aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/method_resolution.rs
blob: 6178b36c8abdacc3f5615fca243bd25713254094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::{iter, sync::Arc};

use arrayvec::ArrayVec;
use base_db::CrateId;
use chalk_ir::{cast::Cast, Mutability, UniverseIndex};
use hir_def::{
    lang_item::LangItemTarget, nameres::DefMap, AssocContainerId, AssocItemId, FunctionId,
    GenericDefId, HasModule, ImplId, Lookup, ModuleId, TraitId,
};
use hir_expand::name::Name;
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::always;

use crate::{
    autoderef,
    db::HirDatabase,
    from_foreign_def_id,
    primitive::{self, FloatTy, IntTy, UintTy},
    static_lifetime,
    utils::all_super_traits,
    AdtId, Canonical, CanonicalVarKinds, DebruijnIndex, ForeignDefId, HirDisplay, InEnvironment,
    Interner, Scalar, Substitution, TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyExt, TyKind,
};

/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
    // These are lang item impls:
    Str,
    Slice,
    Array,
    Never,
    RawPtr(Mutability),
    Scalar(Scalar),
    // These can have user-defined impls:
    Adt(hir_def::AdtId),
    Dyn(TraitId),
    ForeignType(ForeignDefId),
    // These only exist for trait impls
    Unit,
    Unnameable,
    Function(u32),
}

impl TyFingerprint {
    /// Creates a TyFingerprint for looking up an inherent impl. Only certain
    /// types can have inherent impls: if we have some `struct S`, we can have
    /// an `impl S`, but not `impl &S`. Hence, this will return `None` for
    /// reference types and such.
    pub fn for_inherent_impl(ty: &Ty) -> Option<TyFingerprint> {
        let fp = match ty.kind(&Interner) {
            TyKind::Str => TyFingerprint::Str,
            TyKind::Never => TyFingerprint::Never,
            TyKind::Slice(..) => TyFingerprint::Slice,
            TyKind::Array(..) => TyFingerprint::Array,
            TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar),
            TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt),
            TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability),
            TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id),
            TyKind::Dyn(_) => ty.dyn_trait().map(|trait_| TyFingerprint::Dyn(trait_))?,
            _ => return None,
        };
        Some(fp)
    }

    /// Creates a TyFingerprint for looking up a trait impl.
    pub fn for_trait_impl(ty: &Ty) -> Option<TyFingerprint> {
        let fp = match ty.kind(&Interner) {
            TyKind::Str => TyFingerprint::Str,
            TyKind::Never => TyFingerprint::Never,
            TyKind::Slice(..) => TyFingerprint::Slice,
            TyKind::Array(..) => TyFingerprint::Array,
            TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar),
            TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt),
            TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability),
            TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id),
            TyKind::Dyn(_) => ty.dyn_trait().map(|trait_| TyFingerprint::Dyn(trait_))?,
            TyKind::Ref(_, _, ty) => return TyFingerprint::for_trait_impl(ty),
            TyKind::Tuple(_, subst) => {
                let first_ty = subst.interned().get(0).map(|arg| arg.assert_ty_ref(&Interner));
                if let Some(ty) = first_ty {
                    return TyFingerprint::for_trait_impl(ty);
                } else {
                    TyFingerprint::Unit
                }
            }
            TyKind::AssociatedType(_, _)
            | TyKind::OpaqueType(_, _)
            | TyKind::FnDef(_, _)
            | TyKind::Closure(_, _)
            | TyKind::Generator(..)
            | TyKind::GeneratorWitness(..) => TyFingerprint::Unnameable,
            TyKind::Function(fn_ptr) => {
                TyFingerprint::Function(fn_ptr.substitution.0.len(&Interner) as u32)
            }
            TyKind::Alias(_)
            | TyKind::Placeholder(_)
            | TyKind::BoundVar(_)
            | TyKind::InferenceVar(_, _)
            | TyKind::Error => return None,
        };
        Some(fp)
    }
}

