aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/infer/unify.rs
blob: 76984242e1c8cddf4959d97b5db6349e42e0c4a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//! Unification and canonicalization logic.

use std::borrow::Cow;

use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};

use test_utils::mark;

use super::{InferenceContext, Obligation};
use crate::{
    BoundVar, Canonical, DebruijnIndex, GenericPredicate, InEnvironment, InferTy, Substs, Ty,
    TyKind, TypeCtor, TypeWalk,
};

impl<'a> InferenceContext<'a> {
    pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b>
    where
        'a: 'b,
    {
        Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
    }
}

pub(super) struct Canonicalizer<'a, 'b>
where
    'a: 'b,
{
    ctx: &'b mut InferenceContext<'a>,
    free_vars: Vec<InferTy>,
    /// A stack of type variables that is used to detect recursive types (which
    /// are an error, but we need to protect against them to avoid stack
    /// overflows).
    var_stack: Vec<TypeVarId>,
}

#[derive(Debug)]
pub(super) struct Canonicalized<T> {
    pub(super) value: Canonical<T>,
    free_vars: Vec<InferTy>,
}

impl<'a, 'b> Canonicalizer<'a, 'b>
where
    'a: 'b,
{
    fn add(&mut self, free_var: InferTy) -> usize {
        self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
            let next_index = self.free_vars.len();
            self.free_vars.push(free_var);
            next_index
        })
    }

    fn do_canonicalize<T: TypeWalk>(&mut self, t: T, binders: DebruijnIndex) -> T {
        t.fold_binders(
            &mut |ty, binders| match ty {
                Ty::Infer(tv) => {
                    let inner = tv.to_inner();
                    if self.var_stack.contains(&inner) {
                        // recursive type
                        return tv.fallback_value();
                    }
                    if let Some(known_ty) =
                        self.ctx.table.var_unification_table.inlined_probe_value(inner).known()
                    {
                        self.var_stack.push(inner);
                        let result = self.do_canonicalize(known_ty.clone(), binders);
                        self.var_stack.pop();
                        result
                    } else {
                        let root = self.ctx.table.var_unification_table.find(inner);
                        let free_var = match tv {
                            InferTy::TypeVar(_) => InferTy::TypeVar(root),
                            InferTy::IntVar(_) => InferTy::IntVar(root),
                            InferTy::FloatVar(_) => InferTy::FloatVar(root),
                            InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
                        };
                        let position = self.add(free_var);
                        Ty::Bound(BoundVar::new(binders, position))
                    }
                }
                _ => ty,
            },
            binders,
        )
    }

    fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
        let kinds = self
            .free_vars
            .iter()
            .map(|v| match v {
                // mapping MaybeNeverTypeVar to the same kind as general ones
                // should be fine, because as opposed to int or float type vars,
                // they don't restrict what kind of type can go into them, they
                // just affect fallback.
                InferTy::TypeVar(_) | InferTy::MaybeNeverTypeVar(_) => TyKind::General,
                InferTy::IntVar(_) => TyKind::Integer,
                InferTy::FloatVar(_) => TyKind::Float,
            })
            .collect();
        Canonicalized { value: Canonical { value: result, kinds }, free_vars: self.free_vars }
    }

    pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
        let result = self.do_canonicalize(ty, DebruijnIndex::INNERMOST);
        self.into_canonicalized(result)
    }

    pub(crate) fn canonicalize_obligation(
        mut self,
        obligation: InEnvironment<Obligation>,
    ) -> Canonicalized<InEnvironment<Obligation>> {
        let result = match obligation.value {
            Obligation::Trait(tr) => {
                Obligation::Trait(self.do_canonicalize(tr, DebruijnIndex::INNERMOST))
            }
            Obligation::Projection(pr) => {
                Obligation::Projection(self.do_canonicalize(pr, DebruijnIndex::INNERMOST))
            }
        };
        self.into_canonicalized(InEnvironment {
            value: result,
            environment: obligation.environment,
        })
    }
}

impl<T> Canonicalized<T> {
    pub(super) fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
        ty.walk_mut_binders(
            &mut |ty, binders| {
                if let &mut Ty::Bound(bound) = ty {
                    if bound.debruijn >= binders {
                        *ty = Ty::Infer(self.free_vars[bound.index]);
                    }
                }
            },
            DebruijnIndex::INNERMOST,
        );
        ty
    }

