
880 let t = self.parameters.as_single();
881 write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?;
882 }
883 TypeCtor::Never => write!(f, "!")?,
884 TypeCtor::Tuple { .. } => {
885 let ts = &self.parameters;
886 if ts.len() == 1 {
887 write!(f, "({},)", ts[0].display(f.db))?;
888 } else {
889 write!(f, "(")?;
890 f.write_joined(&*ts.0, ", ")?;
891 write!(f, ")")?;
892 }
893 }
894 TypeCtor::FnPtr { .. } => {
895 let sig = FnSig::from_fn_ptr_substs(&self.parameters);
896 write!(f, "fn(")?;
897 f.write_joined(sig.params(), ", ")?;
898 write!(f, ") -> {}", sig.ret().display(f.db))?;
899 }
900 TypeCtor::FnDef(def) => {
901 let sig = f.db.callable_item_signature(def);
902 let name = match def {
903 CallableDef::FunctionId(ff) => f.db.function_data(ff).name.clone(),
904 CallableDef::StructId(s) => f.db.struct_data(s).name.clone(),
905 CallableDef::EnumVariantId(e) => {
906 let enum_data = f.db.enum_data(e.parent);
907 enum_data.variants[e.local_id].name.clone()
908 }
909 };
910 match def {
911 CallableDef::FunctionId(_) => write!(f, "fn {}", name)?,
912 CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {
913 write!(f, "{}", name)?
914 }
915 }
916 if self.parameters.len() > 0 {
917 write!(f, "<")?;
918 f.write_joined(&*self.parameters.0, ", ")?;
919 write!(f, ">")?;
920 }
921 write!(f, "(")?;
922 f.write_joined(sig.params(), ", ")?;
923 write!(f, ") -> {}", sig.ret().display(f.db))?;
924 }
925 TypeCtor::Adt(def_id) => {
926 let name = match def_id {
927 AdtId::StructId(it) => f.db.struct_data(it).name.clone(),
928 AdtId::UnionId(it) => f.db.union_data(it).name.clone(),
929 AdtId::EnumId(it) => f.db.enum_data(it).name.clone(),
930 };
931 write!(f, "{}", name)?;
932 if self.parameters.len() > 0 {
933 write!(f, "<")?;
934 f.write_joined(&*self.parameters.0, ", ")?;
935 write!(f, ">")?;
936 }
937 }
938 TypeCtor::AssociatedType(type_alias) => {
939 let trait_ = match type_alias.lookup(f.db).container {
940 ContainerId::TraitId(it) => it,
941 _ => panic!("not an associated type"),
942 };
943 let trait_name = f.db.trait_data(trait_).name.clone();
944 let name = f.db.type_alias_data(type_alias).name.clone();
945 write!(f, "{}::{}", trait_name, name)?;
946 if self.parameters.len() > 0 {
947 write!(f, "<")?;
948 f.write_joined(&*self.parameters.0, ", ")?;
949 write!(f, ">")?;
950 }
951 }
952 TypeCtor::Closure { .. } => {
953 let sig = self.parameters[0]
954 .callable_sig(f.db)
955 .expect("first closure parameter should contain signature");
956 write!(f, "|")?;
957 f.write_joined(sig.params(), ", ")?;
958 write!(f, "| -> {}", sig.ret().display(f.db))?;
959 }
960 }
961 Ok(())
962 }
963}
964
965impl HirDisplay for ProjectionTy {
966 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
967 if f.should_truncate() {
968 return write!(f, "…");
969 }
970
971 let trait_name = f.db.trait_data(self.trait_(f.db)).name.clone();
972 write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_name,)?;
973 if self.parameters.len() > 1 {
974 write!(f, "<")?;
975 f.write_joined(&self.parameters[1..], ", ")?;
976 write!(f, ">")?;
977 }
978 write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?;
979 Ok(())
980 }
981}
982
983impl HirDisplay for Ty {
984 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
985 if f.should_truncate() {
986 return write!(f, "…");
987 }
988
989 match self {
990 Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
991 Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
992 Ty::Param { name, .. } => write!(f, "{}", name)?,
993 Ty::Bound(idx) => write!(f, "?{}", idx)?,
994 Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
995 match self {
996 Ty::Dyn(_) => write!(f, "dyn ")?,
997 Ty::Opaque(_) => write!(f, "impl ")?,
998 _ => unreachable!(),
999 };
1000 // Note: This code is written to produce nice results (i.e.
1001 // corresponding to surface Rust) for types that can occur in
1002 // actual Rust. It will have weird results if the predicates
1003 // aren't as expected (i.e. self types = $0, projection
1004 // predicates for a certain trait come after the Implemented
1005 // predicate for that trait).
