aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/diagnostics/match_check.rs
blob: 61c47eec876d9959241cd8ee8dc3c5a79c898444 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
//! This module implements match statement exhaustiveness checking and usefulness checking
//! for match arms.
//!
//! It is modeled on the rustc module `librustc_mir_build::hair::pattern::_match`, which
//! contains very detailed documentation about the algorithms used here. I've duplicated
//! most of that documentation below.
//!
//! This file includes the logic for exhaustiveness and usefulness checking for
//! pattern-matching. Specifically, given a list of patterns for a type, we can
//! tell whether:
//! - (a) the patterns cover every possible constructor for the type (exhaustiveness).
//! - (b) each pattern is necessary (usefulness).
//!
//! The algorithm implemented here is a modified version of the one described in
//! <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
//! However, to save future implementors from reading the original paper, we
//! summarize the algorithm here to hopefully save time and be a little clearer
//! (without being so rigorous).
//!
//! The core of the algorithm revolves about a "usefulness" check. In particular, we
//! are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
//! a matrix). `U(P, p)` represents whether, given an existing list of patterns
//! `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
//! uncovered values of the type).
//!
//! If we have this predicate, then we can easily compute both exhaustiveness of an
//! entire set of patterns and the individual usefulness of each one.
//! (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
//! match doesn't increase the number of values we're matching)
//! (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
//! pattern to those that have come before it doesn't increase the number of values
//! we're matching).
//!
//! During the course of the algorithm, the rows of the matrix won't just be individual patterns,
//! but rather partially-deconstructed patterns in the form of a list of patterns. The paper
//! calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
//! new pattern `p`.
//!
//! For example, say we have the following:
//!
//! ```ignore
//! // x: (Option<bool>, Result<()>)
//! match x {
//!     (Some(true), _) => (),
//!     (None, Err(())) => (),
//!     (None, Err(_)) => (),
//! }
//! ```
//!
//! Here, the matrix `P` starts as:
//!
//! ```text
//! [
//!     [(Some(true), _)],
//!     [(None, Err(()))],
//!     [(None, Err(_))],
//! ]
//! ```
//!
//! We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
//! `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
//! all the values it covers are already covered by row 2.
//!
//! A list of patterns can be thought of as a stack, because we are mainly interested in the top of
//! the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
//! To match the paper, the top of the stack is at the beginning / on the left.
//!
//! There are two important operations on pattern-stacks necessary to understand the algorithm:
//!
//! 1. We can pop a given constructor off the top of a stack. This operation is called
//!    `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
//!    `None`) and `p` a pattern-stack.
//!    If the pattern on top of the stack can cover `c`, this removes the constructor and
//!    pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
//!    Otherwise the pattern-stack is discarded.
//!    This essentially filters those pattern-stacks whose top covers the constructor `c` and
//!    discards the others.
//!
//!    For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
//!    pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
//!    `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
//!    nothing back.
//!
//!    This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
//!    on top of the stack, and we have four cases:
//!
//!    * 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We push onto
//!           the stack the arguments of this constructor, and return the result:
//!
//!          r_1, .., r_a, p_2, .., p_n
//!
//!    * 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and return
//!           nothing.
//!    * 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
//!           arguments (its arity), and return the resulting stack:
//!
//!          _, .., _, p_2, .., p_n
//!
//!    * 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting stack:
//!
//!          S(c, (r_1, p_2, .., p_n))
//!          S(c, (r_2, p_2, .., p_n))
//!
//! 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
//!    a pattern-stack.
//!    This is used when we know there are missing constructor cases, but there might be
//!    existing wildcard patterns, so to check the usefulness of the matrix, we have to check
//!    all its *other* components.
//!
//!    It is computed as follows. We look at the pattern `p_1` on top of the stack,
//!    and we have three cases:
//!    * 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
//!    * 1.2. `p_1 = _`. We return the rest of the stack:
//!
//!          p_2, .., p_n
//!
//!    * 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting stack:
//!
//!          D((r_1, p_2, .., p_n))
//!          D((r_2, p_2, .., p_n))
//!
//!    Note that the OR-patterns are not always used directly in Rust, but are used to derive the
//!    exhaustive integer matching rules, so they're written here for posterity.
//!
//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
//! the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
//!
//!
//! The algorithm for computing `U`
//! -------------------------------
//! The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
//! That means we're going to check the components from left-to-right, so the algorithm
//! operates principally on the first component of the matrix and new pattern-stack `p`.
//! This algorithm is realized in the `is_useful` function.
//!
//! Base case (`n = 0`, i.e., an empty tuple pattern):
//! - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`), then
//!   `U(P, p)` is false.
//! - Otherwise, `P` must be empty, so `U(P, p)` is true.
//!
//! Inductive step (`n > 0`, i.e., whether there's at least one column [which may then be expanded
//! into further columns later]). We're going to match on the top of the new pattern-stack, `p_1`:
//!
//! - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
//!   Then, the usefulness of `p_1` can be reduced to whether it is useful when
//!   we ignore all the patterns in the first column of `P` that involve other constructors.
//!   This is where `S(c, P)` comes in:
//!
//!   ```text
//!   U(P, p) := U(S(c, P), S(c, p))
//!   ```
//!
//!   This special case is handled in `is_useful_specialized`.
//!
//!   For example, if `P` is:
//!
//!   ```text
//!   [
//!       [Some(true), _],
//!       [None, 0],
//!   ]
//!   ```
//!
//!   and `p` is `[Some(false), 0]`, then we don't care about row 2 since we know `p` only
//!   matches values that row 2 doesn't. For row 1 however, we need to dig into the
//!   arguments of `Some` to know whether some new value is covered. So we compute
//!   `U([[true, _]], [false, 0])`.
//!
//! - If `p_1 == _`, then we look at the list of constructors that appear in the first component of
//!   the rows of `P`:
//!     - If there are some constructors that aren't present, then we might think that the
//!       wildcard `_` is useful, since it covers those constructors that weren't covered
//!       before.
//!       That's almost correct, but only works if there were no wildcards in those first
//!       components. So we need to check that `p` is useful with respect to the rows that
//!       start with a wildcard, if there are any. This is where `D` comes in:
//!       `U(P, p) := U(D(P), D(p))`
//!
//!       For example, if `P` is:
//!       ```text
//!       [
//!           [_, true, _],
//!           [None, false, 1],
//!       ]
//!       ```
//!       and `p` is `[_, false, _]`, the `Some` constructor doesn't appear in `P`. So if we
//!       only had row 2, we'd know that `p` is useful. However row 1 starts with a
//!       wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
//!
//!     - Otherwise, all possible constructors (for the relevant type) are present. In this
//!       case we must check whether the wildcard pattern covers any unmatched value. For
//!       that, we can think of the `_` pattern as a big OR-pattern that covers all
//!       possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
//!       example. The wildcard pattern is useful in this case if it is useful when
//!       specialized to one of the possible constructors. So we compute:
//!       `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
//!
//!       For example, if `P` is:
//!       ```text
//!       [
//!           [Some(true), _],
//!           [None, false],
//!       ]
//!       ```
//!       and `p` is `[_, false]`, both `None` and `Some` constructors appear in the first
//!       components of `P`. We will therefore try popping both constructors in turn: we
//!       compute `U([[true, _]], [_, false])` for the `Some` constructor, and `U([[false]],
//!       [false])` for the `None` constructor. The first case returns true, so we know that
//!       `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
//!       before.
//!
//! - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
//!
//!   ```text
//!   U(P, p) := U(P, (r_1, p_2, .., p_n))
//!            || U(P, (r_2, p_2, .., p_n))
//!   ```
use std::{iter, sync::Arc};

