1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
//! Coercion logic. Coercions are certain type conversions that can implicitly
//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
//! like going from `&Vec<T>` to `&[T]`.
//!
//! See https://doc.rust-lang.org/nomicon/coercions.html and
//! librustc_typeck/check/coercion.rs.
use chalk_ir::{cast::Cast, Mutability, TyVariableKind};
use hir_def::{expr::ExprId, lang_item::LangItemTarget};
use crate::{
autoderef, infer::TypeMismatch, static_lifetime, Canonical, DomainGoal, FnPointer, FnSig,
Interner, Solution, Substitution, Ty, TyBuilder, TyExt, TyKind,
};
use super::{InEnvironment, InferOk, InferResult, InferenceContext, TypeError};
impl<'a> InferenceContext<'a> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(result) => {
self.table.register_infer_ok(result);
true
}
Err(_) => {
// FIXME deal with error
false
}
}
}
/// Merge two types from different branches, with possible coercion.
///
/// Mostly this means trying to coerce one to the other, but
/// - if we have two function types for different functions or closures, we need to
/// coerce both to function pointers;
/// - if we were concerned with lifetime subtyping, we'd need to look for a
/// least upper bound.
pub(super) fn coerce_merge_branch(&mut self, id: Option<ExprId>, ty1: &Ty, ty2: &Ty) -> Ty {
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
// Special case: two function types. Try to coerce both to
// pointers to have a chance at getting a match. See
// https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916
let sig = match (ty1.kind(&Interner), ty2.kind(&Interner)) {
(TyKind::FnDef(..), TyKind::FnDef(..))
| (TyKind::Closure(..), TyKind::FnDef(..))
| (TyKind::FnDef(..), TyKind::Closure(..))
| (TyKind::Closure(..), TyKind::Closure(..)) => {
// FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure,
// we should be coercing the closure to a fn pointer of the safety of the FnDef
cov_mark::hit!(coerce_fn_reification);
let sig = ty1.callable_sig(self.db).expect("FnDef without callable sig");
Some(sig)
}
_ => None,
};
if let Some(sig) = sig {
let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(&Interner);
let result1 = self.coerce_inner(ty1.clone(), &target_ty);
let result2 = self.coerce_inner(ty2.clone(), &target_ty);
if let (Ok(result1), Ok(result2)) = (result1, result2) {
self.table.register_infer_ok(result1);
self.table.register_infer_ok(result2);
return target_ty;
}
}
// It might not seem like it, but order is important here: ty1 is our
// "previous" type, ty2 is the "new" one being added. If the previous
// type is a type variable and the new one is `!`, trying it the other
// way around first would mean we make the type variable `!`, instead of
// just marking it as possibly diverging.
if self.coerce(&ty2, &ty1) {
ty1
} else if self.coerce(&ty1, &ty2) {
ty2
} else {
if let Some(id) = id {
self.result
.type_mismatches
.insert(id.into(), TypeMismatch { expected: ty1.clone(), actual: ty2 });
}
cov_mark::hit!(coerce_merge_fail_fallback);
ty1
}
}
fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult {
if from_ty.is_never() {
// Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound
// type variable, we want `?T` to fallback to `!` if not
// otherwise constrained. An example where this arises:
//
// let _: Option<?T> = Some({ return; });
//
// here, we would coerce from `!` to `?T`.
match to_ty.kind(&Interner) {
TyKind::InferenceVar(tv, TyVariableKind::General) => {
self.table.set_diverging(*tv, true);
}
_ => {}
}
return Ok(InferOk { goals: Vec::new() });
}
// Consider coercing the subtype to a DST
if let Ok(ret) = self.try_coerce_unsized(&from_ty, to_ty) {
return Ok(ret);
}
// Examine the supertype and consider auto-borrowing.
match to_ty.kind(&Interner) {
TyKind::Raw(mt, _) => {
return self.coerce_ptr(from_ty, to_ty, *mt);
}
TyKind::Ref(mt, _, _) => {
return self.coerce_ref(from_ty, to_ty, *mt);
}
_ => {}
}
match from_ty.kind(&Interner) {
TyKind::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(from_ty, to_ty)
}
TyKind::Function(from_fn_ptr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty)
}
TyKind::Closure(_, from_substs) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty)
}
_ => {
// Otherwise, just use unification rules.