1006 let mut first = true;
1007 let mut angle_open = false;
1008 for p in predicates.iter() {
1009 match p {
1010 GenericPredicate::Implemented(trait_ref) => {
1011 if angle_open {
1012 write!(f, ">")?;
1013 }
1014 if !first {
1015 write!(f, " + ")?;
1016 }
1017 // We assume that the self type is $0 (i.e. the
1018 // existential) here, which is the only thing that's
1019 // possible in actual Rust, and hence don't print it
1020 write!(f, "{}", f.db.trait_data(trait_ref.trait_).name.clone())?;
1021 if trait_ref.substs.len() > 1 {
1022 write!(f, "<")?;
1023 f.write_joined(&trait_ref.substs[1..], ", ")?;
1024 // there might be assoc type bindings, so we leave the angle brackets open
1025 angle_open = true;
1026 }
1027 }
1028 GenericPredicate::Projection(projection_pred) => {
1029 // in types in actual Rust, these will always come
1030 // after the corresponding Implemented predicate
1031 if angle_open {
1032 write!(f, ", ")?;
1033 } else {
1034 write!(f, "<")?;
1035 angle_open = true;
1036 }
1037 let name =
1038 f.db.type_alias_data(projection_pred.projection_ty.associated_ty)
1039 .name
1040 .clone();
1041 write!(f, "{} = ", name)?;
1042 projection_pred.ty.hir_fmt(f)?;
1043 }
1044 GenericPredicate::Error => {
1045 if angle_open {
1046 // impl Trait<X, {error}>
1047 write!(f, ", ")?;
1048 } else if !first {
1049 // impl Trait + {error}
1050 write!(f, " + ")?;
1051 }
1052 p.hir_fmt(f)?;
1053 }
1054 }
1055 first = false;
1056 }
1057 if angle_open {
1058 write!(f, ">")?;
1059 }
1060 }
1061 Ty::Unknown => write!(f, "{{unknown}}")?,
1062 Ty::Infer(..) => write!(f, "_")?,
1063 }
1064 Ok(())
1065 }
1066}
1067
1068impl TraitRef {
1069 fn hir_fmt_ext(&self, f: &mut HirFormatter<impl HirDatabase>, use_as: bool) -> fmt::Result {
1070 if f.should_truncate() {
1071 return write!(f, "…");
1072 }
1073
1074 self.substs[0].hir_fmt(f)?;
1075 if use_as {
1076 write!(f, " as ")?;
1077 } else {
1078 write!(f, ": ")?;
1079 }
1080 write!(f, "{}", f.db.trait_data(self.trait_).name.clone())?;
1081 if self.substs.len() > 1 {
1082 write!(f, "<")?;
1083 f.write_joined(&self.substs[1..], ", ")?;
1084 write!(f, ">")?;
1085 }
1086 Ok(())
1087 }
1088}
1089
1090impl HirDisplay for TraitRef {
1091 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1092 self.hir_fmt_ext(f, false)
1093 }
1094}
1095
1096impl HirDisplay for &GenericPredicate {
1097 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1098 HirDisplay::hir_fmt(*self, f)
1099 }
1100}
1101
1102impl HirDisplay for GenericPredicate {
1103 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1104 if f.should_truncate() {
1105 return write!(f, "…");
1106 }
1107
1108 match self {
1109 GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
1110 GenericPredicate::Projection(projection_pred) => {
1111 write!(f, "<")?;
1112 projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
1113 write!(
1114 f,
1115 ">::{} = {}",
1116 f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name,
1117 projection_pred.ty.display(f.db)
1118 )?;
1119 }
1120 GenericPredicate::Error => write!(f, "{{error}}")?,
1121 }
1122 Ok(())
1123 }
1124}
1125
1126impl HirDisplay for Obligation {
1127 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
1128 match self {
1129 Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)),
1130 Obligation::Projection(proj) => write!(
1131 f,
1132 "Normalize({} => {})",
1133 proj.projection_ty.display(f.db),
1134 proj.ty.display(f.db)
1135 ),
1136 }
1137 }
1138}
diff --git a/crates/ra_hir_ty/src/lower.rs b/crates/ra_hir_ty/src/lower.rs
new file mode 100644
index 000000000..091c60f4f
--- /dev/null
+++ b/crates/ra_hir_ty/src/lower.rs
@@ -0,0 +1,759 @@
1//! Methods for lowering the HIR to types. There are two main cases here:
2//!
3//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
4//! type: The entry point for this is `Ty::from_hir`.
5//! - Building the type for an item: This happens through the `type_for_def` query.
6//!
7//! This usually involves resolving names, collecting generic arguments etc.
