aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/diagnostics/pattern/deconstruct_pat.rs
blob: 60323aea3b4807c1671c626da2c258e7777071ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
use hir_def::{
    expr::{Pat, PatId, RecordFieldPat},
    find_path::find_path,
    item_scope::ItemInNs,
    path::Path,
    type_ref::Mutability,
    AttrDefId, EnumVariantId, HasModule, VariantId,
};

use smallvec::{smallvec, SmallVec};

use crate::{AdtId, Interner, Scalar, Ty, TyExt, TyKind};

use super::usefulness::{MatchCheckCtx, PatCtxt};

use self::Constructor::*;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) enum ToDo {}

#[derive(Clone, Debug, PartialEq, Eq)]
pub(super) struct IntRange {
    range: ToDo,
}

impl IntRange {
    #[inline]
    fn is_integral(ty: &Ty) -> bool {
        match ty.kind(&Interner) {
            TyKind::Scalar(Scalar::Char)
            | TyKind::Scalar(Scalar::Int(_))
            | TyKind::Scalar(Scalar::Uint(_))
            | TyKind::Scalar(Scalar::Bool) => true,
            _ => false,
        }
    }

    fn is_singleton(&self) -> bool {
        todo!()
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(&self, other: &Self) -> bool {
        todo!()
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    todo: ToDo,
}

impl Slice {
    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        todo!()
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
    Variant(EnumVariantId),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
    IntRange(IntRange),
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(ToDo),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(ToDo),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
    /// for [`SplitWildcard`].
    Missing,
    /// Wildcard pattern.
    Wildcard,
}

impl Constructor {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

    fn as_int_range(&self) -> Option<&IntRange> {
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    fn variant_id_for_adt(&self, adt: hir_def::AdtId, cx: &MatchCheckCtx<'_>) -> VariantId {
        match *self {
            Variant(id) => id.into(),
            Single => {
                assert!(!matches!(adt, hir_def::AdtId::EnumId(_)));
                match adt {
                    hir_def::AdtId::EnumId(_) => unreachable!(),
                    hir_def::AdtId::StructId(id) => id.into(),
                    hir_def::AdtId::UnionId(id) => id.into(),
                }
            }
            _ => panic!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

    /// Determines the constructor that the given pattern can be specialized to.
    pub(super) fn from_pat(cx: &MatchCheckCtx<'_>, pat: PatId) -> Self {
        let ty = cx.type_of(pat);
        match &cx.pattern_arena.borrow()[pat] {
            Pat::Bind { .. } | Pat::Wild => Wildcard,
            Pat::Tuple { .. } | Pat::Ref { .. } | Pat::Box { .. } => Single,
            Pat::Record { .. } | Pat::Path(_) | Pat::TupleStruct { .. } => {
                let variant_id =
                    cx.infer.variant_resolution_for_pat(pat).unwrap_or_else(|| todo!());
                match variant_id {
                    VariantId::EnumVariantId(id) => Variant(id),
                    VariantId::StructId(_) | VariantId::UnionId(_) => Single,
                }
            }

            Pat::Or(..) => panic!("bug: Or-pattern should have been expanded earlier on."),
            pat => todo!("Constructor::from_pat {:?}", pat),
            // Pat::Missing => {}
            // Pat::Range { start, end } => {}
            // Pat::Slice { prefix, slice, suffix } => {}
            // Pat::Lit(_) => {}
            // Pat::ConstBlock(_) => {}
        }
    }

    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
    pub(super) fn split<'a>(
        &self,
        pcx: PatCtxt<'_>,
        ctors: impl Iterator<Item = &'a Constructor> + Clone,
    ) -> SmallVec<[Self; 1]> {
        match self {
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
                split_wildcard.split(pcx, ctors);
                split_wildcard.into_ctors(pcx)
            }
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                todo!("Constructor::split IntRange")
            }
            Slice(_) => todo!("Constructor::split Slice"),
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
    pub(super) fn is_covered_by(&self, pcx: PatCtxt<'_>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
            // The missing ctors are not covered by anything in the matrix except wildcards.
            (Missing, _) | (Wildcard, _) => false,

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
            (FloatRange(..), FloatRange(..)) => {
                todo!()
            }
            (Str(self_val), Str(other_val)) => {
                todo!()
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => panic!(
                "bug: trying to compare incompatible constructors {:?} and {:?}",
                self, other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any(&self, pcx: PatCtxt<'_>, used_ctors: &[Constructor]) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(_) => used_ctors.iter().any(|c| c == self),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
                .any(|other| range.is_covered_by(other)),
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
            Str(..) | FloatRange(..) | Opaque | Missing | Wildcard => {
                panic!("bug: found unexpected ctor in all_ctors: {:?}", self)
            }
        }
    }
}

