1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
|
//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.
#[allow(unused)]
macro_rules! eprintln {
($($tt:tt)*) => { stdx::eprintln!($($tt)*) };
}
mod autoderef;
pub mod primitive;
pub mod traits;
pub mod method_resolution;
mod op;
mod lower;
pub(crate) mod infer;
pub(crate) mod utils;
pub mod display;
pub mod db;
pub mod diagnostics;
#[cfg(test)]
mod tests;
#[cfg(test)]
mod test_db;
use std::{iter, mem, ops::Deref, sync::Arc};
use base_db::{salsa, CrateId};
use hir_def::{
expr::ExprId,
type_ref::{Mutability, Rawness},
AdtId, AssocContainerId, DefWithBodyId, GenericDefId, HasModule, Lookup, TraitId, TypeAliasId,
TypeParamId,
};
use itertools::Itertools;
use crate::{
db::HirDatabase,
display::HirDisplay,
primitive::{FloatTy, IntTy},
utils::{generics, make_mut_slice, Generics},
};
pub use autoderef::autoderef;
pub use infer::{InferTy, InferenceResult};
pub use lower::CallableDefId;
pub use lower::{
associated_type_shorthand_candidates, callable_item_sig, ImplTraitLoweringMode, TyDefId,
TyLoweringContext, ValueTyDefId,
};
pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
pub use chalk_ir::{BoundVar, DebruijnIndex};
/// A type constructor or type name: this might be something like the primitive
/// type `bool`, a struct like `Vec`, or things like function pointers or
/// tuples.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum TypeCtor {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive integer type. For example, `i32`.
Int(IntTy),
/// A primitive floating-point type. For example, `f64`.
Float(FloatTy),
/// Structures, enumerations and unions.
Adt(AdtId),
/// The pointee of a string slice. Written as `str`.
Str,
/// The pointee of an array slice. Written as `[T]`.
Slice,
/// An array with the given length. Written as `[T; n]`.
Array,
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// This includes tuple struct / enum variant constructors as well.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(CallableDefId),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
// FIXME make this a Ty variant like in Chalk
FnPtr { num_args: u16, is_varargs: bool },
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple { cardinality: u16 },
/// Represents an associated item like `Iterator::Item`. This is used
/// when we have tried to normalize a projection like `T::Item` but
/// couldn't find a better representation. In that case, we generate
/// an **application type** like `(Iterator::Item)<T>`.
AssociatedType(TypeAliasId),
/// This represents a placeholder for an opaque type in situations where we
/// don't know the hidden type (i.e. currently almost always). This is
/// analogous to the `AssociatedType` type constructor.
/// It is also used as the type of async block, with one type parameter
/// representing the Future::Output type.
OpaqueType(OpaqueTyId),
/// Represents a foreign type declared in external blocks.
ForeignType(TypeAliasId),
/// The type of a specific closure.
///
/// The closure signature is stored in a `FnPtr` type in the first type
/// parameter.
Closure { def: DefWithBodyId, expr: ExprId },
}
impl TypeCtor {
pub fn num_ty_params(self, db: &dyn HirDatabase) -> usize {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never => 0,
TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::Closure { .. } // 1 param representing the signature of the closure
=> 1,
TypeCtor::Adt(adt) => {
let generic_params = generics(db.upcast(), adt.into());
generic_params.len()
}
TypeCtor::FnDef(callable) => {
let generic_params = generics(db.upcast(), callable.into());
generic_params.len()
}
TypeCtor::AssociatedType(type_alias) => {
let generic_params = generics(db.upcast(), type_alias.into());
generic_params.len()
}
TypeCtor::ForeignType(type_alias) => {
let generic_params = generics(db.upcast(), type_alias.into());
generic_params.len()
}
TypeCtor::OpaqueType(opaque_ty_id) => {
match opaque_ty_id {
OpaqueTyId::ReturnTypeImplTrait(func, _) => {
let generic_params = generics(db.upcast(), func.into());
generic_params.len()
}
// 1 param representing Future::Output type.