pub(crate) const ALL_INT_FPS: [TyFingerprint; 12] = [
    TyFingerprint::Scalar(Scalar::Int(IntTy::I8)),
    TyFingerprint::Scalar(Scalar::Int(IntTy::I16)),
    TyFingerprint::Scalar(Scalar::Int(IntTy::I32)),
    TyFingerprint::Scalar(Scalar::Int(IntTy::I64)),
    TyFingerprint::Scalar(Scalar::Int(IntTy::I128)),
    TyFingerprint::Scalar(Scalar::Int(IntTy::Isize)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::U8)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::U16)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::U32)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::U64)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::U128)),
    TyFingerprint::Scalar(Scalar::Uint(UintTy::Usize)),
];

pub(crate) const ALL_FLOAT_FPS: [TyFingerprint; 2] = [
    TyFingerprint::Scalar(Scalar::Float(FloatTy::F32)),
    TyFingerprint::Scalar(Scalar::Float(FloatTy::F64)),
];

/// Trait impls defined or available in some crate.
#[derive(Debug, Eq, PartialEq)]
pub struct TraitImpls {
    // If the `Option<TyFingerprint>` is `None`, the impl may apply to any self type.
    map: FxHashMap<TraitId, FxHashMap<Option<TyFingerprint>, Vec<ImplId>>>,
}

impl TraitImpls {
    pub(crate) fn trait_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
        let _p = profile::span("trait_impls_in_crate_query");
        let mut impls = Self { map: FxHashMap::default() };

        let crate_def_map = db.crate_def_map(krate);
        collect_def_map(db, &crate_def_map, &mut impls);

        return Arc::new(impls);

        fn collect_def_map(db: &dyn HirDatabase, def_map: &DefMap, impls: &mut TraitImpls) {
            for (_module_id, module_data) in def_map.modules() {
                for impl_id in module_data.scope.impls() {
                    let target_trait = match db.impl_trait(impl_id) {
                        Some(tr) => tr.skip_binders().hir_trait_id(),
                        None => continue,
                    };
                    let self_ty = db.impl_self_ty(impl_id);
                    let self_ty_fp = TyFingerprint::for_trait_impl(self_ty.skip_binders());
                    impls
                        .map
                        .entry(target_trait)
                        .or_default()
                        .entry(self_ty_fp)
                        .or_default()
                        .push(impl_id);
                }

                // To better support custom derives, collect impls in all unnamed const items.
                // const _: () = { ... };
                for konst in module_data.scope.unnamed_consts() {
                    let body = db.body(konst.into());
                    for (_, block_def_map) in body.blocks(db.upcast()) {
                        collect_def_map(db, &block_def_map, impls);
                    }
                }
            }
        }
    }

    pub(crate) fn trait_impls_in_deps_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
        let _p = profile::span("trait_impls_in_deps_query");
        let crate_graph = db.crate_graph();
        let mut res = Self { map: FxHashMap::default() };

        for krate in crate_graph.transitive_deps(krate) {
            res.merge(&db.trait_impls_in_crate(krate));
        }

        Arc::new(res)
    }

    fn merge(&mut self, other: &Self) {
        for (trait_, other_map) in &other.map {
            let map = self.map.entry(*trait_).or_default();
            for (fp, impls) in other_map {
                let vec = map.entry(*fp).or_default();
                vec.extend(impls);
            }
        }
    }

    /// Queries all trait impls for the given type.
    pub fn for_self_ty_without_blanket_impls(
        &self,
        fp: TyFingerprint,
    ) -> impl Iterator<Item = ImplId> + '_ {
        self.map
            .values()
            .flat_map(move |impls| impls.get(&Some(fp)).into_iter())
            .flat_map(|it| it.iter().copied())
    }

    /// Queries all impls of the given trait.
    pub fn for_trait(&self, trait_: TraitId) -> impl Iterator<Item = ImplId> + '_ {
        self.map
            .get(&trait_)
            .into_iter()
            .flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
    }