self.table.try_unify(&from_ty, to_ty)
}
}
}
fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult {
let (_is_ref, from_mt, from_inner) = match from_ty.kind(&Interner) {
TyKind::Ref(mt, _, ty) => (true, mt, ty),
TyKind::Raw(mt, ty) => (false, mt, ty),
_ => return self.table.try_unify(&from_ty, to_ty),
};
coerce_mutabilities(*from_mt, to_mt)?;
// Check that the types which they point at are compatible.
let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(&Interner);
// FIXME: behavior differs based on is_ref once we're computing adjustments
self.table.try_unify(&from_raw, to_ty)
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_ref(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult {
match from_ty.kind(&Interner) {
TyKind::Ref(mt, _, _) => {
coerce_mutabilities(*mt, to_mt)?;
}
_ => return self.table.try_unify(&from_ty, to_ty),
};
// NOTE: this code is mostly copied and adapted from rustc, and
// currently more complicated than necessary, carrying errors around
// etc.. This complication will become necessary when we actually track
// details of coercion errors though, so I think it's useful to leave
// the structure like it is.
let canonicalized = self.canonicalize(from_ty);
let autoderef = autoderef::autoderef(
self.db,
self.resolver.krate(),
InEnvironment {
goal: canonicalized.value.clone(),
environment: self.trait_env.env.clone(),
},
);
let mut first_error = None;
let mut found = None;
for (autoderefs, referent_ty) in autoderef.enumerate() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
let referent_ty = canonicalized.decanonicalize_ty(referent_ty.value);
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
let lt = static_lifetime(); // FIXME: handle lifetimes correctly, see rustc
let derefd_from_ty = TyKind::Ref(to_mt, lt, referent_ty).intern(&Interner);
match self.table.try_unify(&derefd_from_ty, to_ty) {
Ok(result) => {
found = Some(result);
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let result = match found {
Some(d) => d,
None => {
let err = first_error.expect("coerce_borrowed_pointer had no error");
return Err(err);
}
};
Ok(result)
}
/// Attempts to coerce from the type of a Rust function item into a function pointer.
fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult {
match to_ty.kind(&Interner) {
TyKind::Function(_) => {
let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig");
// FIXME check ABI: Intrinsics are not coercible to function pointers
// FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396)
// FIXME rustc normalizes assoc types in the sig here, not sure if necessary
let from_sig = from_sig.to_fn_ptr();
let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(&Interner);
let ok = self.coerce_from_safe_fn(from_fn_pointer, &from_sig, to_ty)?;
Ok(ok)
}
_ => self.table.try_unify(&from_ty, to_ty),
}
}
fn coerce_from_fn_pointer(
&mut self,
from_ty: Ty,
from_f: &FnPointer,
to_ty: &Ty,
) -> InferResult {
self.coerce_from_safe_fn(from_ty, from_f, to_ty)
}
fn coerce_from_safe_fn(
&mut self,
from_ty: Ty,
from_fn_ptr: &FnPointer,
to_ty: &Ty,
) -> InferResult {
if let TyKind::Function(to_fn_ptr) = to_ty.kind(&Interner) {
if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) =
(from_fn_ptr.sig.safety, to_fn_ptr.sig.safety)
{
let from_unsafe =
TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(&Interner);
return self.table.try_unify(&from_unsafe, to_ty);
}
}
self.table.try_unify(&from_ty, to_ty)
}
/// Attempts to coerce from the type of a non-capturing closure into a
/// function pointer.
fn coerce_closure_to_fn(
&mut self,
from_ty: Ty,
from_substs: &Substitution,
to_ty: &Ty,
) -> InferResult {
match to_ty.kind(&Interner) {
TyKind::Function(fn_ty) /* if from_substs is non-capturing (FIXME) */ => {
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let safety = fn_ty.sig.safety;
let pointer_ty = coerce_closure_fn_ty(from_substs, safety);
self.table.try_unify(&pointer_ty, to_ty)
}
_ => self.table.try_unify(&from_ty, to_ty),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> InferResult {
// These 'if' statements require some explanation.
