aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/diagnostics/match_check/deconstruct_pat.rs
blob: 6711fbb4ae7fd87d8e739743b238fcf32eed3f7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
//! values and patterns are made from constructors applied to fields. This file defines a
//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
//! them from/to patterns.
//!
//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
//! needed there: _constructor splitting_.
//!
//! # Constructor splitting
//!
//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
//! with all the value constructors that are covered by `c`, and compute usefulness for each.
//! Instead of listing all those constructors (which is intractable), we group those value
//! constructors together as much as possible. Example:
//!
//! ```
//! match (0, false) {
//!     (0 ..=100, true) => {} // `p_1`
//!     (50..=150, false) => {} // `p_2`
//!     (0 ..=200, _) => {} // `q`
//! }
//! ```
//!
//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
//! more tractable.
//!
//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
//! return an equivalent set of witnesses after specializing and computing usefulness.
//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
//! in their first element.
//!
//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
//! is empty of not. We use this in the wildcard `_` case.
//!
//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
//! [`SplitVarLenSlice`].

use std::{
    cmp::{max, min},
    iter::once,
    ops::RangeInclusive,
};

use hir_def::{EnumVariantId, HasModule, LocalFieldId, VariantId};
use smallvec::{smallvec, SmallVec};

use crate::{AdtId, Interner, Scalar, Ty, TyExt, TyKind};

use super::{
    usefulness::{MatchCheckCtx, PatCtxt},
    FieldPat, Pat, PatId, PatKind,
};

use self::Constructor::*;

/// [Constructor] uses this in umimplemented variants.
/// It allows porting match expressions from upstream algorithm without losing semantics.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) enum Void {}

/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(super) struct IntRange {
    range: RangeInclusive<u128>,
}

impl IntRange {
    #[inline]
    fn is_integral(ty: &Ty) -> bool {
        match ty.kind(&Interner) {
            TyKind::Scalar(Scalar::Char)
            | TyKind::Scalar(Scalar::Int(_))
            | TyKind::Scalar(Scalar::Uint(_))
            | TyKind::Scalar(Scalar::Bool) => true,
            _ => false,
        }
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
    fn from_bool(value: bool) -> IntRange {
        let val = value as u128;
        IntRange { range: val..=val }
    }

    #[inline]
    fn from_range(lo: u128, hi: u128, scalar_ty: Scalar) -> IntRange {
        if let Scalar::Bool = scalar_ty {
            IntRange { range: lo..=hi }
        } else {
            unimplemented!()
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

    fn intersection(&self, other: &Self) -> Option<Self> {
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
        if lo <= other_hi && other_lo <= hi {
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi) })
        } else {
            None
        }
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum IntBorder {
    JustBefore(u128),
    AfterMax,
}

/// A range of integers that is partitioned into disjoint subranges. This does constructor
/// splitting for integer ranges as explained at the top of the file.
///
/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
/// the only intersections between an output range and a seen range are inclusions. No output range
/// straddles the boundary of one of the inputs.
///
/// The following input:
/// ```
///   |-------------------------| // `self`
/// |------|  |----------|   |----|
///    |-------| |-------|
/// ```
/// would be iterated over as follows:
/// ```
///   ||---|--||-|---|---|---|--|
/// ```
#[derive(Debug, Clone)]
struct SplitIntRange {
    /// The range we are splitting
    range: IntRange,
    /// The borders of ranges we have seen. They are all contained within `range`. This is kept
    /// sorted.
    borders: Vec<IntBorder>,
}

impl SplitIntRange {
    fn new(range: IntRange) -> Self {
        SplitIntRange { range, borders: Vec::new() }
    }

    /// Internal use
    fn to_borders(r: IntRange) -> [IntBorder; 2] {
        use IntBorder::*;
        let (lo, hi) = r.boundaries();
        let lo = JustBefore(lo);
        let hi = match hi.checked_add(1) {
            Some(m) => JustBefore(m),
            None => AfterMax,
        };
        [lo, hi]
    }