8use std::iter;
9use std::sync::Arc;
10
11use hir_def::{
12 builtin_type::BuiltinType,
13 generics::WherePredicate,
14 path::{GenericArg, Path, PathKind, PathSegment},
15 resolver::{HasResolver, Resolver, TypeNs},
16 type_ref::{TypeBound, TypeRef},
17 AdtId, AstItemDef, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule, ImplId,
18 LocalStructFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, UnionId, VariantId,
19};
20use ra_arena::map::ArenaMap;
21use ra_db::CrateId;
22
23use crate::{
24 db::HirDatabase,
25 primitive::{FloatTy, IntTy},
26 utils::{
27 all_super_traits, associated_type_by_name_including_super_traits, make_mut_slice,
28 variant_data,
29 },
30 FnSig, GenericPredicate, ImplTy, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment,
31 TraitRef, Ty, TypeCtor, TypeWalk,
32};
33
34impl Ty {
35 pub fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
36 match type_ref {
37 TypeRef::Never => Ty::simple(TypeCtor::Never),
38 TypeRef::Tuple(inner) => {
39 let inner_tys: Arc<[Ty]> =
40 inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect();
41 Ty::apply(
42 TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
43 Substs(inner_tys),
44 )
45 }
46 TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
47 TypeRef::RawPtr(inner, mutability) => {
48 let inner_ty = Ty::from_hir(db, resolver, inner);
49 Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
50 }
51 TypeRef::Array(inner) => {
52 let inner_ty = Ty::from_hir(db, resolver, inner);
53 Ty::apply_one(TypeCtor::Array, inner_ty)
54 }
55 TypeRef::Slice(inner) => {
56 let inner_ty = Ty::from_hir(db, resolver, inner);
57 Ty::apply_one(TypeCtor::Slice, inner_ty)
58 }
59 TypeRef::Reference(inner, mutability) => {
60 let inner_ty = Ty::from_hir(db, resolver, inner);
61 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
62 }
63 TypeRef::Placeholder => Ty::Unknown,
64 TypeRef::Fn(params) => {
65 let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect());
66 Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
67 }
68 TypeRef::DynTrait(bounds) => {
69 let self_ty = Ty::Bound(0);
70 let predicates = bounds
71 .iter()
72 .flat_map(|b| {
73 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
74 })
75 .collect();
76 Ty::Dyn(predicates)
77 }
78 TypeRef::ImplTrait(bounds) => {
79 let self_ty = Ty::Bound(0);
80 let predicates = bounds
81 .iter()
82 .flat_map(|b| {
83 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
84 })
85 .collect();
86 Ty::Opaque(predicates)
87 }
88 TypeRef::Error => Ty::Unknown,
89 }
90 }
91
92 /// This is only for `generic_predicates_for_param`, where we can't just
93 /// lower the self types of the predicates since that could lead to cycles.
94 /// So we just check here if the `type_ref` resolves to a generic param, and which.
95 fn from_hir_only_param(
96 db: &impl HirDatabase,
97 resolver: &Resolver,
98 type_ref: &TypeRef,
99 ) -> Option<u32> {
100 let path = match type_ref {
101 TypeRef::Path(path) => path,
102 _ => return None,
103 };
104 if let PathKind::Type(_) = &path.kind {
105 return None;
106 }
107 if path.segments.len() > 1 {
108 return None;
109 }
110 let resolution = match resolver.resolve_path_in_type_ns(db, path) {
111 Some((it, None)) => it,
112 _ => return None,
113 };
114 if let TypeNs::GenericParam(idx) = resolution {
115 Some(idx)
116 } else {
117 None
118 }
119 }
120
121 pub(crate) fn from_type_relative_path(
122 db: &impl HirDatabase,
123 resolver: &Resolver,
124 ty: Ty,
125 remaining_segments: &[PathSegment],
126 ) -> Ty {
127 if remaining_segments.len() == 1 {
128 // resolve unselected assoc types
129 let segment = &remaining_segments[0];
130 Ty::select_associated_type(db, resolver, ty, segment)
131 } else if remaining_segments.len() > 1 {
132 // FIXME report error (ambiguous associated type)
133 Ty::Unknown
134 } else {
135 ty
136 }
137 }
138
139 pub(crate) fn from_partly_resolved_hir_path(
140 db: &impl HirDatabase,
141 resolver: &Resolver,
142 resolution: TypeNs,
143 resolved_segment: &PathSegment,
144 remaining_segments: &[PathSegment],
145 ) -> Ty {
146 let ty = match resolution {
147 TypeNs::TraitId(trait_) => {
148 let trait_ref =
149 TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None);
150 return if remaining_segments.len() == 1 {
151 let segment = &remaining_segments[0];
152 let associated_ty = associated_type_by_name_including_super_traits(
153 db,
154 trait_ref.trait_,
155 &segment.name,
156 );
157 match associated_ty {
158 Some(associated_ty) => {
159 // FIXME handle type parameters on the segment
160 Ty::Projection(ProjectionTy {
161 associated_ty,
162 parameters: trait_ref.substs,
163 })
164 }
165 None => {
166 // FIXME: report error (associated type not found)
167 Ty::Unknown
168 }
169 }
170 } else if remaining_segments.len() > 1 {
171 // FIXME report error (ambiguous associated type)
172 Ty::Unknown
173 } else {
174 Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
175 };
176 }
177 TypeNs::GenericParam(idx) => {
178 // FIXME: maybe return name in resolution?