OpaqueTyId::AsyncBlockTypeImplTrait(..) => 1,
}
}
TypeCtor::FnPtr { num_args, is_varargs: _ } => num_args as usize + 1,
TypeCtor::Tuple { cardinality } => cardinality as usize,
}
}
pub fn krate(self, db: &dyn HirDatabase) -> Option<CrateId> {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never
| TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::FnPtr { .. }
| TypeCtor::Tuple { .. } => None,
// Closure's krate is irrelevant for coherence I would think?
TypeCtor::Closure { .. } => None,
TypeCtor::Adt(adt) => Some(adt.module(db.upcast()).krate),
TypeCtor::FnDef(callable) => Some(callable.krate(db)),
TypeCtor::AssociatedType(type_alias) => {
Some(type_alias.lookup(db.upcast()).module(db.upcast()).krate)
}
TypeCtor::ForeignType(type_alias) => {
Some(type_alias.lookup(db.upcast()).module(db.upcast()).krate)
}
TypeCtor::OpaqueType(opaque_ty_id) => match opaque_ty_id {
OpaqueTyId::ReturnTypeImplTrait(func, _) => {
Some(func.lookup(db.upcast()).module(db.upcast()).krate)
}
OpaqueTyId::AsyncBlockTypeImplTrait(def, _) => Some(def.module(db.upcast()).krate),
},
}
}
pub fn as_generic_def(self) -> Option<GenericDefId> {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never
| TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::FnPtr { .. }
| TypeCtor::Tuple { .. }
| TypeCtor::Closure { .. } => None,
TypeCtor::Adt(adt) => Some(adt.into()),
TypeCtor::FnDef(callable) => Some(callable.into()),
TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
TypeCtor::ForeignType(type_alias) => Some(type_alias.into()),
TypeCtor::OpaqueType(_impl_trait_id) => None,
}
}
}
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ApplicationTy {
pub ctor: TypeCtor,
pub parameters: Substs,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct OpaqueTy {
pub opaque_ty_id: OpaqueTyId,
pub parameters: Substs,
}
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ProjectionTy {
pub associated_ty: TypeAliasId,
pub parameters: Substs,
}
impl ProjectionTy {
pub fn trait_ref(&self, db: &dyn HirDatabase) -> TraitRef {
TraitRef { trait_: self.trait_(db), substs: self.parameters.clone() }
}
fn trait_(&self, db: &dyn HirDatabase) -> TraitId {
match self.associated_ty.lookup(db.upcast()).container {
AssocContainerId::TraitId(it) => it,
_ => panic!("projection ty without parent trait"),
}
}
}
impl TypeWalk for ProjectionTy {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.parameters.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.parameters.walk_mut_binders(f, binders);
}
}
/// A type.
///
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
/// the same thing (but in a different way).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Ty {
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
Apply(ApplicationTy),
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
Projection(ProjectionTy),
/// An opaque type (`impl Trait`).
///
/// This is currently only used for return type impl trait; each instance of
/// `impl Trait` in a return type gets its own ID.
Opaque(OpaqueTy),
/// A placeholder for a type parameter; for example, `T` in `fn f<T>(x: T)
/// {}` when we're type-checking the body of that function. In this
/// situation, we know this stands for *some* type, but don't know the exact
/// type.
Placeholder(TypeParamId),
/// A bound type variable. This is used in various places: when representing
/// some polymorphic type like the type of function `fn f<T>`, the type
/// parameters get turned into variables; during trait resolution, inference
/// variables get turned into bound variables and back; and in `Dyn` the
/// `Self` type is represented with a bound variable as well.
Bound(BoundVar),
/// A type variable used during type checking.
Infer(InferTy),
/// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
///
/// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
/// represents the `Self` type inside the bounds. This is currently
/// implicit; Chalk has the `Binders` struct to make it explicit, but it
/// didn't seem worth the overhead yet.