/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
#[derive(Debug)]
pub(super) struct SplitWildcard {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor>,
    /// All the constructors for this type
    all_ctors: SmallVec<[Constructor; 1]>,
}

impl SplitWildcard {
    pub(super) fn new(pcx: PatCtxt<'_>) -> Self {
        // let cx = pcx.cx;
        // let make_range = |start, end| IntRange(todo!());

        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind(&Interner) {
            TyKind::Adt(AdtId(hir_def::AdtId::EnumId(_)), _) => todo!(),
            TyKind::Adt(..) | TyKind::Tuple(..) | TyKind::Ref(..) => smallvec![Single],
            _ => todo!(),
        };
        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
    pub(super) fn split<'a>(
        &mut self,
        pcx: PatCtxt<'_>,
        ctors: impl Iterator<Item = &'a Constructor> + Clone,
    ) {
        // Since `all_ctors` never contains wildcards, this won't recurse further.
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
    }

    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: PatCtxt<'_>) -> bool {
        self.iter_missing(pcx).next().is_some()
    }

    /// Iterate over the constructors for this type that are not present in the matrix.
    pub(super) fn iter_missing<'a>(
        &'a self,
        pcx: PatCtxt<'a>,
    ) -> impl Iterator<Item = &'a Constructor> {
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: PatCtxt<'_>) -> SmallVec<[Constructor; 1]> {
        if self.any_missing(pcx) {
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
                Missing
            } else {
                Wildcard
            };
            return smallvec![ctor];
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
    }
}

#[test]
fn it_works2() {}

/// Some fields need to be explicitly hidden away in certain cases; see the comment above the
/// `Fields` struct. This struct represents such a potentially-hidden field.
#[derive(Debug, Copy, Clone)]
pub(super) enum FilteredField {
    Kept(PatId),
    Hidden,
}

impl FilteredField {
    fn kept(self) -> Option<PatId> {
        match self {
            FilteredField::Kept(p) => Some(p),
            FilteredField::Hidden => None,
        }
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
/// This is constructed from a constructor using [`Fields::wildcards()`].
///
/// If a private or `non_exhaustive` field is uninhabited, the code mustn't observe that it is
/// uninhabited. For that, we filter these fields out of the matrix. This is handled automatically
/// in `Fields`. This filtering is uncommon in practice, because uninhabited fields are rarely used,
/// so we avoid it when possible to preserve performance.
#[derive(Debug, Clone)]
pub(super) enum Fields {
    /// Lists of patterns that don't contain any filtered fields.
    /// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
    /// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
    /// have not measured if it really made a difference.
    Vec(SmallVec<[PatId; 2]>),
}

impl Fields {
    /// Internal use. Use `Fields::wildcards()` instead.
    /// Must not be used if the pattern is a field of a struct/tuple/variant.
    fn from_single_pattern(pat: PatId) -> Self {
        Fields::Vec(smallvec![pat])
    }

    /// Convenience; internal use.
    fn wildcards_from_tys<'a>(
        cx: &MatchCheckCtx<'_>,
        tys: impl IntoIterator<Item = &'a Ty>,
    ) -> Self {
        let wilds = tys.into_iter().map(|ty| (Pat::Wild, ty));
        let pats = wilds.map(|(pat, ty)| cx.alloc_pat(pat, ty)).collect();
        Fields::Vec(pats)
    }

    pub(crate) fn wildcards(pcx: PatCtxt<'_>, constructor: &Constructor) -> Self {
        let ty = pcx.ty;
        let cx = pcx.cx;
        let wildcard_from_ty = |ty| cx.alloc_pat(Pat::Wild, ty);