use arena::Idx;
use hir_def::{
    adt::VariantData,
    body::Body,
    expr::{Expr, Literal, Pat, PatId},
    AdtId, EnumVariantId, StructId, VariantId,
};
use smallvec::{smallvec, SmallVec};

use crate::{db::HirDatabase, ApplicationTy, InferenceResult, Ty, TypeCtor};

#[derive(Debug, Clone, Copy)]
/// Either a pattern from the source code being analyzed, represented as
/// as `PatId`, or a `Wild` pattern which is created as an intermediate
/// step in the match checking algorithm and thus is not backed by a
/// real `PatId`.
///
/// Note that it is totally valid for the `PatId` variant to contain
/// a `PatId` which resolves to a `Wild` pattern, if that wild pattern
/// exists in the source code being analyzed.
enum PatIdOrWild {
    PatId(PatId),
    Wild,
}

impl PatIdOrWild {
    fn as_pat(self, cx: &MatchCheckCtx) -> Pat {
        match self {
            PatIdOrWild::PatId(id) => cx.body.pats[id].clone(),
            PatIdOrWild::Wild => Pat::Wild,
        }
    }

    fn as_id(self) -> Option<PatId> {
        match self {
            PatIdOrWild::PatId(id) => Some(id),
            PatIdOrWild::Wild => None,
        }
    }
}

impl From<PatId> for PatIdOrWild {
    fn from(pat_id: PatId) -> Self {
        Self::PatId(pat_id)
    }
}

impl From<&PatId> for PatIdOrWild {
    fn from(pat_id: &PatId) -> Self {
        Self::PatId(*pat_id)
    }
}

#[derive(Debug, Clone, Copy, PartialEq)]
pub(super) enum MatchCheckErr {
    NotImplemented,
    MalformedMatchArm,
    /// Used when type inference cannot resolve the type of
    /// a pattern or expression.
    Unknown,
}

/// The return type of `is_useful` is either an indication of usefulness
/// of the match arm, or an error in the case the match statement
/// is made up of types for which exhaustiveness checking is currently
/// not completely implemented.
///
/// The `std::result::Result` type is used here rather than a custom enum
/// to allow the use of `?`.
pub(super) type MatchCheckResult<T> = Result<T, MatchCheckErr>;

#[derive(Debug)]
/// A row in a Matrix.
///
/// This type is modeled from the struct of the same name in `rustc`.
pub(super) struct PatStack(PatStackInner);
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;

impl PatStack {
    pub(super) fn from_pattern(pat_id: PatId) -> PatStack {
        Self(smallvec!(pat_id.into()))
    }

    pub(super) fn from_wild() -> PatStack {
        Self(smallvec!(PatIdOrWild::Wild))
    }

    fn from_slice(slice: &[PatIdOrWild]) -> PatStack {
        Self(SmallVec::from_slice(slice))
    }

    fn from_vec(v: PatStackInner) -> PatStack {
        Self(v)
    }

    fn get_head(&self) -> Option<PatIdOrWild> {
        self.0.first().copied()
    }

    fn tail(&self) -> &[PatIdOrWild] {
        self.0.get(1..).unwrap_or(&[])
    }

    fn to_tail(&self) -> PatStack {
        Self::from_slice(self.tail())
    }

    fn replace_head_with<I, T>(&self, pats: I) -> PatStack
    where
        I: Iterator<Item = T>,
        T: Into<PatIdOrWild>,
    {
        let mut patterns: PatStackInner = smallvec![];
        for pat in pats {
            patterns.push(pat.into());
        }
        for pat in &self.0[1..] {
            patterns.push(*pat);
        }
        PatStack::from_vec(patterns)
    }

