1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
//! Maps *syntax* of various definitions to their semantic ids.
//!
//! This is a very interesting module, and, in some sense, can be considered the
//! heart of the IDE parts of rust-analyzer.
//!
//! This module solves the following problem:
//!
//! Given a piece of syntax, find the corresponding semantic definition (def).
//!
//! This problem is a part of more-or-less every IDE feature implemented. Every
//! IDE functionality (like goto to definition), conceptually starts with a
//! specific cursor position in a file. Starting with this text offset, we first
//! figure out what syntactic construct are we at: is this a pattern, an
//! expression, an item definition.
//!
//! Knowing only the syntax gives us relatively little info. For example,
//! looking at the syntax of the function we can realise that it is a part of an
//! `impl` block, but we won't be able to tell what trait function the current
//! function overrides, and whether it does that correctly. For that, we need to
//! go from [`ast::Fn`] to [`crate::Function`], and that's exactly what this
//! module does.
//!
//! As syntax trees are values and don't know their place of origin/identity,
//! this module also requires [`InFile`] wrappers to understand which specific
//! real or macro-expanded file the tree comes from.
//!
//! The actual algorithm to resolve syntax to def is curious in two aspects:
//!
//! * It is recursive
//! * It uses the inverse algorithm (what is the syntax for this def?)
//!
//! Specifically, the algorithm goes like this:
//!
//! 1. Find the syntactic container for the syntax. For example, field's
//! container is the struct, and structs container is a module.
//! 2. Recursively get the def corresponding to container.
//! 3. Ask the container def for all child defs. These child defs contain
//! the answer and answer's siblings.
//! 4. For each child def, ask for it's source.
//! 5. The child def whose source is the syntax node we've started with
//! is the answer.
//!
//! It's interesting that both Roslyn and Kotlin contain very similar code
//! shape.
//!
//! Let's take a look at Roslyn:
//!
//! <https://github.com/dotnet/roslyn/blob/36a0c338d6621cc5fe34b79d414074a95a6a489c/src/Compilers/CSharp/Portable/Compilation/SyntaxTreeSemanticModel.cs#L1403-L1429>
//! <https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1403>
//!
//! The `GetDeclaredType` takes `Syntax` as input, and returns `Symbol` as
//! output. First, it retrieves a `Symbol` for parent `Syntax`:
//!
//! * https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1423
//!
//! Then, it iterates parent symbol's children, looking for one which has the
//! same text span as the original node:
//!
//! <https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1786>
//!
//! Now, let's look at Kotlin:
//!
//! <https://github.com/JetBrains/kotlin/blob/a288b8b00e4754a1872b164999c6d3f3b8c8994a/idea/idea-frontend-fir/idea-fir-low-level-api/src/org/jetbrains/kotlin/idea/fir/low/level/api/FirModuleResolveStateImpl.kt#L93-L125>
//!
//! This function starts with a syntax node (`KtExpression` is syntax, like all
//! `Kt` nodes), and returns a def. It uses
//! `getNonLocalContainingOrThisDeclaration` to get syntactic container for a
//! current node. Then, `findSourceNonLocalFirDeclaration` gets `Fir` for this
//! parent. Finally, `findElementIn` function traverses `Fir` children to find
//! one with the same source we originally started with.
//!
//! One question is left though -- where does the recursion stops? This happens
//! when we get to the file syntax node, which doesn't have a syntactic parent.
//! In that case, we loop through all the crates that might contain this file
//! and look for a module whose source is the given file.
//!
//! Note that the logic in this module is somewhat fundamentally imprecise --
//! due to conditional compilation and `#[path]` attributes, there's no
//! injective mapping from syntax nodes to defs. This is not an edge case --
//! more or less every item in a `lib.rs` is a part of two distinct crates: a
//! library with `--cfg test` and a library without.
//!