    pub(super) fn apply_solution(
        &self,
        ctx: &mut InferenceContext<'_>,
        solution: Canonical<Substs>,
    ) {
        // the solution may contain new variables, which we need to convert to new inference vars
        let new_vars = Substs(
            solution
                .kinds
                .iter()
                .map(|k| match k {
                    TyKind::General => ctx.table.new_type_var(),
                    TyKind::Integer => ctx.table.new_integer_var(),
                    TyKind::Float => ctx.table.new_float_var(),
                })
                .collect(),
        );
        for (i, ty) in solution.value.into_iter().enumerate() {
            let var = self.free_vars[i];
            // eagerly replace projections in the type; we may be getting types
            // e.g. from where clauses where this hasn't happened yet
            let ty = ctx.normalize_associated_types_in(ty.clone().subst_bound_vars(&new_vars));
            ctx.table.unify(&Ty::Infer(var), &ty);
        }
    }
}

pub(crate) fn unify(tys: &Canonical<(Ty, Ty)>) -> Option<Substs> {
    let mut table = InferenceTable::new();
    let vars = Substs(
        tys.kinds
            .iter()
            // we always use type vars here because we want everything to
            // fallback to Unknown in the end (kind of hacky, as below)
            .map(|_| table.new_type_var())
            .collect(),
    );
    let ty1_with_vars = tys.value.0.clone().subst_bound_vars(&vars);
    let ty2_with_vars = tys.value.1.clone().subst_bound_vars(&vars);
    if !table.unify(&ty1_with_vars, &ty2_with_vars) {
        return None;
    }
    // default any type vars that weren't unified back to their original bound vars
    // (kind of hacky)
    for (i, var) in vars.iter().enumerate() {
        if &*table.resolve_ty_shallow(var) == var {
            table.unify(var, &Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, i)));
        }
    }
    Some(
        Substs::builder(tys.kinds.len())
            .fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone())))
            .build(),
    )
}

#[derive(Clone, Debug)]
pub(crate) struct InferenceTable {
    pub(super) var_unification_table: InPlaceUnificationTable<TypeVarId>,
}

impl InferenceTable {
    pub(crate) fn new() -> Self {
        InferenceTable { var_unification_table: InPlaceUnificationTable::new() }
    }

    pub(crate) fn new_type_var(&mut self) -> Ty {
        Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    pub(crate) fn new_integer_var(&mut self) -> Ty {
        Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    pub(crate) fn new_float_var(&mut self) -> Ty {
        Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    pub(crate) fn new_maybe_never_type_var(&mut self) -> Ty {
        Ty::Infer(InferTy::MaybeNeverTypeVar(
            self.var_unification_table.new_key(TypeVarValue::Unknown),
        ))
    }

    pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
        self.resolve_ty_completely_inner(&mut Vec::new(), ty)
    }

    pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
        self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
    }

    pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        self.unify_inner(ty1, ty2, 0)
    }

    pub(crate) fn unify_substs(
        &mut self,
        substs1: &Substs,
        substs2: &Substs,
        depth: usize,
    ) -> bool {
        substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
    }

    fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
        if depth > 1000 {
            // prevent stackoverflows
            panic!("infinite recursion in unification");
        }
        if ty1 == ty2 {
            return true;
        }
        // try to resolve type vars first
        let ty1 = self.resolve_ty_shallow(ty1);
        let ty2 = self.resolve_ty_shallow(ty2);
        match (&*ty1, &*ty2) {
            (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
                self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
            }

            _ => self.unify_inner_trivial(&ty1, &ty2, depth),
        }
    }

    pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
        match (ty1, ty2) {
            (Ty::Unknown, _) | (_, Ty::Unknown) => true,

            (Ty::Placeholder(p1), Ty::Placeholder(p2)) if *p1 == *p2 => true,

            (Ty::Dyn(dyn1), Ty::Dyn(dyn2)) if dyn1.len() == dyn2.len() => {
                for (pred1, pred2) in dyn1.iter().zip(dyn2.iter()) {
                    if !self.unify_preds(pred1, pred2, depth + 1) {
                        return false;
                    }
                }
                true
            }

            (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
            | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
            | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
            | (
                Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
                Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
            ) => {
                // both type vars are unknown since we tried to resolve them
                self.var_unification_table.union(*tv1, *tv2);
                true
            }