    /// Computes `D(self)`.
    ///
    /// See the module docs and the associated documentation in rustc for details.
    fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Option<PatStack> {
        if matches!(self.get_head()?.as_pat(cx), Pat::Wild) {
            Some(self.to_tail())
        } else {
            None
        }
    }

    /// Computes `S(constructor, self)`.
    ///
    /// See the module docs and the associated documentation in rustc for details.
    fn specialize_constructor(
        &self,
        cx: &MatchCheckCtx,
        constructor: &Constructor,
    ) -> MatchCheckResult<Option<PatStack>> {
        let head = match self.get_head() {
            Some(head) => head,
            None => return Ok(None),
        };

        let head_pat = head.as_pat(cx);
        let result = match (head_pat, constructor) {
            (Pat::Tuple { args: pat_ids, ellipsis }, &Constructor::Tuple { arity }) => {
                if let Some(ellipsis) = ellipsis {
                    let (pre, post) = pat_ids.split_at(ellipsis);
                    let n_wild_pats = arity.saturating_sub(pat_ids.len());
                    let pre_iter = pre.iter().map(Into::into);
                    let wildcards = iter::repeat(PatIdOrWild::Wild).take(n_wild_pats);
                    let post_iter = post.iter().map(Into::into);
                    Some(self.replace_head_with(pre_iter.chain(wildcards).chain(post_iter)))
                } else {
                    Some(self.replace_head_with(pat_ids.iter()))
                }
            }
            (Pat::Lit(lit_expr), Constructor::Bool(constructor_val)) => {
                match cx.body.exprs[lit_expr] {
                    Expr::Literal(Literal::Bool(pat_val)) if *constructor_val == pat_val => {
                        Some(self.to_tail())
                    }
                    // it was a bool but the value doesn't match
                    Expr::Literal(Literal::Bool(_)) => None,
                    // perhaps this is actually unreachable given we have
                    // already checked that these match arms have the appropriate type?
                    _ => return Err(MatchCheckErr::NotImplemented),
                }
            }
            (Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)?),
            (Pat::Path(_), constructor) => {
                // unit enum variants become `Pat::Path`
                let pat_id = head.as_id().expect("we know this isn't a wild");
                let variant_id: VariantId = match constructor {
                    &Constructor::Enum(e) => e.into(),
                    &Constructor::Struct(s) => s.into(),
                    _ => return Err(MatchCheckErr::NotImplemented),
                };
                if Some(variant_id) != cx.infer.variant_resolution_for_pat(pat_id) {
                    None
                } else {
                    Some(self.to_tail())
                }
            }
            (Pat::TupleStruct { args: ref pat_ids, ellipsis, .. }, constructor) => {
                let pat_id = head.as_id().expect("we know this isn't a wild");
                let variant_id: VariantId = match constructor {
                    &Constructor::Enum(e) => e.into(),
                    &Constructor::Struct(s) => s.into(),
                    _ => return Err(MatchCheckErr::MalformedMatchArm),
                };
                if Some(variant_id) != cx.infer.variant_resolution_for_pat(pat_id) {
                    None
                } else {
                    let constructor_arity = constructor.arity(cx)?;
                    if let Some(ellipsis_position) = ellipsis {
                        // If there are ellipsis in the pattern, the ellipsis must take the place
                        // of at least one sub-pattern, so `pat_ids` should be smaller than the
                        // constructor arity.
                        if pat_ids.len() < constructor_arity {
                            let mut new_patterns: Vec<PatIdOrWild> = vec![];

                            for pat_id in &pat_ids[0..ellipsis_position] {
                                new_patterns.push((*pat_id).into());
                            }

                            for _ in 0..(constructor_arity - pat_ids.len()) {
                                new_patterns.push(PatIdOrWild::Wild);
                            }

                            for pat_id in &pat_ids[ellipsis_position..pat_ids.len()] {
                                new_patterns.push((*pat_id).into());
                            }