    /// Queries all impls of `trait_` that may apply to `self_ty`.
    pub fn for_trait_and_self_ty(
        &self,
        trait_: TraitId,
        self_ty: TyFingerprint,
    ) -> impl Iterator<Item = ImplId> + '_ {
        self.map
            .get(&trait_)
            .into_iter()
            .flat_map(move |map| map.get(&None).into_iter().chain(map.get(&Some(self_ty))))
            .flat_map(|v| v.iter().copied())
    }

    pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
        self.map.values().flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
    }
}

/// Inherent impls defined in some crate.
///
/// Inherent impls can only be defined in the crate that also defines the self type of the impl
/// (note that some primitives are considered to be defined by both libcore and liballoc).
///
/// This makes inherent impl lookup easier than trait impl lookup since we only have to consider a
/// single crate.
#[derive(Debug, Eq, PartialEq)]
pub struct InherentImpls {
    map: FxHashMap<TyFingerprint, Vec<ImplId>>,
}

impl InherentImpls {
    pub(crate) fn inherent_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
        let mut map: FxHashMap<_, Vec<_>> = FxHashMap::default();

        let crate_def_map = db.crate_def_map(krate);
        for (_module_id, module_data) in crate_def_map.modules() {
            for impl_id in module_data.scope.impls() {
                let data = db.impl_data(impl_id);
                if data.target_trait.is_some() {
                    continue;
                }

                let self_ty = db.impl_self_ty(impl_id);
                let fp = TyFingerprint::for_inherent_impl(self_ty.skip_binders());
                always!(fp.is_some(), "no fingerprint for {}", self_ty.skip_binders().display(db));
                if let Some(fp) = fp {
                    map.entry(fp).or_default().push(impl_id);
                }
            }
        }

        // NOTE: We're not collecting inherent impls from unnamed consts here, we intentionally only
        // support trait impls there.

        Arc::new(Self { map })
    }

    pub fn for_self_ty(&self, self_ty: &Ty) -> &[ImplId] {
        match TyFingerprint::for_inherent_impl(self_ty) {
            Some(fp) => self.map.get(&fp).map(|vec| vec.as_ref()).unwrap_or(&[]),
            None => &[],
        }
    }

    pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
        self.map.values().flat_map(|v| v.iter().copied())
    }
}

pub fn def_crates(
    db: &dyn HirDatabase,
    ty: &Ty,
    cur_crate: CrateId,
) -> Option<ArrayVec<CrateId, 2>> {
    // Types like slice can have inherent impls in several crates, (core and alloc).
    // The corresponding impls are marked with lang items, so we can use them to find the required crates.
    macro_rules! lang_item_crate {
            ($($name:expr),+ $(,)?) => {{
                let mut v = ArrayVec::<LangItemTarget, 2>::new();
                $(
                    v.extend(db.lang_item(cur_crate, $name.into()));
                )+
                v
            }};
        }

    let mod_to_crate_ids = |module: ModuleId| Some(std::iter::once(module.krate()).collect());

    let lang_item_targets = match ty.kind(&Interner) {
        TyKind::Adt(AdtId(def_id), _) => {
            return mod_to_crate_ids(def_id.module(db.upcast()));
        }
        TyKind::Foreign(id) => {
            return mod_to_crate_ids(
                from_foreign_def_id(*id).lookup(db.upcast()).module(db.upcast()),
            );
        }
        TyKind::Scalar(Scalar::Bool) => lang_item_crate!("bool"),
        TyKind::Scalar(Scalar::Char) => lang_item_crate!("char"),
        TyKind::Scalar(Scalar::Float(f)) => match f {
            // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
            FloatTy::F32 => lang_item_crate!("f32", "f32_runtime"),
            FloatTy::F64 => lang_item_crate!("f64", "f64_runtime"),
        },
        &TyKind::Scalar(Scalar::Int(t)) => {
            lang_item_crate!(primitive::int_ty_to_string(t))
        }
        &TyKind::Scalar(Scalar::Uint(t)) => {
            lang_item_crate!(primitive::uint_ty_to_string(t))
        }
        TyKind::Str => lang_item_crate!("str_alloc", "str"),
        TyKind::Slice(_) => lang_item_crate!("slice_alloc", "slice"),
        TyKind::Raw(Mutability::Not, _) => lang_item_crate!("const_ptr"),
        TyKind::Raw(Mutability::Mut, _) => lang_item_crate!("mut_ptr"),
        TyKind::Dyn(_) => {
            return ty.dyn_trait().and_then(|trait_| {
                mod_to_crate_ids(GenericDefId::TraitId(trait_).module(db.upcast()))
            });
        }
        _ => return None,
    };
    let res = lang_item_targets
        .into_iter()
        .filter_map(|it| match it {
            LangItemTarget::ImplDefId(it) => Some(it),
            _ => None,
        })
        .map(|it| it.lookup(db.upcast()).container.krate())
        .collect();
    Some(res)
}