//! At the moment, we don't really handle this well and return the first answer
//! that works. Ideally, we should first let the caller to pick a specific
//! active crate for a given position, and then provide an API to resolve all
//! syntax nodes against this specific crate.
use base_db::FileId;
use hir_def::{
child_by_source::ChildBySource,
dyn_map::DynMap,
expr::{LabelId, PatId},
keys::{self, Key},
ConstId, ConstParamId, DefWithBodyId, EnumId, EnumVariantId, FieldId, FunctionId, GenericDefId,
ImplId, LifetimeParamId, ModuleId, StaticId, StructId, TraitId, TypeAliasId, TypeParamId,
UnionId, VariantId,
};
use hir_expand::{name::AsName, AstId, MacroCallId, MacroDefId, MacroDefKind};
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use stdx::impl_from;
use syntax::{
ast::{self, NameOwner},
match_ast, AstNode, SyntaxNode,
};
use crate::{db::HirDatabase, InFile};
pub(super) type SourceToDefCache = FxHashMap<ChildContainer, DynMap>;
pub(super) struct SourceToDefCtx<'a, 'b> {
pub(super) db: &'b dyn HirDatabase,
pub(super) cache: &'a mut SourceToDefCache,
}
impl SourceToDefCtx<'_, '_> {
pub(super) fn file_to_def(&mut self, file: FileId) -> SmallVec<[ModuleId; 1]> {
let _p = profile::span("SourceBinder::to_module_def");
let mut mods = SmallVec::new();
for &crate_id in self.db.relevant_crates(file).iter() {
// FIXME: inner items
let crate_def_map = self.db.crate_def_map(crate_id);
mods.extend(
crate_def_map
.modules_for_file(file)
.map(|local_id| crate_def_map.module_id(local_id)),
)
}
mods
}
pub(super) fn module_to_def(&mut self, src: InFile<ast::Module>) -> Option<ModuleId> {
let _p = profile::span("module_to_def");
let parent_declaration = src
.as_ref()
.map(|it| it.syntax())
.cloned()
.ancestors_with_macros(self.db.upcast())
.skip(1)
.find_map(|it| {
let m = ast::Module::cast(it.value.clone())?;
Some(it.with_value(m))
});
let parent_module = match parent_declaration {
Some(parent_declaration) => self.module_to_def(parent_declaration),
None => {
let file_id = src.file_id.original_file(self.db.upcast());
self.file_to_def(file_id).get(0).copied()
}
}?;
let child_name = src.value.name()?.as_name();
let def_map = parent_module.def_map(self.db.upcast());
let child_id = *def_map[parent_module.local_id].children.get(&child_name)?;
Some(def_map.module_id(child_id))
}
pub(super) fn source_file_to_def(&mut self, src: InFile<ast::SourceFile>) -> Option<ModuleId> {
let _p = profile::span("source_file_to_def");
let file_id = src.file_id.original_file(self.db.upcast());
self.file_to_def(file_id).get(0).copied()
}
pub(super) fn trait_to_def(&mut self, src: InFile<ast::Trait>) -> Option<TraitId> {
self.to_def(src, keys::TRAIT)
}
pub(super) fn impl_to_def(&mut self, src: InFile<ast::Impl>) -> Option<ImplId> {
self.to_def(src, keys::IMPL)
}
pub(super) fn fn_to_def(&mut self, src: InFile<ast::Fn>) -> Option<FunctionId> {
self.to_def(src, keys::FUNCTION)
}
pub(super) fn struct_to_def(&mut self, src: InFile<ast::Struct>) -> Option<StructId> {
self.to_def(src, keys::STRUCT)
}
pub(super) fn enum_to_def(&mut self, src: InFile<ast::Enum>) -> Option<EnumId> {
self.to_def(src, keys::ENUM)
}
pub(super) fn union_to_def(&mut self, src: InFile<ast::Union>) -> Option<UnionId> {
self.to_def(src, keys::UNION)
}
pub(super) fn static_to_def(&mut self, src: InFile<ast::Static>) -> Option<StaticId> {
self.to_def(src, keys::STATIC)
}
