aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/infer/unify.rs
blob: f8233cac393985af6f838ee35466e8befe52de2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
//! Unification and canonicalization logic.

use std::{fmt, mem, sync::Arc};

use chalk_ir::{
    cast::Cast, fold::Fold, interner::HasInterner, zip::Zip, FloatTy, IntTy, TyVariableKind,
    UniverseIndex,
};
use chalk_solve::infer::ParameterEnaVariableExt;
use ena::unify::UnifyKey;

use super::{InferOk, InferResult, InferenceContext, TypeError};
use crate::{
    db::HirDatabase, fold_tys, static_lifetime, AliasEq, AliasTy, BoundVar, Canonical,
    DebruijnIndex, GenericArg, Goal, Guidance, InEnvironment, InferenceVar, Interner, ProjectionTy,
    Scalar, Solution, Substitution, TraitEnvironment, Ty, TyKind, VariableKind,
};

impl<'a> InferenceContext<'a> {
    pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
        &mut self,
        t: T,
    ) -> Canonicalized<T::Result>
    where
        T::Result: HasInterner<Interner = Interner>,
    {
        // try to resolve obligations before canonicalizing, since this might
        // result in new knowledge about variables
        self.resolve_obligations_as_possible();
        self.table.canonicalize(t)
    }
}

#[derive(Debug, Clone)]
pub(super) struct Canonicalized<T>
where
    T: HasInterner<Interner = Interner>,
{
    pub(super) value: Canonical<T>,
    free_vars: Vec<GenericArg>,
}

impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
    pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty {
        chalk_ir::Substitute::apply(&self.free_vars, ty, &Interner)
    }

    pub(super) fn apply_solution(
        &self,
        ctx: &mut InferenceTable,
        solution: Canonical<Substitution>,
    ) {
        // the solution may contain new variables, which we need to convert to new inference vars
        let new_vars = Substitution::from_iter(
            &Interner,
            solution.binders.iter(&Interner).map(|k| match k.kind {
                VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(&Interner),
                VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(&Interner),
                VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(&Interner),
                // Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere
                VariableKind::Lifetime => static_lifetime().cast(&Interner),
                _ => panic!("const variable in solution"),
            }),
        );
        for (i, v) in solution.value.iter(&Interner).enumerate() {
            let var = self.free_vars[i].clone();
            if let Some(ty) = v.ty(&Interner) {
                // eagerly replace projections in the type; we may be getting types
                // e.g. from where clauses where this hasn't happened yet
                let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), &Interner));
                ctx.unify(var.assert_ty_ref(&Interner), &ty);
            } else {
                let _ = ctx.try_unify(&var, &new_vars.apply(v.clone(), &Interner));
            }
        }
    }
}

pub fn could_unify(
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    tys: &Canonical<(Ty, Ty)>,
) -> bool {
    unify(db, env, tys).is_some()
}

pub(crate) fn unify(
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
    let mut table = InferenceTable::new(db, env);
    let vars = Substitution::from_iter(
        &Interner,
        tys.binders
            .iter(&Interner)
            // we always use type vars here because we want everything to
            // fallback to Unknown in the end (kind of hacky, as below)
            .map(|_| table.new_type_var()),
    );
    let ty1_with_vars = vars.apply(tys.value.0.clone(), &Interner);
    let ty2_with_vars = vars.apply(tys.value.1.clone(), &Interner);
    if !table.unify(&ty1_with_vars, &ty2_with_vars) {
        return None;
    }
    // default any type vars that weren't unified back to their original bound vars
    // (kind of hacky)
    let find_var = |iv| {
        vars.iter(&Interner).position(|v| match v.interned() {
            chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(&Interner),
            chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(&Interner),
            chalk_ir::GenericArgData::Const(c) => c.inference_var(&Interner),
        } == Some(iv))
    };
    let fallback = |iv, kind, default, binder| match kind {
        chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
            .map_or(default, |i| BoundVar::new(binder, i).to_ty(&Interner).cast(&Interner)),
        chalk_ir::VariableKind::Lifetime => find_var(iv)
            .map_or(default, |i| BoundVar::new(binder, i).to_lifetime(&Interner).cast(&Interner)),
        chalk_ir::VariableKind::Const(ty) => find_var(iv)
            .map_or(default, |i| BoundVar::new(binder, i).to_const(&Interner, ty).cast(&Interner)),
    };
    Some(Substitution::from_iter(
        &Interner,
        vars.iter(&Interner)
            .map(|v| table.resolve_with_fallback(v.assert_ty_ref(&Interner).clone(), fallback)),
    ))
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct TypeVariableData {
    diverging: bool,
}

type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;