179 let name = resolved_segment.name.clone();
180 Ty::Param { idx, name }
181 }
182 TypeNs::SelfType(impl_id) => db.impl_ty(impl_id).self_type().clone(),
183 TypeNs::AdtSelfType(adt) => db.ty(adt.into()),
184
185 TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
186 TypeNs::BuiltinType(it) => {
187 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
188 }
189 TypeNs::TypeAliasId(it) => {
190 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
191 }
192 // FIXME: report error
193 TypeNs::EnumVariantId(_) => return Ty::Unknown,
194 };
195
196 Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
197 }
198
199 pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
200 // Resolve the path (in type namespace)
201 if let PathKind::Type(type_ref) = &path.kind {
202 let ty = Ty::from_hir(db, resolver, &type_ref);
203 let remaining_segments = &path.segments[..];
204 return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
205 }
206 let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
207 Some(it) => it,
208 None => return Ty::Unknown,
209 };
210 let (resolved_segment, remaining_segments) = match remaining_index {
211 None => (
212 path.segments.last().expect("resolved path has at least one element"),
213 &[] as &[PathSegment],
214 ),
215 Some(i) => (&path.segments[i - 1], &path.segments[i..]),
216 };
217 Ty::from_partly_resolved_hir_path(
218 db,
219 resolver,
220 resolution,
221 resolved_segment,
222 remaining_segments,
223 )
224 }
225
226 fn select_associated_type(
227 db: &impl HirDatabase,
228 resolver: &Resolver,
229 self_ty: Ty,
230 segment: &PathSegment,
231 ) -> Ty {
232 let param_idx = match self_ty {
233 Ty::Param { idx, .. } => idx,
234 _ => return Ty::Unknown, // Error: Ambiguous associated type
235 };
236 let def = match resolver.generic_def() {
237 Some(def) => def,
238 None => return Ty::Unknown, // this can't actually happen
239 };
240 let predicates = db.generic_predicates_for_param(def.into(), param_idx);
241 let traits_from_env = predicates.iter().filter_map(|pred| match pred {
242 GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
243 _ => None,
244 });
245 let traits = traits_from_env.flat_map(|t| all_super_traits(db, t));
246 for t in traits {
247 if let Some(associated_ty) = db.trait_data(t).associated_type_by_name(&segment.name) {
248 let substs =
249 Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
250 // FIXME handle type parameters on the segment
251 return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
252 }
253 }
254 Ty::Unknown
255 }
256
257 fn from_hir_path_inner(
258 db: &impl HirDatabase,
259 resolver: &Resolver,
260 segment: &PathSegment,
261 typable: TyDefId,
262 ) -> Ty {
263 let generic_def = match typable {
264 TyDefId::BuiltinType(_) => None,
265 TyDefId::AdtId(it) => Some(it.into()),
266 TyDefId::TypeAliasId(it) => Some(it.into()),
267 };
268 let substs = substs_from_path_segment(db, resolver, segment, generic_def, false);
269 db.ty(typable).subst(&substs)
270 }
271
272 /// Collect generic arguments from a path into a `Substs`. See also
273 /// `create_substs_for_ast_path` and `def_to_ty` in rustc.
274 pub(super) fn substs_from_path(
275 db: &impl HirDatabase,
276 resolver: &Resolver,
277 path: &Path,
278 // Note that we don't call `db.value_type(resolved)` here,
279 // `ValueTyDefId` is just a convenient way to pass generics and
280 // special-case enum variants
281 resolved: ValueTyDefId,
282 ) -> Substs {
283 let last = path.segments.last().expect("path should have at least one segment");
284 let (segment, generic_def) = match resolved {
285 ValueTyDefId::FunctionId(it) => (last, Some(it.into())),
286 ValueTyDefId::StructId(it) => (last, Some(it.into())),
287 ValueTyDefId::ConstId(it) => (last, Some(it.into())),
288 ValueTyDefId::StaticId(_) => (last, None),
289 ValueTyDefId::EnumVariantId(var) => {
290 // the generic args for an enum variant may be either specified
291 // on the segment referring to the enum, or on the segment
292 // referring to the variant. So `Option::<T>::None` and
293 // `Option::None::<T>` are both allowed (though the former is
294 // preferred). See also `def_ids_for_path_segments` in rustc.