        let ret = match constructor {
            Single | Variant(_) => match ty.kind(&Interner) {
                TyKind::Tuple(_, substs) => {
                    let tys = substs.iter(&Interner).map(|ty| ty.assert_ty_ref(&Interner));
                    Fields::wildcards_from_tys(cx, tys)
                }
                TyKind::Ref(.., rty) => Fields::from_single_pattern(wildcard_from_ty(rty)),
                TyKind::Adt(AdtId(adt), substs) => {
                    let adt_is_box = false; // TODO(iDawer): handle box patterns
                    if adt_is_box {
                        // Use T as the sub pattern type of Box<T>.
                        let ty = substs.at(&Interner, 0).assert_ty_ref(&Interner);
                        Fields::from_single_pattern(wildcard_from_ty(ty))
                    } else {
                        let variant_id = constructor.variant_id_for_adt(*adt, cx);
                        let variant = variant_id.variant_data(cx.db.upcast());
                        let adt_is_local =
                            variant_id.module(cx.db.upcast()).krate() == cx.module.krate();
                        // Whether we must not match the fields of this variant exhaustively.
                        let is_non_exhaustive =
                            is_field_list_non_exhaustive(variant_id, cx) && !adt_is_local;
                        let field_ty_arena = cx.db.field_types(variant_id);
                        let field_tys =
                            || field_ty_arena.iter().map(|(_, binders)| binders.skip_binders());
                        // In the following cases, we don't need to filter out any fields. This is
                        // the vast majority of real cases, since uninhabited fields are uncommon.
                        let has_no_hidden_fields = (matches!(adt, hir_def::AdtId::EnumId(_))
                            && !is_non_exhaustive)
                            || !field_tys().any(|ty| cx.is_uninhabited(ty));

                        if has_no_hidden_fields {
                            Fields::wildcards_from_tys(cx, field_tys())
                        } else {
                            //FIXME(iDawer): see MatchCheckCtx::is_uninhabited
                            unimplemented!("exhaustive_patterns feature")
                        }
                    }
                }
                _ => panic!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(slice) => {
                todo!()
            }
            Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque | Missing
            | Wildcard => Fields::Vec(Default::default()),
        };
        ret
    }

    /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
    /// must have as many elements as this constructor's arity.
    ///
    /// This is roughly the inverse of `specialize_constructor`.
    ///
    /// Examples:
    /// `ctor`: `Constructor::Single`
    /// `ty`: `Foo(u32, u32, u32)`
    /// `self`: `[10, 20, _]`
    /// returns `Foo(10, 20, _)`
    ///
    /// `ctor`: `Constructor::Variant(Option::Some)`
    /// `ty`: `Option<bool>`
    /// `self`: `[false]`
    /// returns `Some(false)`
    pub(super) fn apply(self, pcx: PatCtxt<'_>, ctor: &Constructor) -> Pat {
        let subpatterns_and_indices = self.patterns_and_indices();
        let mut subpatterns = subpatterns_and_indices.iter().map(|&(_, p)| p);
        // TODO witnesses are not yet used 
        const TODO: Pat = Pat::Wild;

        match ctor {
            Single | Variant(_) => match pcx.ty.kind(&Interner) {
                TyKind::Adt(..) | TyKind::Tuple(..) => {
                    // We want the real indices here.
                    // TODO indices and ellipsis interaction, tests
                    let subpatterns = subpatterns_and_indices.iter().map(|&(_, pat)| pat).collect();

                    if let Some((adt, substs)) = pcx.ty.as_adt() {
                        let item = ItemInNs::Types(adt.into());
                        let path = find_path(pcx.cx.db.upcast(), item, pcx.cx.module)
                            .map(|mpath| Path::from_known_path(mpath, Vec::new()).into());
                        match adt {
                            hir_def::AdtId::EnumId(id) => TODO,
                            hir_def::AdtId::StructId(id) => {
                                let variant_data = &pcx.cx.db.struct_data(id).variant_data;
                                let args = subpatterns_and_indices
                                    .iter()
                                    .zip(variant_data.fields().iter())
                                    .map(|(&(_, pat), (_, field_data))| RecordFieldPat {
                                        name: field_data.name.clone(),
                                        pat,
                                    })
                                    .collect();
                                Pat::Record { path, args, ellipsis: false }
                            }
                            hir_def::AdtId::UnionId(_) => Pat::Wild,
                        }
                    } else {
                        Pat::Tuple { args: subpatterns, ellipsis: None }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // can ignore this issue.
                TyKind::Ref(..) => {
                    Pat::Ref { pat: subpatterns.next().unwrap(), mutability: Mutability::Shared }
                }
                TyKind::Slice(..) | TyKind::Array(..) => {
                    panic!("bug: bad slice pattern {:?} {:?}", ctor, pcx.ty)
                }
                _ => Pat::Wild,
            },
            Constructor::Slice(slice) => TODO,
            Str(_) => TODO,
            FloatRange(..) => TODO,
            Constructor::IntRange(_) => TODO,
            NonExhaustive => Pat::Wild,
            Wildcard => Pat::Wild,
            Opaque => panic!("bug: we should not try to apply an opaque constructor"),
            Missing => {
                panic!("bug: trying to apply the `Missing` constructor; this should have been done in `apply_constructors`")
            }
        }
    }

    /// Returns the number of patterns. This is the same as the arity of the constructor used to
    /// construct `self`.
    pub(super) fn len(&self) -> usize {
        match self {
            Fields::Vec(pats) => pats.len(),
        }
    }