#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
    pub(crate) db: &'a dyn HirDatabase,
    pub(crate) trait_env: Arc<TraitEnvironment>,
    var_unification_table: ChalkInferenceTable,
    type_variable_table: Vec<TypeVariableData>,
    pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
}

impl<'a> InferenceTable<'a> {
    pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
        InferenceTable {
            db,
            trait_env,
            var_unification_table: ChalkInferenceTable::new(),
            type_variable_table: Vec::new(),
            pending_obligations: Vec::new(),
        }
    }

    /// Chalk doesn't know about the `diverging` flag, so when it unifies two
    /// type variables of which one is diverging, the chosen root might not be
    /// diverging and we have no way of marking it as such at that time. This
    /// function goes through all type variables and make sure their root is
    /// marked as diverging if necessary, so that resolving them gives the right
    /// result.
    pub(super) fn propagate_diverging_flag(&mut self) {
        for i in 0..self.type_variable_table.len() {
            if !self.type_variable_table[i].diverging {
                continue;
            }
            let v = InferenceVar::from(i as u32);
            let root = self.var_unification_table.inference_var_root(v);
            if let Some(data) = self.type_variable_table.get_mut(root.index() as usize) {
                data.diverging = true;
            }
        }
    }

    pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
        self.type_variable_table[iv.index() as usize].diverging = diverging;
    }

    fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
        match kind {
            _ if self
                .type_variable_table
                .get(iv.index() as usize)
                .map_or(false, |data| data.diverging) =>
            {
                TyKind::Never
            }
            TyVariableKind::General => TyKind::Error,
            TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
            TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
        }
        .intern(&Interner)
    }

    pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
        &mut self,
        t: T,
    ) -> Canonicalized<T::Result>
    where
        T::Result: HasInterner<Interner = Interner>,
    {
        let result = self.var_unification_table.canonicalize(&Interner, t);
        let free_vars = result
            .free_vars
            .into_iter()
            .map(|free_var| free_var.to_generic_arg(&Interner))
            .collect();
        Canonicalized { value: result.quantified, free_vars }
    }

    /// Recurses through the given type, normalizing associated types mentioned
    /// in it by replacing them by type variables and registering obligations to
    /// resolve later. This should be done once for every type we get from some
    /// type annotation (e.g. from a let type annotation, field type or function
    /// call). `make_ty` handles this already, but e.g. for field types we need
    /// to do it as well.
    pub(super) fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
        fold_tys(
            ty,
            |ty, _| match ty.kind(&Interner) {
                TyKind::Alias(AliasTy::Projection(proj_ty)) => {
                    self.normalize_projection_ty(proj_ty.clone())
                }
                _ => ty,
            },
            DebruijnIndex::INNERMOST,
        )
    }

    pub(super) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
        let var = self.new_type_var();
        let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() };
        let obligation = alias_eq.cast(&Interner);
        self.register_obligation(obligation);
        var
    }

    fn extend_type_variable_table(&mut self, to_index: usize) {
        self.type_variable_table.extend(
            (0..1 + to_index - self.type_variable_table.len())
                .map(|_| TypeVariableData { diverging: false }),
        );
    }

    fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
        let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
        // Chalk might have created some type variables for its own purposes that we don't know about...
        self.extend_type_variable_table(var.index() as usize);
        assert_eq!(var.index() as usize, self.type_variable_table.len() - 1);
        self.type_variable_table[var.index() as usize].diverging = diverging;
        var.to_ty_with_kind(&Interner, kind)
    }

    pub(crate) fn new_type_var(&mut self) -> Ty {
        self.new_var(TyVariableKind::General, false)
    }