Dyn(Arc<[GenericPredicate]>),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Substs(Arc<[Ty]>);
impl TypeWalk for Substs {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.0.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in make_mut_slice(&mut self.0) {
t.walk_mut_binders(f, binders);
}
}
}
impl Substs {
pub fn empty() -> Substs {
Substs(Arc::new([]))
}
pub fn single(ty: Ty) -> Substs {
Substs(Arc::new([ty]))
}
pub fn prefix(&self, n: usize) -> Substs {
Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
}
pub fn suffix(&self, n: usize) -> Substs {
Substs(self.0[self.0.len() - std::cmp::min(self.0.len(), n)..].into())
}
pub fn as_single(&self) -> &Ty {
if self.0.len() != 1 {
panic!("expected substs of len 1, got {:?}", self);
}
&self.0[0]
}
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
pub(crate) fn type_params_for_generics(generic_params: &Generics) -> Substs {
Substs(generic_params.iter().map(|(id, _)| Ty::Placeholder(id)).collect())
}
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
pub fn type_params(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> Substs {
let params = generics(db.upcast(), def.into());
Substs::type_params_for_generics(¶ms)
}
/// Return Substs that replace each parameter by a bound variable.
pub(crate) fn bound_vars(generic_params: &Generics, debruijn: DebruijnIndex) -> Substs {
Substs(
generic_params
.iter()
.enumerate()
.map(|(idx, _)| Ty::Bound(BoundVar::new(debruijn, idx)))
.collect(),
)
}
pub fn build_for_def(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
let def = def.into();
let params = generics(db.upcast(), def);
let param_count = params.len();
Substs::builder(param_count)
}
pub(crate) fn build_for_generics(generic_params: &Generics) -> SubstsBuilder {
Substs::builder(generic_params.len())
}
pub fn build_for_type_ctor(db: &dyn HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
Substs::builder(type_ctor.num_ty_params(db))
}
fn builder(param_count: usize) -> SubstsBuilder {
SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
}
}
/// Return an index of a parameter in the generic type parameter list by it's id.
pub fn param_idx(db: &dyn HirDatabase, id: TypeParamId) -> Option<usize> {
generics(db.upcast(), id.parent).param_idx(id)
}
#[derive(Debug, Clone)]
pub struct SubstsBuilder {
vec: Vec<Ty>,
param_count: usize,
}
impl SubstsBuilder {
pub fn build(self) -> Substs {
assert_eq!(self.vec.len(), self.param_count);
Substs(self.vec.into())
}
pub fn push(mut self, ty: Ty) -> Self {
self.vec.push(ty);
self
}
fn remaining(&self) -> usize {
self.param_count - self.vec.len()
}
pub fn fill_with_bound_vars(self, debruijn: DebruijnIndex, starting_from: usize) -> Self {
self.fill((starting_from..).map(|idx| Ty::Bound(BoundVar::new(debruijn, idx))))
}
pub fn fill_with_unknown(self) -> Self {
self.fill(iter::repeat(Ty::Unknown))
}
pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
self.vec.extend(filler.take(self.remaining()));
assert_eq!(self.remaining(), 0);
self
}
pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
assert!(self.vec.is_empty());
assert!(parent_substs.len() <= self.param_count);
self.vec.extend(parent_substs.iter().cloned());
self
}
}
impl Deref for Substs {
type Target = [Ty];
fn deref(&self) -> &[Ty] {
&self.0
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct Binders<T> {
pub num_binders: usize,
pub value: T,
}
impl<T> Binders<T> {
pub fn new(num_binders: usize, value: T) -> Self {
Self { num_binders, value }
}
pub fn as_ref(&self) -> Binders<&T> {
Binders { num_binders: self.num_binders, value: &self.value }
}
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Binders<U> {
Binders { num_binders: self.num_binders, value: f(self.value) }
}
pub fn filter_map<U>(self, f: impl FnOnce(T) -> Option<U>) -> Option<Binders<U>> {
Some(Binders { num_binders: self.num_binders, value: f(self.value)? })
}
}
impl<T: Clone> Binders<&T> {
pub fn cloned(&self) -> Binders<T> {
Binders { num_binders: self.num_binders, value: self.value.clone() }
}
}
impl<T: TypeWalk> Binders<T> {
/// Substitutes all variables.
pub fn subst(self, subst: &Substs) -> T {
assert_eq!(subst.len(), self.num_binders);
self.value.subst_bound_vars(subst)
}
/// Substitutes just a prefix of the variables (shifting the rest).
pub fn subst_prefix(self, subst: &Substs) -> Binders<T> {
assert!(subst.len() < self.num_binders);
Binders::new(self.num_binders - subst.len(), self.value.subst_bound_vars(subst))
}
}
impl<T: TypeWalk> TypeWalk for Binders<T> {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.value.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.value.walk_mut_binders(f, binders.shifted_in())
}
}
/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
/// Name to be bikeshedded: TraitBound? TraitImplements?