295 let len = path.segments.len();
296 let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
297 // Option::<T>::None
298 &path.segments[len - 2]
299 } else {
300 // Option::None::<T>
301 last
302 };
303 (segment, Some(var.parent.into()))
304 }
305 };
306 substs_from_path_segment(db, resolver, segment, generic_def, false)
307 }
308}
309
310pub(super) fn substs_from_path_segment(
311 db: &impl HirDatabase,
312 resolver: &Resolver,
313 segment: &PathSegment,
314 def_generic: Option<GenericDefId>,
315 add_self_param: bool,
316) -> Substs {
317 let mut substs = Vec::new();
318 let def_generics = def_generic.map(|def| db.generic_params(def.into()));
319
320 let (parent_param_count, param_count) =
321 def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
322 substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
323 if add_self_param {
324 // FIXME this add_self_param argument is kind of a hack: Traits have the
325 // Self type as an implicit first type parameter, but it can't be
326 // actually provided in the type arguments
327 // (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
328 substs.push(Ty::Unknown);
329 }
330 if let Some(generic_args) = &segment.args_and_bindings {
331 // if args are provided, it should be all of them, but we can't rely on that
332 let self_param_correction = if add_self_param { 1 } else { 0 };
333 let param_count = param_count - self_param_correction;
334 for arg in generic_args.args.iter().take(param_count) {
335 match arg {
336 GenericArg::Type(type_ref) => {
337 let ty = Ty::from_hir(db, resolver, type_ref);
338 substs.push(ty);
339 }
340 }
341 }
342 }
343 // add placeholders for args that were not provided
344 let supplied_params = substs.len();
345 for _ in supplied_params..parent_param_count + param_count {
346 substs.push(Ty::Unknown);
347 }
348 assert_eq!(substs.len(), parent_param_count + param_count);
349
350 // handle defaults
351 if let Some(def_generic) = def_generic {
352 let default_substs = db.generic_defaults(def_generic.into());
353 assert_eq!(substs.len(), default_substs.len());
354
355 for (i, default_ty) in default_substs.iter().enumerate() {
356 if substs[i] == Ty::Unknown {
357 substs[i] = default_ty.clone();
358 }
359 }
360 }
361
362 Substs(substs.into())
363}
364
365impl TraitRef {
366 fn from_path(
367 db: &impl HirDatabase,
368 resolver: &Resolver,
369 path: &Path,
370 explicit_self_ty: Option<Ty>,
371 ) -> Option<Self> {
372 let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
373 TypeNs::TraitId(tr) => tr,
374 _ => return None,
375 };
376 let segment = path.segments.last().expect("path should have at least one segment");
377 Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty))
378 }
379
380 pub(crate) fn from_resolved_path(
381 db: &impl HirDatabase,
382 resolver: &Resolver,
383 resolved: TraitId,
384 segment: &PathSegment,
385 explicit_self_ty: Option<Ty>,
386 ) -> Self {
387 let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
388 if let Some(self_ty) = explicit_self_ty {
389 make_mut_slice(&mut substs.0)[0] = self_ty;
390 }
391 TraitRef { trait_: resolved, substs }
392 }
393
394 fn from_hir(
395 db: &impl HirDatabase,
396 resolver: &Resolver,
397 type_ref: &TypeRef,
398 explicit_self_ty: Option<Ty>,
399 ) -> Option<Self> {
400 let path = match type_ref {
401 TypeRef::Path(path) => path,
402 _ => return None,
403 };
404 TraitRef::from_path(db, resolver, path, explicit_self_ty)
405 }
406
407 fn substs_from_path(
408 db: &impl HirDatabase,
409 resolver: &Resolver,
410 segment: &PathSegment,
411 resolved: TraitId,
412 ) -> Substs {
413 let has_self_param =
414 segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
415 substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
416 }
417
418 pub(crate) fn from_type_bound(
419 db: &impl HirDatabase,
420 resolver: &Resolver,
421 bound: &TypeBound,
422 self_ty: Ty,
423 ) -> Option<TraitRef> {
424 match bound {
425 TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
426 TypeBound::Error => None,
427 }
428 }
429}
430
431impl GenericPredicate {
432 pub(crate) fn from_where_predicate<'a>(
433 db: &'a impl HirDatabase,
434 resolver: &'a Resolver,
435 where_predicate: &'a WherePredicate,
436 ) -> impl Iterator<Item = GenericPredicate> + 'a {
437 let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
438 GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
439 }
440
441 pub(crate) fn from_type_bound<'a>(
442 db: &'a impl HirDatabase,
443 resolver: &'a Resolver,
444 bound: &'a TypeBound,
445 self_ty: Ty,
446 ) -> impl Iterator<Item = GenericPredicate> + 'a {
447 let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
448 iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
449 .chain(
450 trait_ref.into_iter().flat_map(move |tr| {
451 assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
452 }),
453 )
454 }
455}
456
457fn assoc_type_bindings_from_type_bound<'a>(
458 db: &'a impl HirDatabase,
459 resolver: &'a Resolver,
460 bound: &'a TypeBound,
461 trait_ref: TraitRef,
462) -> impl Iterator<Item = GenericPredicate> + 'a {
463 let last_segment = match bound {
464 TypeBound::Path(path) => path.segments.last(),
465 TypeBound::Error => None,
466 };
467 last_segment
468 .into_iter()
469 .flat_map(|segment| segment.args_and_bindings.iter())
470 .flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
471 .map(move |(name, type_ref)| {
472 let associated_ty =
473 associated_type_by_name_including_super_traits(db, trait_ref.trait_, &name);
474 let associated_ty = match associated_ty {
475 None => return GenericPredicate::Error,
476 Some(t) => t,
477 };
478 let projection_ty =
479 ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
480 let ty = Ty::from_hir(db, resolver, type_ref);
481 let projection_predicate = ProjectionPredicate { projection_ty, ty };
482 GenericPredicate::Projection(projection_predicate)
483 })
484}
485
486/// Build the signature of a callable item (function, struct or enum variant).
487pub fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
488 match def {
489 CallableDef::FunctionId(f) => fn_sig_for_fn(db, f),
490 CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s),
491 CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
492 }
493}
494
495/// Build the type of all specific fields of a struct or enum variant.
496pub(crate) fn field_types_query(
497 db: &impl HirDatabase,
498 variant_id: VariantId,
499) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
500 let var_data = variant_data(db, variant_id);
501 let resolver = match variant_id {
502 VariantId::StructId(it) => it.resolver(db),
503 VariantId::UnionId(it) => it.resolver(db),
504 VariantId::EnumVariantId(it) => it.parent.resolver(db),
505 };
506 let mut res = ArenaMap::default();
507 for (field_id, field_data) in var_data.fields().iter() {
508 res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref))
509 }
510 Arc::new(res)
511}
512
513/// This query exists only to be used when resolving short-hand associated types
514/// like `T::Item`.