                            Some(self.replace_head_with(new_patterns.into_iter()))
                        } else {
                            return Err(MatchCheckErr::MalformedMatchArm);
                        }
                    } else {
                        // If there is no ellipsis in the tuple pattern, the number
                        // of patterns must equal the constructor arity.
                        if pat_ids.len() == constructor_arity {
                            Some(self.replace_head_with(pat_ids.into_iter()))
                        } else {
                            return Err(MatchCheckErr::MalformedMatchArm);
                        }
                    }
                }
            }
            (Pat::Record { args: ref arg_patterns, .. }, constructor) => {
                let pat_id = head.as_id().expect("we know this isn't a wild");
                let (variant_id, variant_data) = match constructor {
                    &Constructor::Enum(e) => (
                        e.into(),
                        cx.db.enum_data(e.parent).variants[e.local_id].variant_data.clone(),
                    ),
                    &Constructor::Struct(s) => {
                        (s.into(), cx.db.struct_data(s).variant_data.clone())
                    }
                    _ => return Err(MatchCheckErr::MalformedMatchArm),
                };
                if Some(variant_id) != cx.infer.variant_resolution_for_pat(pat_id) {
                    None
                } else {
                    match variant_data.as_ref() {
                        VariantData::Record(struct_field_arena) => {
                            // Here we treat any missing fields in the record as the wild pattern, as
                            // if the record has ellipsis. We want to do this here even if the
                            // record does not contain ellipsis, because it allows us to continue
                            // enforcing exhaustiveness for the rest of the match statement.
                            //
                            // Creating the diagnostic for the missing field in the pattern
                            // should be done in a different diagnostic.
                            let patterns = struct_field_arena.iter().map(|(_, struct_field)| {
                                arg_patterns
                                    .iter()
                                    .find(|pat| pat.name == struct_field.name)
                                    .map(|pat| PatIdOrWild::from(pat.pat))
                                    .unwrap_or(PatIdOrWild::Wild)
                            });

                            Some(self.replace_head_with(patterns))
                        }
                        _ => return Err(MatchCheckErr::Unknown),
                    }
                }
            }
            (Pat::Or(_), _) => return Err(MatchCheckErr::NotImplemented),
            (_, _) => return Err(MatchCheckErr::NotImplemented),
        };

        Ok(result)
    }

    /// A special case of `specialize_constructor` where the head of the pattern stack
    /// is a Wild pattern.
    ///
    /// Replaces the Wild pattern at the head of the pattern stack with N Wild patterns
    /// (N >= 0), where N is the arity of the given constructor.
    fn expand_wildcard(
        &self,
        cx: &MatchCheckCtx,
        constructor: &Constructor,
    ) -> MatchCheckResult<PatStack> {
        assert_eq!(
            Pat::Wild,
            self.get_head().expect("expand_wildcard called on empty PatStack").as_pat(cx),
            "expand_wildcard must only be called on PatStack with wild at head",
        );

        let mut patterns: PatStackInner = smallvec![];

        for _ in 0..constructor.arity(cx)? {
            patterns.push(PatIdOrWild::Wild);
        }

        for pat in &self.0[1..] {
            patterns.push(*pat);
        }

        Ok(PatStack::from_vec(patterns))
    }
}

/// A collection of PatStack.
///
/// This type is modeled from the struct of the same name in `rustc`.
pub(super) struct Matrix(Vec<PatStack>);

impl Matrix {
    pub(super) fn empty() -> Self {
        Self(vec![])
    }

    pub(super) fn push(&mut self, cx: &MatchCheckCtx, row: PatStack) {
        if let Some(Pat::Or(pat_ids)) = row.get_head().map(|pat_id| pat_id.as_pat(cx)) {
            // Or patterns are expanded here
            for pat_id in pat_ids {
                self.0.push(PatStack::from_pattern(pat_id));
            }
        } else {
            self.0.push(row);
        }
    }

    fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    fn heads(&self) -> Vec<PatIdOrWild> {
        self.0.iter().flat_map(|p| p.get_head()).collect()
    }

    /// Computes `D(self)` for each contained PatStack.
    ///
    /// See the module docs and the associated documentation in rustc for details.
    fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Self {
        Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_wildcard(cx)))
    }

    /// Computes `S(constructor, self)` for each contained PatStack.
    ///
    /// See the module docs and the associated documentation in rustc for details.
    fn specialize_constructor(
        &self,
        cx: &MatchCheckCtx,
        constructor: &Constructor,
    ) -> MatchCheckResult<Self> {
        let mut new_matrix = Matrix::empty();
        for pat in &self.0 {
            if let Some(pat) = pat.specialize_constructor(cx, constructor)? {
                new_matrix.push(cx, pat);
            }
        }

        Ok(new_matrix)
    }

    fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
        let mut matrix = Matrix::empty();

        for pat in iter {
            // using push ensures we expand or-patterns
            matrix.push(cx, pat);
        }

        matrix
    }
}

#[derive(Clone, Debug, PartialEq)]
/// An indication of the usefulness of a given match arm, where
/// usefulness is defined as matching some patterns which were
/// not matched by an prior match arms.
///
/// We may eventually need an `Unknown` variant here.
pub(super) enum Usefulness {
    Useful,
    NotUseful,
}

pub(super) struct MatchCheckCtx<'a> {
    pub(super) match_expr: Idx<Expr>,
    pub(super) body: Arc<Body>,
    pub(super) infer: Arc<InferenceResult>,
    pub(super) db: &'a dyn HirDatabase,
}