pub(super) fn const_to_def(&mut self, src: InFile<ast::Const>) -> Option<ConstId> {
self.to_def(src, keys::CONST)
}
pub(super) fn type_alias_to_def(&mut self, src: InFile<ast::TypeAlias>) -> Option<TypeAliasId> {
self.to_def(src, keys::TYPE_ALIAS)
}
pub(super) fn record_field_to_def(&mut self, src: InFile<ast::RecordField>) -> Option<FieldId> {
self.to_def(src, keys::RECORD_FIELD)
}
pub(super) fn tuple_field_to_def(&mut self, src: InFile<ast::TupleField>) -> Option<FieldId> {
self.to_def(src, keys::TUPLE_FIELD)
}
pub(super) fn enum_variant_to_def(
&mut self,
src: InFile<ast::Variant>,
) -> Option<EnumVariantId> {
self.to_def(src, keys::VARIANT)
}
pub(super) fn bind_pat_to_def(
&mut self,
src: InFile<ast::IdentPat>,
) -> Option<(DefWithBodyId, PatId)> {
let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?;
let (_body, source_map) = self.db.body_with_source_map(container);
let src = src.map(ast::Pat::from);
let pat_id = source_map.node_pat(src.as_ref())?;
Some((container, pat_id))
}
pub(super) fn self_param_to_def(
&mut self,
src: InFile<ast::SelfParam>,
) -> Option<(DefWithBodyId, PatId)> {
let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?;
let (_body, source_map) = self.db.body_with_source_map(container);
let pat_id = source_map.node_self_param(src.as_ref())?;
Some((container, pat_id))
}
pub(super) fn label_to_def(
&mut self,
src: InFile<ast::Label>,
) -> Option<(DefWithBodyId, LabelId)> {
let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?;
let (_body, source_map) = self.db.body_with_source_map(container);
let label_id = source_map.node_label(src.as_ref())?;
Some((container, label_id))
}
pub(super) fn item_to_macro_call(&mut self, src: InFile<ast::Item>) -> Option<MacroCallId> {
let map = self.dyn_map(src.as_ref())?;
map[keys::ATTR_MACRO].get(&src).copied()
}
fn to_def<Ast: AstNode + 'static, ID: Copy + 'static>(
&mut self,
src: InFile<Ast>,
key: Key<Ast, ID>,
) -> Option<ID> {
self.dyn_map(src.as_ref())?[key].get(&src).copied()
}
fn dyn_map<Ast: AstNode + 'static>(&mut self, src: InFile<&Ast>) -> Option<&DynMap> {
let container = self.find_container(src.map(|it| it.syntax()))?;
let db = self.db;
let dyn_map =
&*self.cache.entry(container).or_insert_with(|| container.child_by_source(db));
Some(dyn_map)
}
pub(super) fn type_param_to_def(&mut self, src: InFile<ast::TypeParam>) -> Option<TypeParamId> {
let container: ChildContainer =
self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into();
let db = self.db;
let dyn_map =
&*self.cache.entry(container).or_insert_with(|| container.child_by_source(db));
dyn_map[keys::TYPE_PARAM].get(&src).copied()
}
pub(super) fn lifetime_param_to_def(
&mut self,
src: InFile<ast::LifetimeParam>,
) -> Option<LifetimeParamId> {
let container: ChildContainer =
self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into();
let db = self.db;
let dyn_map =
&*self.cache.entry(container).or_insert_with(|| container.child_by_source(db));
dyn_map[keys::LIFETIME_PARAM].get(&src).copied()
}
pub(super) fn const_param_to_def(
&mut self,
src: InFile<ast::ConstParam>,
) -> Option<ConstParamId> {
let container: ChildContainer =
self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into();
let db = self.db;
let dyn_map =
&*self.cache.entry(container).or_insert_with(|| container.child_by_source(db));
dyn_map[keys::CONST_PARAM].get(&src).copied()
}
// FIXME: use DynMap as well?