    /// Add ranges relative to which we split.
    fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
        let this_range = &self.range;
        let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
        let included_borders = included_ranges.flat_map(|r| {
            let borders = Self::to_borders(r);
            once(borders[0]).chain(once(borders[1]))
        });
        self.borders.extend(included_borders);
        self.borders.sort_unstable();
    }

    /// Iterate over the contained ranges.
    fn iter(&self) -> impl Iterator<Item = IntRange> + '_ {
        use IntBorder::*;

        let self_range = Self::to_borders(self.range.clone());
        // Start with the start of the range.
        let mut prev_border = self_range[0];
        self.borders
            .iter()
            .copied()
            // End with the end of the range.
            .chain(once(self_range[1]))
            // List pairs of adjacent borders.
            .map(move |border| {
                let ret = (prev_border, border);
                prev_border = border;
                ret
            })
            // Skip duplicates.
            .filter(|(prev_border, border)| prev_border != border)
            // Finally, convert to ranges.
            .map(|(prev_border, border)| {
                let range = match (prev_border, border) {
                    (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
                    (JustBefore(n), AfterMax) => n..=u128::MAX,
                    _ => unreachable!(), // Ruled out by the sorting and filtering we did
                };
                IntRange { range }
            })
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    _unimplemented: Void,
}

impl Slice {
    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, _other: Self) -> bool {
        unimplemented!() // never called as Slice contains Void
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[allow(dead_code)]
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
    Variant(EnumVariantId),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
    IntRange(IntRange),
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(Void),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(Void),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
    /// for [`SplitWildcard`].
    Missing,
    /// Wildcard pattern.
    Wildcard,
}

impl Constructor {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

    fn as_int_range(&self) -> Option<&IntRange> {
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    fn variant_id_for_adt(&self, adt: hir_def::AdtId) -> VariantId {
        match *self {
            Variant(id) => id.into(),
            Single => {
                assert!(!matches!(adt, hir_def::AdtId::EnumId(_)));
                match adt {
                    hir_def::AdtId::EnumId(_) => unreachable!(),
                    hir_def::AdtId::StructId(id) => id.into(),
                    hir_def::AdtId::UnionId(id) => id.into(),
                }
            }
            _ => panic!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

    /// Determines the constructor that the given pattern can be specialized to.
    pub(super) fn from_pat(cx: &MatchCheckCtx<'_>, pat: PatId) -> Self {
        match cx.pattern_arena.borrow()[pat].kind.as_ref() {
            PatKind::Binding { .. } | PatKind::Wild => Wildcard,
            PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
            &PatKind::Variant { enum_variant, .. } => Variant(enum_variant),
            &PatKind::LiteralBool { value } => IntRange(IntRange::from_bool(value)),
            PatKind::Or { .. } => panic!("bug: Or-pattern should have been expanded earlier on."),
        }
    }

    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
    pub(super) fn split<'a>(
        &self,
        pcx: PatCtxt<'_>,
        ctors: impl Iterator<Item = &'a Constructor> + Clone,
    ) -> SmallVec<[Self; 1]> {
        match self {
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
                split_wildcard.split(pcx, ctors);
                split_wildcard.into_ctors(pcx)
            }
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                let mut split_range = SplitIntRange::new(ctor_range.clone());
                let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
                split_range.split(int_ranges.cloned());
                split_range.iter().map(IntRange).collect()
            }
            Slice(_) => unimplemented!(),
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
    pub(super) fn is_covered_by(&self, _pcx: PatCtxt<'_>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
            // The missing ctors are not covered by anything in the matrix except wildcards.
            (Missing, _) | (Wildcard, _) => false,