/// Given a set of patterns `matrix`, and pattern to consider `v`, determines
/// whether `v` is useful. A pattern is useful if it covers cases which were
/// not previously covered.
///
/// When calling this function externally (that is, not the recursive calls) it
/// expected that you have already type checked the match arms. All patterns in
/// matrix should be the same type as v, as well as they should all be the same
/// type as the match expression.
pub(super) fn is_useful(
    cx: &MatchCheckCtx,
    matrix: &Matrix,
    v: &PatStack,
) -> MatchCheckResult<Usefulness> {
    // Handle two special cases:
    // - enum with no variants
    // - `!` type
    // In those cases, no match arm is useful.
    match cx.infer[cx.match_expr].strip_references() {
        Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(AdtId::EnumId(enum_id)), .. }) => {
            if cx.db.enum_data(*enum_id).variants.is_empty() {
                return Ok(Usefulness::NotUseful);
            }
        }
        Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }) => {
            return Ok(Usefulness::NotUseful);
        }
        _ => (),
    }

    let head = match v.get_head() {
        Some(head) => head,
        None => {
            let result = if matrix.is_empty() { Usefulness::Useful } else { Usefulness::NotUseful };

            return Ok(result);
        }
    };

    if let Pat::Or(pat_ids) = head.as_pat(cx) {
        let mut found_unimplemented = false;
        let any_useful = pat_ids.iter().any(|&pat_id| {
            let v = PatStack::from_pattern(pat_id);

            match is_useful(cx, matrix, &v) {
                Ok(Usefulness::Useful) => true,
                Ok(Usefulness::NotUseful) => false,
                _ => {
                    found_unimplemented = true;
                    false
                }
            }
        });

        return if any_useful {
            Ok(Usefulness::Useful)
        } else if found_unimplemented {
            Err(MatchCheckErr::NotImplemented)
        } else {
            Ok(Usefulness::NotUseful)
        };
    }

    if let Some(constructor) = pat_constructor(cx, head)? {
        let matrix = matrix.specialize_constructor(&cx, &constructor)?;
        let v = v
            .specialize_constructor(&cx, &constructor)?
            .expect("we know this can't fail because we get the constructor from `v.head()` above");

        is_useful(&cx, &matrix, &v)
    } else {
        // expanding wildcard
        let mut used_constructors: Vec<Constructor> = vec![];
        for pat in matrix.heads() {
            if let Some(constructor) = pat_constructor(cx, pat)? {
                used_constructors.push(constructor);
            }
        }

        // We assume here that the first constructor is the "correct" type. Since we
        // only care about the "type" of the constructor (i.e. if it is a bool we
        // don't care about the value), this assumption should be valid as long as
        // the match statement is well formed. We currently uphold this invariant by
        // filtering match arms before calling `is_useful`, only passing in match arms
        // whose type matches the type of the match expression.
        match &used_constructors.first() {
            Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
                // If all constructors are covered, then we need to consider whether
                // any values are covered by this wildcard.
                //
                // For example, with matrix '[[Some(true)], [None]]', all
                // constructors are covered (`Some`/`None`), so we need
                // to perform specialization to see that our wildcard will cover
                // the `Some(false)` case.
                //
                // Here we create a constructor for each variant and then check
                // usefulness after specializing for that constructor.
                let mut found_unimplemented = false;
                for constructor in constructor.all_constructors(cx) {
                    let matrix = matrix.specialize_constructor(&cx, &constructor)?;
                    let v = v.expand_wildcard(&cx, &constructor)?;

                    match is_useful(&cx, &matrix, &v) {
                        Ok(Usefulness::Useful) => return Ok(Usefulness::Useful),
                        Ok(Usefulness::NotUseful) => continue,
                        _ => found_unimplemented = true,
                    };
                }

                if found_unimplemented {
                    Err(MatchCheckErr::NotImplemented)
                } else {
                    Ok(Usefulness::NotUseful)
                }
            }
            _ => {
                // Either not all constructors are covered, or the only other arms
                // are wildcards. Either way, this pattern is useful if it is useful
                // when compared to those arms with wildcards.
                let matrix = matrix.specialize_wildcard(&cx);
                let v = v.to_tail();

                is_useful(&cx, &matrix, &v)
            }
        }
    }
}

#[derive(Debug, Clone, Copy)]
/// Similar to TypeCtor, but includes additional information about the specific
/// value being instantiated. For example, TypeCtor::Bool doesn't contain the
/// boolean value.
enum Constructor {
    Bool(bool),
    Tuple { arity: usize },
    Enum(EnumVariantId),
    Struct(StructId),
}

impl Constructor {
    fn arity(&self, cx: &MatchCheckCtx) -> MatchCheckResult<usize> {
        let arity = match self {
            Constructor::Bool(_) => 0,
            Constructor::Tuple { arity } => *arity,
            Constructor::Enum(e) => {
                match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
                    VariantData::Tuple(struct_field_data) => struct_field_data.len(),
                    VariantData::Record(struct_field_data) => struct_field_data.len(),
                    VariantData::Unit => 0,
                }
            }
            &Constructor::Struct(s) => match cx.db.struct_data(s).variant_data.as_ref() {
                VariantData::Tuple(struct_field_data) => struct_field_data.len(),
                VariantData::Record(struct_field_data) => struct_field_data.len(),
                VariantData::Unit => 0,
            },
        };

        Ok(arity)
    }

    fn all_constructors(&self, cx: &MatchCheckCtx) -> Vec<Constructor> {
        match self {
            Constructor::Bool(_) => vec![Constructor::Bool(true), Constructor::Bool(false)],
            Constructor::Tuple { .. } | Constructor::Struct(_) => vec![*self],
            Constructor::Enum(e) => cx
                .db
                .enum_data(e.parent)
                .variants
                .iter()
                .map(|(local_id, _)| {
                    Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
                })
                .collect(),
        }
    }
}