pub(super) fn macro_to_def(&mut self, src: InFile<ast::Macro>) -> Option<MacroDefId> {
let file_ast_id = self.db.ast_id_map(src.file_id).ast_id(&src.value);
let ast_id = AstId::new(src.file_id, file_ast_id.upcast());
let kind = MacroDefKind::Declarative(ast_id);
let file_id = src.file_id.original_file(self.db.upcast());
let krate = self.file_to_def(file_id).get(0).copied()?.krate();
Some(MacroDefId { krate, kind, local_inner: false })
}
pub(super) fn find_container(&mut self, src: InFile<&SyntaxNode>) -> Option<ChildContainer> {
for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) {
if let Some(res) = self.container_to_def(container) {
return Some(res);
}
}
let def = self.file_to_def(src.file_id.original_file(self.db.upcast())).get(0).copied()?;
Some(def.into())
}
fn container_to_def(&mut self, container: InFile<SyntaxNode>) -> Option<ChildContainer> {
let cont = match_ast! {
match (container.value) {
ast::Module(it) => {
let def = self.module_to_def(container.with_value(it))?;
def.into()
},
ast::Trait(it) => {
let def = self.trait_to_def(container.with_value(it))?;
def.into()
},
ast::Impl(it) => {
let def = self.impl_to_def(container.with_value(it))?;
def.into()
},
ast::Fn(it) => {
let def = self.fn_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
},
ast::Struct(it) => {
let def = self.struct_to_def(container.with_value(it))?;
VariantId::from(def).into()
},
ast::Enum(it) => {
let def = self.enum_to_def(container.with_value(it))?;
def.into()
},
ast::Union(it) => {
let def = self.union_to_def(container.with_value(it))?;
VariantId::from(def).into()
},
ast::Static(it) => {
let def = self.static_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
},
ast::Const(it) => {
let def = self.const_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
},
ast::TypeAlias(it) => {
let def = self.type_alias_to_def(container.with_value(it))?;
def.into()
},
ast::Variant(it) => {
let def = self.enum_variant_to_def(container.with_value(it))?;
VariantId::from(def).into()
},
_ => return None,
}
};
Some(cont)
}
fn find_generic_param_container(&mut self, src: InFile<&SyntaxNode>) -> Option<GenericDefId> {
for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) {
let res: GenericDefId = match_ast! {
match (container.value) {
ast::Fn(it) => self.fn_to_def(container.with_value(it))?.into(),
ast::Struct(it) => self.struct_to_def(container.with_value(it))?.into(),
ast::Enum(it) => self.enum_to_def(container.with_value(it))?.into(),
ast::Trait(it) => self.trait_to_def(container.with_value(it))?.into(),
ast::TypeAlias(it) => self.type_alias_to_def(container.with_value(it))?.into(),
ast::Impl(it) => self.impl_to_def(container.with_value(it))?.into(),
_ => continue,
}
};
return Some(res);
}
None
}
fn find_pat_or_label_container(&mut self, src: InFile<&SyntaxNode>) -> Option<DefWithBodyId> {
for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) {
let res: DefWithBodyId = match_ast! {
match (container.value) {
ast::Const(it) => self.const_to_def(container.with_value(it))?.into(),
ast::Static(it) => self.static_to_def(container.with_value(it))?.into(),
ast::Fn(it) => self.fn_to_def(container.with_value(it))?.into(),
_ => continue,
}
};
return Some(res);
}
None
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub(crate) enum ChildContainer {
DefWithBodyId(DefWithBodyId),
ModuleId(ModuleId),
TraitId(TraitId),
ImplId(ImplId),
EnumId(EnumId),
VariantId(VariantId),
TypeAliasId(TypeAliasId),
/// XXX: this might be the same def as, for example an `EnumId`. However,
/// here the children are generic parameters, and not, eg enum variants.
GenericDefId(GenericDefId),
}
impl_from! {
DefWithBodyId,
ModuleId,
TraitId,
ImplId,
EnumId,
VariantId,
TypeAliasId,
GenericDefId
for ChildContainer
}
impl ChildContainer {
fn child_by_source(self, db: &dyn HirDatabase) -> DynMap {
let db = db.upcast();
match self {
ChildContainer::DefWithBodyId(it) => it.child_by_source(db),
ChildContainer::ModuleId(it) => it.child_by_source(db),
ChildContainer::TraitId(it) => it.child_by_source(db),
ChildContainer::ImplId(it) => it.child_by_source(db),
ChildContainer::EnumId(it) => it.child_by_source(db),
ChildContainer::VariantId(it) => it.child_by_source(db),
ChildContainer::TypeAliasId(_) => DynMap::default(),
ChildContainer::GenericDefId(it) => it.child_by_source(db),
}
}
}
|