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
/// FIXME name?
pub trait_: TraitId,
pub substs: Substs,
}
impl TraitRef {
pub fn self_ty(&self) -> &Ty {
&self.substs[0]
}
}
impl TypeWalk for TraitRef {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.substs.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.substs.walk_mut_binders(f, binders);
}
}
/// Like `generics::WherePredicate`, but with resolved types: A condition on the
/// parameters of a generic item.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum GenericPredicate {
/// The given trait needs to be implemented for its type parameters.
Implemented(TraitRef),
/// An associated type bindings like in `Iterator<Item = T>`.
Projection(ProjectionPredicate),
/// We couldn't resolve the trait reference. (If some type parameters can't
/// be resolved, they will just be Unknown).
Error,
}
impl GenericPredicate {
pub fn is_error(&self) -> bool {
matches!(self, GenericPredicate::Error)
}
pub fn is_implemented(&self) -> bool {
matches!(self, GenericPredicate::Implemented(_))
}
pub fn trait_ref(&self, db: &dyn HirDatabase) -> Option<TraitRef> {
match self {
GenericPredicate::Implemented(tr) => Some(tr.clone()),
GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
GenericPredicate::Error => None,
}
}
}
impl TypeWalk for GenericPredicate {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
GenericPredicate::Error => {}
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
GenericPredicate::Projection(projection_pred) => {
projection_pred.walk_mut_binders(f, binders)
}
GenericPredicate::Error => {}
}
}
}
/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `kinds` tells us how
/// many there are and whether they were normal or float/int variables. This is
/// used to erase irrelevant differences between types before using them in
/// queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Canonical<T> {
pub value: T,
pub kinds: Arc<[TyKind]>,
}
impl<T> Canonical<T> {
pub fn new(value: T, kinds: impl IntoIterator<Item = TyKind>) -> Self {
Self { value, kinds: kinds.into_iter().collect() }
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum TyKind {
General,
Integer,
Float,
}
/// A function signature as seen by type inference: Several parameter types and
/// one return type.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
params_and_return: Arc<[Ty]>,
is_varargs: bool,
}
/// A polymorphic function signature.
pub type PolyFnSig = Binders<FnSig>;
impl FnSig {
pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty, is_varargs: bool) -> FnSig {
params.push(ret);
FnSig { params_and_return: params.into(), is_varargs }
}
pub fn from_fn_ptr_substs(substs: &Substs, is_varargs: bool) -> FnSig {
FnSig { params_and_return: Arc::clone(&substs.0), is_varargs }
}
pub fn params(&self) -> &[Ty] {
&self.params_and_return[0..self.params_and_return.len() - 1]
}
pub fn ret(&self) -> &Ty {
&self.params_and_return[self.params_and_return.len() - 1]
}
}
impl TypeWalk for FnSig {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.params_and_return.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in make_mut_slice(&mut self.params_and_return) {
t.walk_mut_binders(f, binders);
}
}
}
impl Ty {
pub fn simple(ctor: TypeCtor) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
}
pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
}
pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters })
}
pub fn unit() -> Self {
Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
}
pub fn fn_ptr(sig: FnSig) -> Self {
Ty::apply(
TypeCtor::FnPtr { num_args: sig.params().len() as u16, is_varargs: sig.is_varargs },
Substs(sig.params_and_return),
)
}
pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
Some((parameters.as_single(), *mutability))
}
_ => None,
}
}
pub fn as_reference_or_ptr(&self) -> Option<(&Ty, Rawness, Mutability)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
Some((parameters.as_single(), Rawness::Ref, *mutability))
}
Ty::Apply(ApplicationTy { ctor: TypeCtor::RawPtr(mutability), parameters }) => {
Some((parameters.as_single(), Rawness::RawPtr, *mutability))
}
_ => None,
}
}
pub fn strip_references(&self) -> &Ty {
let mut t: &Ty = self;
while let Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(_mutability), parameters }) = t {
t = parameters.as_single();
}
t
}
pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
Some((*adt_def, parameters))
}
_ => None,
}
}
pub fn as_tuple(&self) -> Option<&Substs> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
Some(parameters)
}
_ => None,
}
}
pub fn is_never(&self) -> bool {
matches!(self, Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }))
}
/// If this is a `dyn Trait` type, this returns the `Trait` part.