515///
516/// See the analogous query in rustc and its comment:
517/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
518/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
519/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
520/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
521pub(crate) fn generic_predicates_for_param_query(
522 db: &impl HirDatabase,
523 def: GenericDefId,
524 param_idx: u32,
525) -> Arc<[GenericPredicate]> {
526 let resolver = def.resolver(db);
527 resolver
528 .where_predicates_in_scope()
529 // we have to filter out all other predicates *first*, before attempting to lower them
530 .filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
531 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
532 .collect()
533}
534
535impl TraitEnvironment {
536 pub fn lower(db: &impl HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> {
537 let predicates = resolver
538 .where_predicates_in_scope()
539 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
540 .collect::<Vec<_>>();
541
542 Arc::new(TraitEnvironment { predicates })
543 }
544}
545
546/// Resolve the where clause(s) of an item with generics.
547pub(crate) fn generic_predicates_query(
548 db: &impl HirDatabase,
549 def: GenericDefId,
550) -> Arc<[GenericPredicate]> {
551 let resolver = def.resolver(db);
552 resolver
553 .where_predicates_in_scope()
554 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
555 .collect()
556}
557
558/// Resolve the default type params from generics
559pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs {
560 let resolver = def.resolver(db);
561 let generic_params = db.generic_params(def.into());
562
563 let defaults = generic_params
564 .params_including_parent()
565 .into_iter()
566 .map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t)))
567 .collect();
568
569 Substs(defaults)
570}
571
572fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig {
573 let data = db.function_data(def);
574 let resolver = def.resolver(db);
575 let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
576 let ret = Ty::from_hir(db, &resolver, &data.ret_type);
577 FnSig::from_params_and_return(params, ret)
578}
579
580/// Build the declared type of a function. This should not need to look at the
581/// function body.
582fn type_for_fn(db: &impl HirDatabase, def: FunctionId) -> Ty {
583 let generics = db.generic_params(def.into());
584 let substs = Substs::identity(&generics);
585 Ty::apply(TypeCtor::FnDef(def.into()), substs)
586}
587
588/// Build the declared type of a const.
589fn type_for_const(db: &impl HirDatabase, def: ConstId) -> Ty {
590 let data = db.const_data(def);
591 let resolver = def.resolver(db);
592
593 Ty::from_hir(db, &resolver, &data.type_ref)
594}
595
596/// Build the declared type of a static.
597fn type_for_static(db: &impl HirDatabase, def: StaticId) -> Ty {
598 let data = db.static_data(def);
599 let resolver = def.resolver(db);
600
601 Ty::from_hir(db, &resolver, &data.type_ref)
602}
603
604/// Build the declared type of a static.
605fn type_for_builtin(def: BuiltinType) -> Ty {
606 Ty::simple(match def {
607 BuiltinType::Char => TypeCtor::Char,
608 BuiltinType::Bool => TypeCtor::Bool,
609 BuiltinType::Str => TypeCtor::Str,
610 BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
611 BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
612 })
613}
614
615fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig {
616 let struct_data = db.struct_data(def.into());
617 let fields = struct_data.variant_data.fields();
618 let resolver = def.resolver(db);
619 let params = fields
620 .iter()
621 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
622 .collect::<Vec<_>>();
623 let ret = type_for_adt(db, def.into());
624 FnSig::from_params_and_return(params, ret)
625}
626
627/// Build the type of a tuple struct constructor.
628fn type_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> Ty {
629 let struct_data = db.struct_data(def.into());
630 if struct_data.variant_data.is_unit() {
631 return type_for_adt(db, def.into()); // Unit struct
632 }
633 let generics = db.generic_params(def.into());
634 let substs = Substs::identity(&generics);
635 Ty::apply(TypeCtor::FnDef(def.into()), substs)
636}
637
638fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig {
639 let enum_data = db.enum_data(def.parent);
640 let var_data = &enum_data.variants[def.local_id];
641 let fields = var_data.variant_data.fields();
642 let resolver = def.parent.resolver(db);
643 let params = fields
644 .iter()
645 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
646 .collect::<Vec<_>>();
647 let generics = db.generic_params(def.parent.into());
648 let substs = Substs::identity(&generics);
649 let ret = type_for_adt(db, def.parent.into()).subst(&substs);
650 FnSig::from_params_and_return(params, ret)
651}
652
653/// Build the type of a tuple enum variant constructor.
654fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> Ty {
655 let enum_data = db.enum_data(def.parent);
656 let var_data = &enum_data.variants[def.local_id].variant_data;
657 if var_data.is_unit() {
658 return type_for_adt(db, def.parent.into()); // Unit variant
659 }
660 let generics = db.generic_params(def.parent.into());
661 let substs = Substs::identity(&generics);
662 Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs)
663}
664
665fn type_for_adt(db: &impl HirDatabase, adt: AdtId) -> Ty {
666 let generics = db.generic_params(adt.into());
667 Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics))
668}
669
670fn type_for_type_alias(db: &impl HirDatabase, t: TypeAliasId) -> Ty {
671 let generics = db.generic_params(t.into());
672 let resolver = t.resolver(db);
673 let type_ref = &db.type_alias_data(t).type_ref;
674 let substs = Substs::identity(&generics);
675 let inner = Ty::from_hir(db, &resolver, type_ref.as_ref().unwrap_or(&TypeRef::Error));
676 inner.subst(&substs)
677}
678
679#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
680pub enum CallableDef {
681 FunctionId(FunctionId),
682 StructId(StructId),
683 EnumVariantId(EnumVariantId),
684}
685impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId);
686
687impl CallableDef {
688 pub fn krate(self, db: &impl HirDatabase) -> CrateId {
689 match self {
690 CallableDef::FunctionId(f) => f.lookup(db).module(db).krate,
691 CallableDef::StructId(s) => s.module(db).krate,
692 CallableDef::EnumVariantId(e) => e.parent.module(db).krate,
693 }
694 }
695}
696
697impl From<CallableDef> for GenericDefId {
698 fn from(def: CallableDef) -> GenericDefId {
699 match def {
700 CallableDef::FunctionId(f) => f.into(),
701 CallableDef::StructId(s) => s.into(),
702 CallableDef::EnumVariantId(e) => e.into(),
703 }
704 }
705}
706
707#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
708pub enum TyDefId {
709 BuiltinType(BuiltinType),
710 AdtId(AdtId),
711 TypeAliasId(TypeAliasId),
712}
713impl_froms!(TyDefId: BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId);
714
715#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
716pub enum ValueTyDefId {
717 FunctionId(FunctionId),
718 StructId(StructId),
719 EnumVariantId(EnumVariantId),
720 ConstId(ConstId),
721 StaticId(StaticId),
722}
723impl_froms!(ValueTyDefId: FunctionId, StructId, EnumVariantId, ConstId, StaticId);
724
725/// Build the declared type of an item. This depends on the namespace; e.g. for
726/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
727/// the constructor function `(usize) -> Foo` which lives in the values
728/// namespace.
729pub(crate) fn ty_query(db: &impl HirDatabase, def: TyDefId) -> Ty {
730 match def {
731 TyDefId::BuiltinType(it) => type_for_builtin(it),
732 TyDefId::AdtId(it) => type_for_adt(db, it),
733 TyDefId::TypeAliasId(it) => type_for_type_alias(db, it),
734 }
735}
736pub(crate) fn value_ty_query(db: &impl HirDatabase, def: ValueTyDefId) -> Ty {
737 match def {
738 ValueTyDefId::FunctionId(it) => type_for_fn(db, it),
739 ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
740 ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
741 ValueTyDefId::ConstId(it) => type_for_const(db, it),
742 ValueTyDefId::StaticId(it) => type_for_static(db, it),
743 }
744}
745
746pub(crate) fn impl_ty_query(db: &impl HirDatabase, impl_id: ImplId) -> ImplTy {
747 let impl_data = db.impl_data(impl_id);
748 let resolver = impl_id.resolver(db);
749 let self_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
750 match impl_data.target_trait.as_ref() {
751 Some(trait_ref) => {
752 match TraitRef::from_hir(db, &resolver, trait_ref, Some(self_ty.clone())) {
753 Some(it) => ImplTy::TraitRef(it),
754 None => ImplTy::Inherent(self_ty),
755 }
756 }
757 None => ImplTy::Inherent(self_ty),
758 }
759}
diff --git a/crates/ra_hir_ty/src/marks.rs b/crates/ra_hir_ty/src/marks.rs
new file mode 100644
index 000000000..0f754eb9c
--- /dev/null
+++ b/crates/ra_hir_ty/src/marks.rs
@@ -0,0 +1,9 @@
1//! See test_utils/src/marks.rs
2
3test_utils::marks!(
4 type_var_cycles_resolve_completely
5 type_var_cycles_resolve_as_possible
6 type_var_resolves_to_int_var
7 match_ergonomics_ref
8 coerce_merge_fail_fallback
9);
diff --git a/crates/ra_hir_ty/src/method_resolution.rs b/crates/ra_hir_ty/src/method_resolution.rs
new file mode 100644
index 000000000..ee1936b0e
--- /dev/null
+++ b/crates/ra_hir_ty/src/method_resolution.rs
@@ -0,0 +1,353 @@
1//! This module is concerned with finding methods that a given type provides.
2//! For details about how this works in rustc, see the method lookup page in the
3//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
4//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
5use std::sync::Arc;
6
7use arrayvec::ArrayVec;
8use hir_def::{
9 lang_item::LangItemTarget, resolver::Resolver, type_ref::Mutability, AssocItemId, AstItemDef,
10 FunctionId, HasModule, ImplId, TraitId,
11};
12use hir_expand::name::Name;
13use ra_db::CrateId;
14use ra_prof::profile;
15use rustc_hash::FxHashMap;
16
17use crate::{
18 autoderef,
19 db::HirDatabase,
20 primitive::{FloatBitness, Uncertain},
21 utils::all_super_traits,
22 Canonical, ImplTy, InEnvironment, TraitEnvironment, TraitRef, Ty, TypeCtor,
23};
24
25/// This is used as a key for indexing impls.