    pub(crate) fn new_integer_var(&mut self) -> Ty {
        self.new_var(TyVariableKind::Integer, false)
    }

    pub(crate) fn new_float_var(&mut self) -> Ty {
        self.new_var(TyVariableKind::Float, false)
    }

    pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
        self.new_var(TyVariableKind::General, true)
    }

    pub(crate) fn resolve_with_fallback<T>(
        &mut self,
        t: T,
        fallback: impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
    ) -> T::Result
    where
        T: HasInterner<Interner = Interner> + Fold<Interner>,
    {
        self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback)
    }

    fn resolve_with_fallback_inner<T>(
        &mut self,
        var_stack: &mut Vec<InferenceVar>,
        t: T,
        fallback: &impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
    ) -> T::Result
    where
        T: HasInterner<Interner = Interner> + Fold<Interner>,
    {
        t.fold_with(
            &mut resolve::Resolver { table: self, var_stack, fallback },
            DebruijnIndex::INNERMOST,
        )
        .expect("fold failed unexpectedly")
    }

    pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
        self.resolve_with_fallback(ty, |_, _, d, _| d)
    }

    /// Unify two types and register new trait goals that arise from that.
    pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        let result = if let Ok(r) = self.try_unify(ty1, ty2) {
            r
        } else {
            return false;
        };
        self.register_infer_ok(result);
        true
    }

    /// Unify two types and return new trait goals arising from it, so the
    /// caller needs to deal with them.
    pub(crate) fn try_unify<T: Zip<Interner>>(&mut self, t1: &T, t2: &T) -> InferResult {
        match self.var_unification_table.relate(
            &Interner,
            &self.db,
            &self.trait_env.env,
            chalk_ir::Variance::Invariant,
            t1,
            t2,
        ) {
            Ok(result) => Ok(InferOk { goals: result.goals }),
            Err(chalk_ir::NoSolution) => Err(TypeError),
        }
    }

    /// If `ty` is a type variable with known type, returns that type;
    /// otherwise, return ty.
    pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
        self.var_unification_table.normalize_ty_shallow(&Interner, ty).unwrap_or_else(|| ty.clone())
    }

    pub(crate) fn register_obligation(&mut self, goal: Goal) {
        let in_env = InEnvironment::new(&self.trait_env.env, goal);
        self.register_obligation_in_env(in_env)
    }

    fn register_obligation_in_env(&mut self, goal: InEnvironment<Goal>) {
        let canonicalized = self.canonicalize(goal);
        if !self.try_resolve_obligation(&canonicalized) {
            self.pending_obligations.push(canonicalized);
        }
    }

    pub(crate) fn register_infer_ok(&mut self, infer_ok: InferOk) {
        infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal));
    }

    pub(crate) fn resolve_obligations_as_possible(&mut self) {
        let _span = profile::span("resolve_obligations_as_possible");
        let mut changed = true;
        let mut obligations = Vec::new();
        while changed {
            changed = false;
            mem::swap(&mut self.pending_obligations, &mut obligations);
            for canonicalized in obligations.drain(..) {
                if !self.check_changed(&canonicalized) {
                    self.pending_obligations.push(canonicalized);
                    continue;
                }
                changed = true;
                let uncanonical = chalk_ir::Substitute::apply(
                    &canonicalized.free_vars,
                    canonicalized.value.value,
                    &Interner,
                );
                self.register_obligation_in_env(uncanonical);
            }
        }
    }

    /// This checks whether any of the free variables in the `canonicalized`
    /// have changed (either been unified with another variable, or with a
    /// value). If this is not the case, we don't need to try to solve the goal
    /// again -- it'll give the same result as last time.
    fn check_changed(&mut self, canonicalized: &Canonicalized<InEnvironment<Goal>>) -> bool {
        canonicalized.free_vars.iter().any(|var| {
            let iv = match var.data(&Interner) {
                chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(&Interner),
                chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(&Interner),
                chalk_ir::GenericArgData::Const(c) => c.inference_var(&Interner),
            }
            .expect("free var is not inference var");
            if self.var_unification_table.probe_var(iv).is_some() {
                return true;
            }
            let root = self.var_unification_table.inference_var_root(iv);
            iv != root
        })
    }