pub fn dyn_trait_ref(&self) -> Option<&TraitRef> {
match self {
Ty::Dyn(bounds) => bounds.get(0).and_then(|b| match b {
GenericPredicate::Implemented(trait_ref) => Some(trait_ref),
_ => None,
}),
_ => None,
}
}
/// If this is a `dyn Trait`, returns that trait.
pub fn dyn_trait(&self) -> Option<TraitId> {
self.dyn_trait_ref().map(|it| it.trait_)
}
fn builtin_deref(&self) -> Option<Ty> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
_ => None,
},
_ => None,
}
}
pub fn callable_sig(&self, db: &dyn HirDatabase) -> Option<FnSig> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::FnPtr { is_varargs, .. } => {
Some(FnSig::from_fn_ptr_substs(&a_ty.parameters, is_varargs))
}
TypeCtor::FnDef(def) => {
let sig = db.callable_item_signature(def);
Some(sig.subst(&a_ty.parameters))
}
TypeCtor::Closure { .. } => {
let sig_param = &a_ty.parameters[0];
sig_param.callable_sig(db)
}
_ => None,
},
_ => None,
}
}
/// If this is a type with type parameters (an ADT or function), replaces
/// the `Substs` for these type parameters with the given ones. (So e.g. if
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
/// `Option<u32>` afterwards.)
pub fn apply_substs(self, substs: Substs) -> Ty {
match self {
Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
assert_eq!(previous_substs.len(), substs.len());
Ty::Apply(ApplicationTy { ctor, parameters: substs })
}
_ => self,
}
}
/// Returns the type parameters of this type if it has some (i.e. is an ADT
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
pub fn substs(&self) -> Option<Substs> {
match self {
Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
_ => None,
}
}
pub fn impl_trait_bounds(&self, db: &dyn HirDatabase) -> Option<Vec<GenericPredicate>> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::OpaqueType(opaque_ty_id), .. }) => {
match opaque_ty_id {
OpaqueTyId::AsyncBlockTypeImplTrait(def, _expr) => {
let krate = def.module(db.upcast()).krate;
if let Some(future_trait) = db
.lang_item(krate, "future_trait".into())
.and_then(|item| item.as_trait())
{
// This is only used by type walking.
// Parameters will be walked outside, and projection predicate is not used.
// So just provide the Future trait.
let impl_bound = GenericPredicate::Implemented(TraitRef {
trait_: future_trait,
substs: Substs::empty(),
});
Some(vec![impl_bound])
} else {
None
}
}
OpaqueTyId::ReturnTypeImplTrait(..) => None,
}
}
Ty::Opaque(opaque_ty) => {
let predicates = match opaque_ty.opaque_ty_id {
OpaqueTyId::ReturnTypeImplTrait(func, idx) => {
db.return_type_impl_traits(func).map(|it| {
let data = (*it)
.as_ref()
.map(|rpit| rpit.impl_traits[idx as usize].bounds.clone());
data.subst(&opaque_ty.parameters)
})
}
// It always has an parameter for Future::Output type.