// The `CoerceUnsized` trait is special - it is only
// possible to write `impl CoerceUnsized<B> for A` where
// A and B have 'matching' fields. This rules out the following
// two types of blanket impls:
//
// `impl<T> CoerceUnsized<T> for SomeType`
// `impl<T> CoerceUnsized<SomeType> for T`
//
// Both of these trigger a special `CoerceUnsized`-related error (E0376)
//
// We can take advantage of this fact to avoid performing unecessary work.
// If either `source` or `target` is a type variable, then any applicable impl
// would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
// or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
// SomeType`).
//
// However, these are exactly the kinds of impls which are forbidden by
// the compiler! Therefore, we can be sure that coercion will always fail
// when either the source or target type is a type variable. This allows us
// to skip performing any trait selection, and immediately bail out.
if from_ty.is_ty_var() {
return Err(TypeError);
}
if to_ty.is_ty_var() {
return Err(TypeError);
}
// Handle reborrows before trying to solve `Source: CoerceUnsized<Target>`.
let coerce_from = match (from_ty.kind(&Interner), to_ty.kind(&Interner)) {
(TyKind::Ref(from_mt, _, from_inner), TyKind::Ref(to_mt, _, _)) => {
coerce_mutabilities(*from_mt, *to_mt)?;
let lt = static_lifetime();
TyKind::Ref(*to_mt, lt, from_inner.clone()).intern(&Interner)
}
(TyKind::Ref(from_mt, _, from_inner), TyKind::Raw(to_mt, _)) => {
coerce_mutabilities(*from_mt, *to_mt)?;
TyKind::Raw(*to_mt, from_inner.clone()).intern(&Interner)
}
_ => from_ty.clone(),
};
let krate = self.resolver.krate().unwrap();
let coerce_unsized_trait = match self.db.lang_item(krate, "coerce_unsized".into()) {
Some(LangItemTarget::TraitId(trait_)) => trait_,
_ => return Err(TypeError),
};
let trait_ref = {
let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait);
if b.remaining() != 2 {
// The CoerceUnsized trait should have two generic params: Self and T.
return Err(TypeError);
}
b.push(coerce_from).push(to_ty.clone()).build()
};
let goal: InEnvironment<DomainGoal> =
InEnvironment::new(&self.trait_env.env, trait_ref.cast(&Interner));
let canonicalized = self.canonicalize(goal);
// FIXME: rustc's coerce_unsized is more specialized -- it only tries to
// solve `CoerceUnsized` and `Unsize` goals at this point and leaves the
// rest for later. Also, there's some logic about sized type variables.
// Need to find out in what cases this is necessary
let solution = self
.db
.trait_solve(krate, canonicalized.value.clone().cast(&Interner))
.ok_or(TypeError)?;
match solution {
Solution::Unique(v) => {
canonicalized.apply_solution(
&mut self.table,
Canonical {
binders: v.binders,
// FIXME handle constraints
value: v.value.subst,
},
);
}
// FIXME: should we accept ambiguous results here?
_ => return Err(TypeError),
};
Ok(InferOk { goals: Vec::new() })
}
}
fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty {
let closure_sig = closure_substs.at(&Interner, 0).assert_ty_ref(&Interner).clone();
match closure_sig.kind(&Interner) {
TyKind::Function(fn_ty) => TyKind::Function(FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety, ..fn_ty.sig },
substitution: fn_ty.substitution.clone(),
})
.intern(&Interner),
_ => TyKind::Error.intern(&Interner),
}
}
fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer {
FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig },
substitution: fn_ty.substitution,
}
}
fn coerce_mutabilities(from: Mutability, to: Mutability) -> Result<(), TypeError> {
match (from, to) {
(Mutability::Mut, Mutability::Mut)
| (Mutability::Mut, Mutability::Not)
| (Mutability::Not, Mutability::Not) => Ok(()),
(Mutability::Not, Mutability::Mut) => Err(TypeError),
}
}
|