    /// Returns the list of patterns along with the corresponding field indices.
    fn patterns_and_indices(&self) -> SmallVec<[(usize, PatId); 2]> {
        match self {
            Fields::Vec(pats) => pats.iter().copied().enumerate().collect(),
        }
    }

    pub(super) fn into_patterns(self) -> SmallVec<[PatId; 2]> {
        match self {
            Fields::Vec(pats) => pats,
        }
    }

    /// Overrides some of the fields with the provided patterns. Exactly like
    /// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
    fn replace_with_fieldpats(&self, new_pats: impl IntoIterator<Item = PatId>) -> Self {
        self.replace_fields_indexed(new_pats.into_iter().enumerate())
    }

    /// Overrides some of the fields with the provided patterns. This is used when a pattern
    /// defines some fields but not all, for example `Foo { field1: Some(_), .. }`: here we start
    /// with a `Fields` that is just one wildcard per field of the `Foo` struct, and override the
    /// entry corresponding to `field1` with the pattern `Some(_)`. This is also used for slice
    /// patterns for the same reason.
    fn replace_fields_indexed(&self, new_pats: impl IntoIterator<Item = (usize, PatId)>) -> Self {
        let mut fields = self.clone();

        match &mut fields {
            Fields::Vec(pats) => {
                for (i, pat) in new_pats {
                    if let Some(p) = pats.get_mut(i) {
                        *p = pat;
                    }
                }
            }
        }
        fields
    }

    /// Replaces contained fields with the given list of patterns. There must be `len()` patterns
    /// in `pats`.
    pub(super) fn replace_fields(
        &self,
        cx: &MatchCheckCtx<'_>,
        pats: impl IntoIterator<Item = Pat>,
    ) -> Self {
        let pats = {
            let mut arena = cx.pattern_arena.borrow_mut();
            pats.into_iter().map(move |pat| /* arena.alloc(pat) */ todo!()).collect()
        };

        match self {
            Fields::Vec(_) => Fields::Vec(pats),
        }
    }

    /// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
    /// that is compatible with the constructor used to build `self`.
    /// This is meant to be used on the result of `Fields::wildcards()`. The idea is that
    /// `wildcards` constructs a list of fields where all entries are wildcards, and the pattern
    /// provided to this function fills some of the fields with non-wildcards.
    /// In the following example `Fields::wildcards` would return `[_, _, _, _]`. If we call
    /// `replace_with_pattern_arguments` on it with the pattern, the result will be `[Some(0), _,
    /// _, _]`.
    /// ```rust
    /// let x: [Option<u8>; 4] = foo();
    /// match x {
    ///     [Some(0), ..] => {}
    /// }
    /// ```
    /// This is guaranteed to preserve the number of patterns in `self`.
    pub(super) fn replace_with_pattern_arguments(
        &self,
        pat: PatId,
        cx: &MatchCheckCtx<'_>,
    ) -> Self {
        match &cx.pattern_arena.borrow()[pat] {
            Pat::Ref { pat: subpattern, .. } | Pat::Box { inner: subpattern } => {
                assert_eq!(self.len(), 1);
                Fields::from_single_pattern(*subpattern)
            }
            Pat::Tuple { args, ellipsis } | Pat::TupleStruct { args, ellipsis, .. } => {
                // FIXME(iDawer) handle ellipsis.
                // XXX(iDawer): in rustc, this is handled by HIR->TypedHIR lowering
                // rustc_mir_build::thir::pattern::PatCtxt::lower_tuple_subpats(..)
                self.replace_with_fieldpats(args.iter().copied())
            }
            Pat::Record { args, ellipsis, .. } => {
                // FIXME(iDawer) handle ellipsis.
                self.replace_with_fieldpats(args.iter().map(|field_pat| field_pat.pat))
            }
            Pat::Slice { .. } => {
                todo!()
            }
            Pat::Missing
            | Pat::Wild
            | Pat::Or(_)
            | Pat::Range { .. }
            | Pat::Path(_)
            | Pat::Lit(_)
            | Pat::Bind { .. }
            | Pat::ConstBlock(_) => self.clone(),
        }
    }
}

fn is_field_list_non_exhaustive(variant_id: VariantId, cx: &MatchCheckCtx<'_>) -> bool {
    let attr_def_id = match variant_id {
        VariantId::EnumVariantId(id) => id.into(),
        VariantId::StructId(id) => id.into(),
        VariantId::UnionId(id) => id.into(),
    };
    cx.db.attrs(attr_def_id).by_key("non_exhaustive").exists()
}

#[test]
fn it_works() {}