/// Returns the constructor for the given pattern. Should only return None
/// in the case of a Wild pattern.
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> MatchCheckResult<Option<Constructor>> {
    let res = match pat.as_pat(cx) {
        Pat::Wild => None,
        Pat::Tuple { .. } => {
            let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
            Some(Constructor::Tuple {
                arity: cx.infer.type_of_pat[pat_id].as_tuple().ok_or(MatchCheckErr::Unknown)?.len(),
            })
        }
        Pat::Lit(lit_expr) => match cx.body.exprs[lit_expr] {
            Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
            _ => return Err(MatchCheckErr::NotImplemented),
        },
        Pat::TupleStruct { .. } | Pat::Path(_) | Pat::Record { .. } => {
            let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
            let variant_id =
                cx.infer.variant_resolution_for_pat(pat_id).ok_or(MatchCheckErr::Unknown)?;
            match variant_id {
                VariantId::EnumVariantId(enum_variant_id) => {
                    Some(Constructor::Enum(enum_variant_id))
                }
                VariantId::StructId(struct_id) => Some(Constructor::Struct(struct_id)),
                _ => return Err(MatchCheckErr::NotImplemented),
            }
        }
        _ => return Err(MatchCheckErr::NotImplemented),
    };

    Ok(res)
}

fn all_constructors_covered(
    cx: &MatchCheckCtx,
    constructor: &Constructor,
    used_constructors: &[Constructor],
) -> bool {
    match constructor {
        Constructor::Tuple { arity } => {
            used_constructors.iter().any(|constructor| match constructor {
                Constructor::Tuple { arity: used_arity } => arity == used_arity,
                _ => false,
            })
        }
        Constructor::Bool(_) => {
            if used_constructors.is_empty() {
                return false;
            }

            let covers_true =
                used_constructors.iter().any(|c| matches!(c, Constructor::Bool(true)));
            let covers_false =
                used_constructors.iter().any(|c| matches!(c, Constructor::Bool(false)));

            covers_true && covers_false
        }
        Constructor::Enum(e) => cx.db.enum_data(e.parent).variants.iter().all(|(id, _)| {
            for constructor in used_constructors {
                if let Constructor::Enum(e) = constructor {
                    if id == e.local_id {
                        return true;
                    }
                }
            }

            false
        }),
        &Constructor::Struct(s) => used_constructors.iter().any(|constructor| match constructor {
            &Constructor::Struct(sid) => sid == s,
            _ => false,
        }),
    }
}

#[cfg(test)]
mod tests {
    use crate::diagnostics::tests::check_diagnostics;

    #[test]
    fn empty_tuple() {
        check_diagnostics(
            r#"
fn main() {
    match () { }
        //^^ Missing match arm
    match (()) { }
        //^^^^ Missing match arm

    match () { _ => (), }
    match () { () => (), }
    match (()) { (()) => (), }
}
"#,
        );
    }

    #[test]
    fn tuple_of_two_empty_tuple() {
        check_diagnostics(
            r#"
fn main() {
    match ((), ()) { }
        //^^^^^^^^ Missing match arm

    match ((), ()) { ((), ()) => (), }
}
"#,
        );
    }

    #[test]
    fn boolean() {
        check_diagnostics(
            r#"
fn test_main() {
    match false { }
        //^^^^^ Missing match arm
    match false { true => (), }
        //^^^^^ Missing match arm
    match (false, true) {}
        //^^^^^^^^^^^^^ Missing match arm
    match (false, true) { (true, true) => (), }
        //^^^^^^^^^^^^^ Missing match arm
    match (false, true) {
        //^^^^^^^^^^^^^ Missing match arm
        (false, true) => (),
        (false, false) => (),
        (true, false) => (),
    }
    match (false, true) { (true, _x) => (), }
        //^^^^^^^^^^^^^ Missing match arm

    match false { true => (), false => (), }
    match (false, true) {
        (false, _) => (),
        (true, false) => (),
        (_, true) => (),
    }
    match (false, true) {
        (true, true) => (),
        (true, false) => (),
        (false, true) => (),
        (false, false) => (),
    }
    match (false, true) {
        (true, _x) => (),
        (false, true) => (),
        (false, false) => (),
    }
    match (false, true, false) {
        (false, ..) => (),
        (true, ..) => (),
    }
    match (false, true, false) {
        (.., false) => (),
        (.., true) => (),
    }
    match (false, true, false) { (..) => (), }
}
"#,
        );
    }

    #[test]
    fn tuple_of_tuple_and_bools() {
        check_diagnostics(
            r#"
fn main() {
    match (false, ((), false)) {}
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm
    match (false, ((), false)) { (true, ((), true)) => (), }
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm
    match (false, ((), false)) { (true, _) => (), }
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm

    match (false, ((), false)) {
        (true, ((), true)) => (),
        (true, ((), false)) => (),
        (false, ((), true)) => (),
        (false, ((), false)) => (),
    }
    match (false, ((), false)) {
        (true, ((), true)) => (),
        (true, ((), false)) => (),
        (false, _) => (),
    }
}
"#,
        );
    }

    #[test]
    fn enums() {
        check_diagnostics(
            r#"
enum Either { A, B, }

fn main() {
    match Either::A { }
        //^^^^^^^^^ Missing match arm
    match Either::B { Either::A => (), }
        //^^^^^^^^^ Missing match arm

    match &Either::B {
        //^^^^^^^^^^ Missing match arm
        Either::A => (),
    }

    match Either::B {
        Either::A => (), Either::B => (),
    }
    match &Either::B {
        Either::A => (), Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn enum_containing_bool() {
        check_diagnostics(
            r#"
enum Either { A(bool), B }

fn main() {
    match Either::B { }
        //^^^^^^^^^ Missing match arm
    match Either::B {
        //^^^^^^^^^ Missing match arm
        Either::A(true) => (), Either::B => ()
    }

    match Either::B {
        Either::A(true) => (),
        Either::A(false) => (),
        Either::B => (),
    }
    match Either::B {
        Either::B => (),
        _ => (),
    }
    match Either::B {
        Either::A(_) => (),
        Either::B => (),
    }