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
            (FloatRange(..), FloatRange(..)) => {
                unimplemented!()
            }
            (Str(..), Str(..)) => {
                unimplemented!()
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => panic!(
                "bug: trying to compare incompatible constructors {:?} and {:?}",
                self, other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any(&self, _pcx: PatCtxt<'_>, used_ctors: &[Constructor]) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(_) => used_ctors.iter().any(|c| c == self),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
                .any(|other| range.is_covered_by(other)),
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
            Str(..) | FloatRange(..) | Opaque | Missing | Wildcard => {
                panic!("bug: found unexpected ctor in all_ctors: {:?}", self)
            }
        }
    }
}

/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
#[derive(Debug)]
pub(super) struct SplitWildcard {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor>,
    /// All the constructors for this type
    all_ctors: SmallVec<[Constructor; 1]>,
}

impl SplitWildcard {
    pub(super) fn new(pcx: PatCtxt<'_>) -> Self {
        let cx = pcx.cx;
        let make_range = |start, end, scalar| IntRange(IntRange::from_range(start, end, scalar));

        // Unhandled types are treated as non-exhaustive. Being explicit here instead of falling
        // to catchall arm to ease further implementation.
        let unhandled = || smallvec![NonExhaustive];

        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind(&Interner) {
            TyKind::Scalar(Scalar::Bool) => smallvec![make_range(0, 1, Scalar::Bool)],
            // TyKind::Array(..) if ... => unhandled(),
            TyKind::Array(..) | TyKind::Slice(..) => unhandled(),
            &TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ref _substs) => {
                let enum_data = cx.db.enum_data(enum_id);

                // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
                // additional "unknown" constructor.
                // There is no point in enumerating all possible variants, because the user can't
                // actually match against them all themselves. So we always return only the fictitious
                // constructor.
                // E.g., in an example like:
                //
                // ```
                //     let err: io::ErrorKind = ...;
                //     match err {
                //         io::ErrorKind::NotFound => {},
                //     }
                // ```
                //
                // we don't want to show every possible IO error, but instead have only `_` as the
                // witness.
                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(enum_id);

                // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
                // as though it had an "unknown" constructor to avoid exposing its emptiness. The
                // exception is if the pattern is at the top level, because we want empty matches to be
                // considered exhaustive.
                let is_secretly_empty = enum_data.variants.is_empty()
                    && !cx.feature_exhaustive_patterns()
                    && !pcx.is_top_level;

                if is_secretly_empty || is_declared_nonexhaustive {
                    smallvec![NonExhaustive]
                } else if cx.feature_exhaustive_patterns() {
                    unimplemented!() // see MatchCheckCtx.feature_exhaustive_patterns()
                } else {
                    enum_data
                        .variants
                        .iter()
                        .map(|(local_id, ..)| Variant(EnumVariantId { parent: enum_id, local_id }))
                        .collect()
                }
            }
            TyKind::Scalar(Scalar::Char) => unhandled(),
            TyKind::Scalar(Scalar::Int(..)) | TyKind::Scalar(Scalar::Uint(..)) => unhandled(),
            TyKind::Never if !cx.feature_exhaustive_patterns() && !pcx.is_top_level => {
                smallvec![NonExhaustive]
            }
            TyKind::Never => SmallVec::new(),
            _ if cx.is_uninhabited(&pcx.ty) => SmallVec::new(),
            TyKind::Adt(..) | TyKind::Tuple(..) | TyKind::Ref(..) => smallvec![Single],
            // This type is one for which we cannot list constructors, like `str` or `f64`.
            _ => smallvec![NonExhaustive],
        };
        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
    pub(super) fn split<'a>(
        &mut self,
        pcx: PatCtxt<'_>,
        ctors: impl Iterator<Item = &'a Constructor> + Clone,
    ) {
        // Since `all_ctors` never contains wildcards, this won't recurse further.
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
    }

    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: PatCtxt<'_>) -> bool {
        self.iter_missing(pcx).next().is_some()
    }