OpaqueTyId::AsyncBlockTypeImplTrait(..) => unreachable!(),
};
predicates.map(|it| it.value)
}
Ty::Placeholder(id) => {
let generic_params = db.generic_params(id.parent);
let param_data = &generic_params.types[id.local_id];
match param_data.provenance {
hir_def::generics::TypeParamProvenance::ArgumentImplTrait => {
let predicates = db
.generic_predicates_for_param(*id)
.into_iter()
.map(|pred| pred.value.clone())
.collect_vec();
Some(predicates)
}
_ => None,
}
}
_ => None,
}
}
pub fn associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option<TraitId> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::AssociatedType(type_alias_id), .. }) => {
match type_alias_id.lookup(db.upcast()).container {
AssocContainerId::TraitId(trait_id) => Some(trait_id),
_ => None,
}
}
Ty::Projection(projection_ty) => {
match projection_ty.associated_ty.lookup(db.upcast()).container {
AssocContainerId::TraitId(trait_id) => Some(trait_id),
_ => None,
}
}
_ => None,
}
}
}
/// This allows walking structures that contain types to do something with those
/// types, similar to Chalk's `Fold` trait.
pub trait TypeWalk {
fn walk(&self, f: &mut impl FnMut(&Ty));
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
self.walk_mut_binders(&mut |ty, _binders| f(ty), DebruijnIndex::INNERMOST);
}
/// Walk the type, counting entered binders.
///
/// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
/// to the innermost binder, 1 to the next, etc.. So when we want to
/// substitute a certain bound variable, we can't just walk the whole type
/// and blindly replace each instance of a certain index; when we 'enter'
/// things that introduce new bound variables, we have to keep track of
/// that. Currently, the only thing that introduces bound variables on our
/// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
/// variable for the self type.
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
);
fn fold_binders(
mut self,
f: &mut impl FnMut(Ty, DebruijnIndex) -> Ty,
binders: DebruijnIndex,
) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty_mut, binders| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty, binders);
},
binders,
);
self
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
where
Self: Sized,
{
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty);
});
self
}
/// Substitutes `Ty::Bound` vars with the given substitution.
fn subst_bound_vars(self, substs: &Substs) -> Self
where
Self: Sized,
{
self.subst_bound_vars_at_depth(substs, DebruijnIndex::INNERMOST)
}
/// Substitutes `Ty::Bound` vars with the given substitution.
fn subst_bound_vars_at_depth(mut self, substs: &Substs, depth: DebruijnIndex) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty, binders| {
if let &mut Ty::Bound(bound) = ty {
if bound.debruijn >= binders {
*ty = substs.0[bound.index].clone().shift_bound_vars(binders);
}
}
},
depth,
);
self
}
/// Shifts up debruijn indices of `Ty::Bound` vars by `n`.
fn shift_bound_vars(self, n: DebruijnIndex) -> Self
where
Self: Sized,
{
self.fold_binders(
&mut |ty, binders| match ty {
Ty::Bound(bound) if bound.debruijn >= binders => {
Ty::Bound(bound.shifted_in_from(n))
}
ty => ty,
},
DebruijnIndex::INNERMOST,
)
}
}
impl TypeWalk for Ty {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
Ty::Apply(a_ty) => {
for t in a_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Projection(p_ty) => {
for t in p_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Dyn(predicates) => {
for p in predicates.iter() {
p.walk(f);
}
}
Ty::Opaque(o_ty) => {
for t in o_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
Ty::Apply(a_ty) => {
a_ty.parameters.walk_mut_binders(f, binders);
}
Ty::Projection(p_ty) => {
p_ty.parameters.walk_mut_binders(f, binders);
}
Ty::Dyn(predicates) => {
for p in make_mut_slice(predicates) {
p.walk_mut_binders(f, binders.shifted_in());
}
}
Ty::Opaque(o_ty) => {
o_ty.parameters.walk_mut_binders(f, binders);
}
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self, binders);
}
}
impl<T: TypeWalk> TypeWalk for Vec<T> {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in self {
t.walk_mut_binders(f, binders);
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum OpaqueTyId {
ReturnTypeImplTrait(hir_def::FunctionId, u16),
AsyncBlockTypeImplTrait(hir_def::DefWithBodyId, ExprId),
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ReturnTypeImplTraits {
pub(crate) impl_traits: Vec<ReturnTypeImplTrait>,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub(crate) struct ReturnTypeImplTrait {
pub(crate) bounds: Binders<Vec<GenericPredicate>>,
}
|