    fn try_resolve_obligation(
        &mut self,
        canonicalized: &Canonicalized<InEnvironment<Goal>>,
    ) -> bool {
        let solution = self.db.trait_solve(self.trait_env.krate, canonicalized.value.clone());

        match solution {
            Some(Solution::Unique(canonical_subst)) => {
                canonicalized.apply_solution(
                    self,
                    Canonical {
                        binders: canonical_subst.binders,
                        // FIXME: handle constraints
                        value: canonical_subst.value.subst,
                    },
                );
                true
            }
            Some(Solution::Ambig(Guidance::Definite(substs))) => {
                canonicalized.apply_solution(self, substs);
                false
            }
            Some(_) => {
                // FIXME use this when trying to resolve everything at the end
                false
            }
            None => {
                // FIXME obligation cannot be fulfilled => diagnostic
                true
            }
        }
    }
}

impl<'a> fmt::Debug for InferenceTable<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish()
    }
}

mod resolve {
    use super::InferenceTable;
    use crate::{
        ConcreteConst, Const, ConstData, ConstValue, DebruijnIndex, GenericArg, InferenceVar,
        Interner, Lifetime, Ty, TyVariableKind, VariableKind,
    };
    use chalk_ir::{
        cast::Cast,
        fold::{Fold, Folder},
        Fallible,
    };
    use hir_def::type_ref::ConstScalar;

    pub(super) struct Resolver<'a, 'b, F> {
        pub(super) table: &'a mut InferenceTable<'b>,
        pub(super) var_stack: &'a mut Vec<InferenceVar>,
        pub(super) fallback: F,
    }
    impl<'a, 'b, 'i, F> Folder<'i, Interner> for Resolver<'a, 'b, F>
    where
        F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg + 'i,
    {
        fn as_dyn(&mut self) -> &mut dyn Folder<'i, Interner> {
            self
        }

        fn interner(&self) -> &'i Interner {
            &Interner
        }

        fn fold_inference_ty(
            &mut self,
            var: InferenceVar,
            kind: TyVariableKind,
            outer_binder: DebruijnIndex,
        ) -> Fallible<Ty> {
            let var = self.table.var_unification_table.inference_var_root(var);
            if self.var_stack.contains(&var) {
                // recursive type
                let default = self.table.fallback_value(var, kind).cast(&Interner);
                return Ok((self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
                    .assert_ty_ref(&Interner)
                    .clone());
            }
            let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
                // known_ty may contain other variables that are known by now
                self.var_stack.push(var);
                let result =
                    known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
                self.var_stack.pop();
                result.assert_ty_ref(&Interner).clone()
            } else {
                let default = self.table.fallback_value(var, kind).cast(&Interner);
                (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
                    .assert_ty_ref(&Interner)
                    .clone()
            };
            Ok(result)
        }

        fn fold_inference_const(
            &mut self,
            ty: Ty,
            var: InferenceVar,
            outer_binder: DebruijnIndex,
        ) -> Fallible<Const> {
            let var = self.table.var_unification_table.inference_var_root(var);
            let default = ConstData {
                ty: ty.clone(),
                value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
            }
            .intern(&Interner)
            .cast(&Interner);
            if self.var_stack.contains(&var) {
                // recursive
                return Ok((self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
                    .assert_const_ref(&Interner)
                    .clone());
            }
            let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
                // known_ty may contain other variables that are known by now
                self.var_stack.push(var);
                let result =
                    known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
                self.var_stack.pop();
                result.assert_const_ref(&Interner).clone()
            } else {
                (self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
                    .assert_const_ref(&Interner)
                    .clone()
            };
            Ok(result)
        }

        fn fold_inference_lifetime(
            &mut self,
            _var: InferenceVar,
            _outer_binder: DebruijnIndex,
        ) -> Fallible<Lifetime> {
            // fall back all lifetimes to 'static -- currently we don't deal
            // with any lifetimes, but we can sometimes get some lifetime
            // variables through Chalk's unification, and this at least makes
            // sure we don't leak them outside of inference
            Ok(crate::static_lifetime())
        }
    }
}