26#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
27pub enum TyFingerprint {
28 Apply(TypeCtor),
29}
30
31impl TyFingerprint {
32 /// Creates a TyFingerprint for looking up an impl. Only certain types can
33 /// have impls: if we have some `struct S`, we can have an `impl S`, but not
34 /// `impl &S`. Hence, this will return `None` for reference types and such.
35 fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
36 match ty {
37 Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
38 _ => None,
39 }
40 }
41}
42
43#[derive(Debug, PartialEq, Eq)]
44pub struct CrateImplBlocks {
45 impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
46 impls_by_trait: FxHashMap<TraitId, Vec<ImplId>>,
47}
48
49impl CrateImplBlocks {
50 pub(crate) fn impls_in_crate_query(
51 db: &impl HirDatabase,
52 krate: CrateId,
53 ) -> Arc<CrateImplBlocks> {
54 let _p = profile("impls_in_crate_query");
55 let mut res =
56 CrateImplBlocks { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
57
58 let crate_def_map = db.crate_def_map(krate);
59 for (_module_id, module_data) in crate_def_map.modules.iter() {
60 for &impl_id in module_data.impls.iter() {
61 match db.impl_ty(impl_id) {
62 ImplTy::TraitRef(tr) => {
63 res.impls_by_trait.entry(tr.trait_).or_default().push(impl_id);
64 }
65 ImplTy::Inherent(self_ty) => {
66 if let Some(self_ty_fp) = TyFingerprint::for_impl(&self_ty) {
67 res.impls.entry(self_ty_fp).or_default().push(impl_id);
68 }
69 }
70 }
71 }
72 }
73
74 Arc::new(res)
75 }
76 pub fn lookup_impl_blocks(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
77 let fingerprint = TyFingerprint::for_impl(ty);
78 fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
79 }
80
81 pub fn lookup_impl_blocks_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
82 self.impls_by_trait.get(&tr).into_iter().flatten().copied()
83 }
84
85 pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
86 self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
87 }
88}
89
90impl Ty {
91 pub fn def_crates(
92 &self,
93 db: &impl HirDatabase,
94 cur_crate: CrateId,
95 ) -> Option<ArrayVec<[CrateId; 2]>> {
96 // Types like slice can have inherent impls in several crates, (core and alloc).
97 // The corresponding impls are marked with lang items, so we can use them to find the required crates.
98 macro_rules! lang_item_crate {
99 ($($name:expr),+ $(,)?) => {{
100 let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
101 $(
102 v.extend(db.lang_item(cur_crate, $name.into()));
103 )+
104 v
105 }};
106 }
107
108 let lang_item_targets = match self {
109 Ty::Apply(a_ty) => match a_ty.ctor {
110 TypeCtor::Adt(def_id) => {
111 return Some(std::iter::once(def_id.module(db).krate).collect())
112 }
113 TypeCtor::Bool => lang_item_crate!("bool"),
114 TypeCtor::Char => lang_item_crate!("char"),
115 TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
116 // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
117 FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
118 FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
119 },
120 TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
121 TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
122 TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
123 TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
124 TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
125 _ => return None,
126 },
127 _ => return None,
128 };
129 let res = lang_item_targets
130 .into_iter()
131 .filter_map(|it| match it {
132 LangItemTarget::ImplBlockId(it) => Some(it),
133 _ => None,
134 })
135 .map(|it| it.module(db).krate)
136 .collect();
137 Some(res)
138 }
139}
140/// Look up the method with the given name, returning the actual autoderefed
141/// receiver type (but without autoref applied yet).
142pub(crate) fn lookup_method(
143 ty: &Canonical<Ty>,
144 db: &impl HirDatabase,
145 name: &Name,
146 resolver: &Resolver,
147) -> Option<(Ty, FunctionId)> {
148 iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| match f
149 {
150 AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
151 _ => None,
152 })
153}
154
155/// Whether we're looking up a dotted method call (like `v.len()`) or a path
156/// (like `Vec::new`).
157#[derive(Copy, Clone, Debug, PartialEq, Eq)]
158pub enum LookupMode {
159 /// Looking up a method call like `v.len()`: We only consider candidates
160 /// that have a `self` parameter, and do autoderef.
161 MethodCall,
162 /// Looking up a path like `Vec::new` or `Vec::default`: We consider all
163 /// candidates including associated constants, but don't do autoderef.
164 Path,
165}
166
167// This would be nicer if it just returned an iterator, but that runs into
168// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
169// FIXME add a context type here?
170pub fn iterate_method_candidates<T>(
171 ty: &Canonical<Ty>,
172 db: &impl HirDatabase,
173 resolver: &Resolver,
174 name: Option<&Name>,
175 mode: LookupMode,
176 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
177) -> Option<T> {
178 let krate = resolver.krate()?;
179 match mode {
180 LookupMode::MethodCall => {
181 // For method calls, rust first does any number of autoderef, and then one
182 //