}
        "#,
        );
    }

    #[test]
    fn enum_different_sizes() {
        check_diagnostics(
            r#"
enum Either { A(bool), B(bool, bool) }

fn main() {
    match Either::A(false) {
        //^^^^^^^^^^^^^^^^ Missing match arm
        Either::A(_) => (),
        Either::B(false, _) => (),
    }

    match Either::A(false) {
        Either::A(_) => (),
        Either::B(true, _) => (),
        Either::B(false, _) => (),
    }
    match Either::A(false) {
        Either::A(true) | Either::A(false) => (),
        Either::B(true, _) => (),
        Either::B(false, _) => (),
    }
}
"#,
        );
    }

    #[test]
    fn tuple_of_enum_no_diagnostic() {
        check_diagnostics(
            r#"
enum Either { A(bool), B(bool, bool) }
enum Either2 { C, D }

fn main() {
    match (Either::A(false), Either2::C) {
        (Either::A(true), _) | (Either::A(false), _) => (),
        (Either::B(true, _), Either2::C) => (),
        (Either::B(false, _), Either2::C) => (),
        (Either::B(_, _), Either2::D) => (),
    }
}
"#,
        );
    }

    #[test]
    fn mismatched_types() {
        // Match statements with arms that don't match the
        // expression pattern do not fire this diagnostic.
        check_diagnostics(
            r#"
enum Either { A, B }
enum Either2 { C, D }

fn main() {
    match Either::A {
        Either2::C => (),
        Either2::D => (),
    }
    match (true, false) {
        (true, false, true) => (),
        (true) => (),
    }
    match (0) { () => () }
    match Unresolved::Bar { Unresolved::Baz => () }
}
        "#,
        );
    }

    #[test]
    fn malformed_match_arm_tuple_enum_missing_pattern() {
        // We are testing to be sure we don't panic here when the match
        // arm `Either::B` is missing its pattern.
        check_diagnostics(
            r#"
enum Either { A, B(u32) }

fn main() {
    match Either::A {
        Either::A => (),
        Either::B() => (),
    }
}
"#,
        );
    }

    #[test]
    fn expr_diverges() {
        check_diagnostics(
            r#"
enum Either { A, B }

fn main() {
    match loop {} {
        Either::A => (),
        Either::B => (),
    }
    match loop {} {
        Either::A => (),
    }
    match loop { break Foo::A } {
        //^^^^^^^^^^^^^^^^^^^^^ Missing match arm
        Either::A => (),
    }
    match loop { break Foo::A } {
        Either::A => (),
        Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn expr_partially_diverges() {
        check_diagnostics(
            r#"
enum Either<T> { A(T), B }

fn foo() -> Either<!> { Either::B }
fn main() -> u32 {
    match foo() {
        Either::A(val) => val,
        Either::B => 0,
    }
}
"#,
        );
    }

    #[test]
    fn enum_record() {
        check_diagnostics(
            r#"
enum Either { A { foo: bool }, B }

fn main() {
    let a = Either::A { foo: true };
    match a { }
        //^ Missing match arm
    match a { Either::A { foo: true } => () }
        //^ Missing match arm
    match a {
        Either::A { } => (),
      //^^^^^^^^^ Missing structure fields:
      //        | - foo
        Either::B => (),
    }
    match a {
        //^ Missing match arm
        Either::A { } => (),
    } //^^^^^^^^^ Missing structure fields:
      //        | - foo

    match a {
        Either::A { foo: true } => (),
        Either::A { foo: false } => (),
        Either::B => (),
    }
    match a {
        Either::A { foo: _ } => (),
        Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn enum_record_fields_out_of_order() {
        check_diagnostics(
            r#"
enum Either {
    A { foo: bool, bar: () },
    B,
}

fn main() {
    let a = Either::A { foo: true, bar: () };
    match a {
        //^ Missing match arm
        Either::A { bar: (), foo: false } => (),
        Either::A { foo: true, bar: () } => (),
    }

    match a {
        Either::A { bar: (), foo: false } => (),
        Either::A { foo: true, bar: () } => (),
        Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn enum_record_ellipsis() {
        check_diagnostics(
            r#"
enum Either {
    A { foo: bool, bar: bool },
    B,
}

fn main() {
    let a = Either::B;
    match a {
        //^ Missing match arm
        Either::A { foo: true, .. } => (),
        Either::B => (),
    }
    match a {
        //^ Missing match arm
        Either::A { .. } => (),
    }

    match a {
        Either::A { foo: true, .. } => (),
        Either::A { foo: false, .. } => (),
        Either::B => (),
    }

    match a {
        Either::A { .. } => (),
        Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn enum_tuple_partial_ellipsis() {
        check_diagnostics(
            r#"
enum Either {
    A(bool, bool, bool, bool),
    B,
}

fn main() {
    match Either::B {
        //^^^^^^^^^ Missing match arm
        Either::A(true, .., true) => (),
        Either::A(true, .., false) => (),
        Either::A(false, .., false) => (),
        Either::B => (),
    }
    match Either::B {
        //^^^^^^^^^ Missing match arm
        Either::A(true, .., true) => (),
        Either::A(true, .., false) => (),
        Either::A(.., true) => (),
        Either::B => (),
    }

    match Either::B {
        Either::A(true, .., true) => (),
        Either::A(true, .., false) => (),
        Either::A(false, .., true) => (),
        Either::A(false, .., false) => (),
        Either::B => (),
    }
    match Either::B {
        Either::A(true, .., true) => (),
        Either::A(true, .., false) => (),
        Either::A(.., true) => (),
        Either::A(.., false) => (),
        Either::B => (),
    }
}
"#,
        );
    }