    /// Iterate over the constructors for this type that are not present in the matrix.
    pub(super) fn iter_missing<'a>(
        &'a self,
        pcx: PatCtxt<'a>,
    ) -> impl Iterator<Item = &'a Constructor> {
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: PatCtxt<'_>) -> SmallVec<[Constructor; 1]> {
        if self.any_missing(pcx) {
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
                Missing
            } else {
                Wildcard
            };
            return smallvec![ctor];
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
/// This is constructed from a constructor using [`Fields::wildcards()`].
///
/// If a private or `non_exhaustive` field is uninhabited, the code mustn't observe that it is
/// uninhabited. For that, we filter these fields out of the matrix. This is handled automatically
/// in `Fields`. This filtering is uncommon in practice, because uninhabited fields are rarely used,
/// so we avoid it when possible to preserve performance.
#[derive(Debug, Clone)]
pub(super) enum Fields {
    /// Lists of patterns that don't contain any filtered fields.
    /// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
    /// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
    /// have not measured if it really made a difference.
    Vec(SmallVec<[PatId; 2]>),
}

impl Fields {
    /// Internal use. Use `Fields::wildcards()` instead.
    /// Must not be used if the pattern is a field of a struct/tuple/variant.
    fn from_single_pattern(pat: PatId) -> Self {
        Fields::Vec(smallvec![pat])
    }

    /// Convenience; internal use.
    fn wildcards_from_tys<'a>(
        cx: &MatchCheckCtx<'_>,
        tys: impl IntoIterator<Item = &'a Ty>,
    ) -> Self {
        let wilds = tys.into_iter().map(Pat::wildcard_from_ty);
        let pats = wilds.map(|pat| cx.alloc_pat(pat)).collect();
        Fields::Vec(pats)
    }

    /// Creates a new list of wildcard fields for a given constructor.
    pub(crate) fn wildcards(pcx: PatCtxt<'_>, constructor: &Constructor) -> Self {
        let ty = pcx.ty;
        let cx = pcx.cx;
        let wildcard_from_ty = |ty| cx.alloc_pat(Pat::wildcard_from_ty(ty));

        let ret = match constructor {
            Single | Variant(_) => match ty.kind(&Interner) {
                TyKind::Tuple(_, substs) => {
                    let tys = substs.iter(&Interner).map(|ty| ty.assert_ty_ref(&Interner));
                    Fields::wildcards_from_tys(cx, tys)
                }
                TyKind::Ref(.., rty) => Fields::from_single_pattern(wildcard_from_ty(rty)),
                &TyKind::Adt(AdtId(adt), ref substs) => {
                    if adt_is_box(adt, cx) {
                        // Use T as the sub pattern type of Box<T>.
                        let subst_ty = substs.at(&Interner, 0).assert_ty_ref(&Interner);
                        Fields::from_single_pattern(wildcard_from_ty(subst_ty))
                    } else {
                        let variant_id = constructor.variant_id_for_adt(adt);
                        let adt_is_local =
                            variant_id.module(cx.db.upcast()).krate() == cx.module.krate();
                        // Whether we must not match the fields of this variant exhaustively.
                        let is_non_exhaustive =
                            is_field_list_non_exhaustive(variant_id, cx) && !adt_is_local;
                        let field_ty_arena = cx.db.field_types(variant_id);
                        let field_tys =
                            || field_ty_arena.iter().map(|(_, binders)| binders.skip_binders());
                        // In the following cases, we don't need to filter out any fields. This is
                        // the vast majority of real cases, since uninhabited fields are uncommon.
                        let has_no_hidden_fields = (matches!(adt, hir_def::AdtId::EnumId(_))
                            && !is_non_exhaustive)
                            || !field_tys().any(|ty| cx.is_uninhabited(ty));