            // The order of MaybeNeverTypeVar matters here.
            // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
            // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
            (Ty::Infer(InferTy::TypeVar(tv)), other)
            | (other, Ty::Infer(InferTy::TypeVar(tv)))
            | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
            | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
            | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
            | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
            | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
            | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
                // the type var is unknown since we tried to resolve it
                self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
                true
            }

            _ => false,
        }
    }

    fn unify_preds(
        &mut self,
        pred1: &GenericPredicate,
        pred2: &GenericPredicate,
        depth: usize,
    ) -> bool {
        match (pred1, pred2) {
            (GenericPredicate::Implemented(tr1), GenericPredicate::Implemented(tr2))
                if tr1.trait_ == tr2.trait_ =>
            {
                self.unify_substs(&tr1.substs, &tr2.substs, depth + 1)
            }
            (GenericPredicate::Projection(proj1), GenericPredicate::Projection(proj2))
                if proj1.projection_ty.associated_ty == proj2.projection_ty.associated_ty =>
            {
                self.unify_substs(
                    &proj1.projection_ty.parameters,
                    &proj2.projection_ty.parameters,
                    depth + 1,
                ) && self.unify_inner(&proj1.ty, &proj2.ty, depth + 1)
            }
            _ => false,
        }
    }

    /// If `ty` is a type variable with known type, returns that type;
    /// otherwise, return ty.
    pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
        let mut ty = Cow::Borrowed(ty);
        // The type variable could resolve to a int/float variable. Hence try
        // resolving up to three times; each type of variable shouldn't occur
        // more than once
        for i in 0..3 {
            if i > 0 {
                mark::hit!(type_var_resolves_to_int_var);
            }
            match &*ty {
                Ty::Infer(tv) => {
                    let inner = tv.to_inner();
                    match self.var_unification_table.inlined_probe_value(inner).known() {
                        Some(known_ty) => {
                            // The known_ty can't be a type var itself
                            ty = Cow::Owned(known_ty.clone());
                        }
                        _ => return ty,
                    }
                }
                _ => return ty,
            }
        }
        log::error!("Inference variable still not resolved: {:?}", ty);
        ty
    }

    /// Resolves the type as far as currently possible, replacing type variables
    /// by their known types. All types returned by the infer_* functions should
    /// be resolved as far as possible, i.e. contain no type variables with
    /// known type.
    fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(tv) => {
                let inner = tv.to_inner();
                if tv_stack.contains(&inner) {
                    mark::hit!(type_var_cycles_resolve_as_possible);
                    // recursive type
                    return tv.fallback_value();
                }
                if let Some(known_ty) =
                    self.var_unification_table.inlined_probe_value(inner).known()
                {
                    // known_ty may contain other variables that are known by now
                    tv_stack.push(inner);
                    let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone());
                    tv_stack.pop();
                    result
                } else {
                    ty
                }
            }
            _ => ty,
        })
    }

    /// Resolves the type completely; type variables without known type are
    /// replaced by Ty::Unknown.
    fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(tv) => {
                let inner = tv.to_inner();
                if tv_stack.contains(&inner) {
                    mark::hit!(type_var_cycles_resolve_completely);
                    // recursive type
                    return tv.fallback_value();
                }
                if let Some(known_ty) =
                    self.var_unification_table.inlined_probe_value(inner).known()
                {
                    // known_ty may contain other variables that are known by now
                    tv_stack.push(inner);
                    let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone());
                    tv_stack.pop();
                    result
                } else {
                    tv.fallback_value()
                }
            }
            _ => ty,
        })
    }
}

/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);

impl UnifyKey for TypeVarId {
    type Value = TypeVarValue;

    fn index(&self) -> u32 {
        self.0
    }

    fn from_index(i: u32) -> Self {
        TypeVarId(i)
    }

    fn tag() -> &'static str {
        "TypeVarId"
    }
}

/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
    Known(Ty),
    Unknown,
}

impl TypeVarValue {
    fn known(&self) -> Option<&Ty> {
        match self {
            TypeVarValue::Known(ty) => Some(ty),
            TypeVarValue::Unknown => None,
        }
    }
}

impl UnifyValue for TypeVarValue {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
        match (value1, value2) {
            // We should never equate two type variables, both of which have
            // known types. Instead, we recursively equate those types.
            (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
                "equating two type variables, both of which have known types: {:?} and {:?}",
                t1, t2
            ),

            // If one side is known, prefer that one.
            (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
            (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),

            (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
        }
    }
}