    #[test]
    fn never() {
        check_diagnostics(
            r#"
enum Never {}

fn enum_(never: Never) {
    match never {}
}
fn enum_ref(never: &Never) {
    match never {}
}
fn bang(never: !) {
    match never {}
}
"#,
        );
    }

    #[test]
    fn or_pattern_panic() {
        check_diagnostics(
            r#"
pub enum Category { Infinity, Zero }

fn panic(a: Category, b: Category) {
    match (a, b) {
        (Category::Zero | Category::Infinity, _) => (),
        (_, Category::Zero | Category::Infinity) => (),
    }

    // FIXME: This is a false positive, but the code used to cause a panic in the match checker,
    // so this acts as a regression test for that.
    match (a, b) {
        //^^^^^^ Missing match arm
        (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => (),
        (Category::Infinity | Category::Zero, _) => (),
    }
}
"#,
        );
    }

    #[test]
    fn unknown_type() {
        check_diagnostics(
            r#"
enum Option<T> { Some(T), None }

fn main() {
    // `Never` is deliberately not defined so that it's an uninferred type.
    match Option::<Never>::None {
        None => (),
        Some(never) => match never {},
    }
}
"#,
        );
    }

    #[test]
    fn tuple_of_bools_with_ellipsis_at_end_missing_arm() {
        check_diagnostics(
            r#"
fn main() {
    match (false, true, false) {
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm
        (false, ..) => (),
    }
}"#,
        );
    }

    #[test]
    fn tuple_of_bools_with_ellipsis_at_beginning_missing_arm() {
        check_diagnostics(
            r#"
fn main() {
    match (false, true, false) {
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm
        (.., false) => (),
    }
}"#,
        );
    }

    #[test]
    fn tuple_of_bools_with_ellipsis_in_middle_missing_arm() {
        check_diagnostics(
            r#"
fn main() {
    match (false, true, false) {
        //^^^^^^^^^^^^^^^^^^^^ Missing match arm
        (true, .., false) => (),
    }
}"#,
        );
    }

    #[test]
    fn record_struct() {
        check_diagnostics(
            r#"struct Foo { a: bool }
fn main(f: Foo) {
    match f {}
        //^ Missing match arm
    match f { Foo { a: true } => () }
        //^ Missing match arm
    match &f { Foo { a: true } => () }
        //^^ Missing match arm
    match f { Foo { a: _ } => () }
    match f {
        Foo { a: true } => (),
        Foo { a: false } => (),
    }
    match &f {
        Foo { a: true } => (),
        Foo { a: false } => (),
    }
}
"#,
        );
    }

    #[test]
    fn tuple_struct() {
        check_diagnostics(
            r#"struct Foo(bool);
fn main(f: Foo) {
    match f {}
        //^ Missing match arm
    match f { Foo(true) => () }
        //^ Missing match arm
    match f {
        Foo(true) => (),
        Foo(false) => (),
    }
}
"#,
        );
    }

    #[test]
    fn unit_struct() {
        check_diagnostics(
            r#"struct Foo;
fn main(f: Foo) {
    match f {}
        //^ Missing match arm
    match f { Foo => () }
}
"#,
        );
    }

    #[test]
    fn record_struct_ellipsis() {
        check_diagnostics(
            r#"struct Foo { foo: bool, bar: bool }
fn main(f: Foo) {
    match f { Foo { foo: true, .. } => () }
        //^ Missing match arm
    match f {
        //^ Missing match arm
        Foo { foo: true, .. } => (),
        Foo { bar: false, .. } => ()
    }
    match f { Foo { .. } => () }
    match f {
        Foo { foo: true, .. } => (),
        Foo { foo: false, .. } => ()
    }
}
"#,
        );
    }

    mod false_negatives {
        //! The implementation of match checking here is a work in progress. As we roll this out, we
        //! prefer false negatives to false positives (ideally there would be no false positives). This
        //! test module should document known false negatives. Eventually we will have a complete
        //! implementation of match checking and this module will be empty.
        //!
        //! The reasons for documenting known false negatives:
        //!
        //!   1. It acts as a backlog of work that can be done to improve the behavior of the system.
        //!   2. It ensures the code doesn't panic when handling these cases.
        use super::*;

        #[test]
        fn integers() {
            // We don't currently check integer exhaustiveness.
            check_diagnostics(
                r#"
fn main() {
    match 5 {
        10 => (),
        11..20 => (),
    }
}
"#,
            );
        }

        #[test]
        fn internal_or() {
            // We do not currently handle patterns with internal `or`s.
            check_diagnostics(
                r#"
fn main() {
    enum Either { A(bool), B }
    match Either::B {
        Either::A(true | false) => (),
    }
}
"#,
            );
        }
    }
}