                        if has_no_hidden_fields {
                            Fields::wildcards_from_tys(cx, field_tys())
                        } else {
                            //FIXME(iDawer): see MatchCheckCtx::is_uninhabited, has_no_hidden_fields is always true
                            unimplemented!("exhaustive_patterns feature")
                        }
                    }
                }
                _ => panic!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(..) => {
                unimplemented!()
            }
            Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque | Missing
            | Wildcard => Fields::Vec(Default::default()),
        };
        ret
    }

    /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
    /// must have as many elements as this constructor's arity.
    ///
    /// This is roughly the inverse of `specialize_constructor`.
    ///
    /// Examples:
    /// `ctor`: `Constructor::Single`
    /// `ty`: `Foo(u32, u32, u32)`
    /// `self`: `[10, 20, _]`
    /// returns `Foo(10, 20, _)`
    ///
    /// `ctor`: `Constructor::Variant(Option::Some)`
    /// `ty`: `Option<bool>`
    /// `self`: `[false]`
    /// returns `Some(false)`
    pub(super) fn apply(self, pcx: PatCtxt<'_>, ctor: &Constructor) -> Pat {
        let subpatterns_and_indices = self.patterns_and_indices();
        let mut subpatterns =
            subpatterns_and_indices.iter().map(|&(_, p)| pcx.cx.pattern_arena.borrow()[p].clone());
        // FIXME(iDawer) witnesses are not yet used
        const UNHANDLED: PatKind = PatKind::Wild;

        let pat = match ctor {
            Single | Variant(_) => match pcx.ty.kind(&Interner) {
                TyKind::Adt(..) | TyKind::Tuple(..) => {
                    // We want the real indices here.
                    let subpatterns = subpatterns_and_indices
                        .iter()
                        .map(|&(field, pat)| FieldPat {
                            field,
                            pattern: pcx.cx.pattern_arena.borrow()[pat].clone(),
                        })
                        .collect();

                    if let Some((adt, substs)) = pcx.ty.as_adt() {
                        if let hir_def::AdtId::EnumId(_) = adt {
                            let enum_variant = match ctor {
                                &Variant(id) => id,
                                _ => unreachable!(),
                            };
                            PatKind::Variant { substs: substs.clone(), enum_variant, subpatterns }
                        } else {
                            PatKind::Leaf { subpatterns }
                        }
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // can ignore this issue.
                TyKind::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
                TyKind::Slice(..) | TyKind::Array(..) => {
                    panic!("bug: bad slice pattern {:?} {:?}", ctor, pcx.ty)
                }
                _ => PatKind::Wild,
            },
            Constructor::Slice(_) => UNHANDLED,
            Str(_) => UNHANDLED,
            FloatRange(..) => UNHANDLED,
            Constructor::IntRange(_) => UNHANDLED,
            NonExhaustive => PatKind::Wild,
            Wildcard => return Pat::wildcard_from_ty(pcx.ty),
            Opaque => panic!("bug: we should not try to apply an opaque constructor"),
            Missing => {
                panic!("bug: trying to apply the `Missing` constructor; this should have been done in `apply_constructors`")
            }
        };

        Pat { ty: pcx.ty.clone(), kind: Box::new(pat) }
    }

    /// Returns the number of patterns. This is the same as the arity of the constructor used to
    /// construct `self`.
    pub(super) fn len(&self) -> usize {
        match self {
            Fields::Vec(pats) => pats.len(),
        }
    }

    /// Returns the list of patterns along with the corresponding field indices.
    fn patterns_and_indices(&self) -> SmallVec<[(LocalFieldId, PatId); 2]> {
        match self {
            Fields::Vec(pats) => pats
                .iter()
                .copied()
                .enumerate()
                .map(|(i, p)| (LocalFieldId::from_raw((i as u32).into()), p))
                .collect(),
        }
    }

    pub(super) fn into_patterns(self) -> SmallVec<[PatId; 2]> {
        match self {
            Fields::Vec(pats) => pats,
        }
    }

    /// Overrides some of the fields with the provided patterns. Exactly like
    /// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
    fn replace_with_fieldpats(
        &self,
        new_pats: impl IntoIterator<Item = (LocalFieldId, PatId)>,
    ) -> Self {
        self.replace_fields_indexed(
            new_pats.into_iter().map(|(field, pat)| (u32::from(field.into_raw()) as usize, pat)),
        )
    }

    /// Overrides some of the fields with the provided patterns. This is used when a pattern
    /// defines some fields but not all, for example `Foo { field1: Some(_), .. }`: here we start
    /// with a `Fields` that is just one wildcard per field of the `Foo` struct, and override the
    /// entry corresponding to `field1` with the pattern `Some(_)`. This is also used for slice
    /// patterns for the same reason.
    fn replace_fields_indexed(&self, new_pats: impl IntoIterator<Item = (usize, PatId)>) -> Self {
        let mut fields = self.clone();

        match &mut fields {
            Fields::Vec(pats) => {
                for (i, pat) in new_pats {
                    if let Some(p) = pats.get_mut(i) {
                        *p = pat;
                    }
                }
            }
        }
        fields
    }

    /// Replaces contained fields with the given list of patterns. There must be `len()` patterns
    /// in `pats`.
    pub(super) fn replace_fields(
        &self,
        cx: &MatchCheckCtx<'_>,
        pats: impl IntoIterator<Item = Pat>,
    ) -> Self {
        let pats = pats.into_iter().map(|pat| cx.alloc_pat(pat)).collect();

        match self {
            Fields::Vec(_) => Fields::Vec(pats),
        }
    }

    /// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
    /// that is compatible with the constructor used to build `self`.
    /// This is meant to be used on the result of `Fields::wildcards()`. The idea is that
    /// `wildcards` constructs a list of fields where all entries are wildcards, and the pattern
    /// provided to this function fills some of the fields with non-wildcards.
    /// In the following example `Fields::wildcards` would return `[_, _, _, _]`. If we call
    /// `replace_with_pattern_arguments` on it with the pattern, the result will be `[Some(0), _,
    /// _, _]`.
    /// ```rust
    /// let x: [Option<u8>; 4] = foo();
    /// match x {
    ///     [Some(0), ..] => {}
    /// }
    /// ```
    /// This is guaranteed to preserve the number of patterns in `self`.
    pub(super) fn replace_with_pattern_arguments(
        &self,
        pat: PatId,
        cx: &MatchCheckCtx<'_>,
    ) -> Self {
        // FIXME(iDawer): these alocations and clones are so unfortunate (+1 for switching to references)
        let mut arena = cx.pattern_arena.borrow_mut();
        match arena[pat].kind.as_ref() {
            PatKind::Deref { subpattern } => {
                assert_eq!(self.len(), 1);
                let subpattern = subpattern.clone();
                Fields::from_single_pattern(arena.alloc(subpattern))
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                let subpatterns = subpatterns.clone();
                let subpatterns = subpatterns
                    .iter()
                    .map(|field_pat| (field_pat.field, arena.alloc(field_pat.pattern.clone())));
                self.replace_with_fieldpats(subpatterns)
            }

            PatKind::Wild
            | PatKind::Binding { .. }
            | PatKind::LiteralBool { .. }
            | PatKind::Or { .. } => self.clone(),
        }
    }
}

fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_>) -> bool {
    let attr_def_id = match variant_id {
        VariantId::EnumVariantId(id) => id.into(),
        VariantId::StructId(id) => id.into(),
        VariantId::UnionId(id) => id.into(),
    };
    cx.db.attrs(attr_def_id).by_key("non_exhaustive").exists()
}

fn adt_is_box(adt: hir_def::AdtId, cx: &MatchCheckCtx<'_>) -> bool {
    use hir_def::lang_item::LangItemTarget;
    match cx.db.lang_item(cx.module.krate(), "owned_box".into()) {
        Some(LangItemTarget::StructId(box_id)) => adt == box_id.into(),
        _ => false,
    }
}