/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
    ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: &Name,
) -> Option<(Ty, FunctionId)> {
    iterate_method_candidates(
        ty,
        db,
        env,
        krate,
        &traits_in_scope,
        visible_from_module,
        Some(name),
        LookupMode::MethodCall,
        |ty, f| match f {
            AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
            _ => None,
        },
    )
}

/// Whether we're looking up a dotted method call (like `v.len()`) or a path
/// (like `Vec::new`).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LookupMode {
    /// Looking up a method call like `v.len()`: We only consider candidates
    /// that have a `self` parameter, and do autoderef.
    MethodCall,
    /// Looking up a path like `Vec::new` or `Vec::default`: We consider all
    /// candidates including associated constants, but don't do autoderef.
    Path,
}

// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
// FIXME add a context type here?
pub fn iterate_method_candidates<T>(
    ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: Option<&Name>,
    mode: LookupMode,
    mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
) -> Option<T> {
    let mut slot = None;
    iterate_method_candidates_impl(
        ty,
        db,
        env,
        krate,
        traits_in_scope,
        visible_from_module,
        name,
        mode,
        &mut |ty, item| {
            assert!(slot.is_none());
            slot = callback(ty, item);
            slot.is_some()
        },
    );
    slot
}

fn iterate_method_candidates_impl(
    ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: Option<&Name>,
    mode: LookupMode,
    callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    match mode {
        LookupMode::MethodCall => {
            // For method calls, rust first does any number of autoderef, and then one
            // autoref (i.e. when the method takes &self or &mut self). We just ignore
            // the autoref currently -- when we find a method matching the given name,
            // we assume it fits.

            // Also note that when we've got a receiver like &S, even if the method we
            // find in the end takes &self, we still do the autoderef step (just as
            // rustc does an autoderef and then autoref again).
            let ty = InEnvironment { goal: ty.clone(), environment: env.env.clone() };

            // We have to be careful about the order we're looking at candidates
            // in here. Consider the case where we're resolving `x.clone()`
            // where `x: &Vec<_>`. This resolves to the clone method with self
            // type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where
            // the receiver type exactly matches before cases where we have to
            // do autoref. But in the autoderef steps, the `&_` self type comes
            // up *before* the `Vec<_>` self type.
            //
            // On the other hand, we don't want to just pick any by-value method
            // before any by-autoref method; it's just that we need to consider
            // the methods by autoderef order of *receiver types*, not *self
            // types*.

            let deref_chain = autoderef_method_receiver(db, krate, ty);
            for i in 0..deref_chain.len() {
                if iterate_method_candidates_with_autoref(
                    &deref_chain[i..],
                    db,
                    env.clone(),
                    krate,
                    traits_in_scope,
                    visible_from_module,
                    name,
                    callback,
                ) {
                    return true;
                }
            }
            false
        }
        LookupMode::Path => {
            // No autoderef for path lookups
            iterate_method_candidates_for_self_ty(
                &ty,
                db,
                env,
                krate,
                traits_in_scope,
                visible_from_module,
                name,
                callback,
            )
        }
    }
}

fn iterate_method_candidates_with_autoref(
    deref_chain: &[Canonical<Ty>],
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: Option<&Name>,
    mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    if iterate_method_candidates_by_receiver(
        &deref_chain[0],
        &deref_chain[1..],
        db,
        env.clone(),
        krate,
        &traits_in_scope,
        visible_from_module,
        name,
        &mut callback,
    ) {
        return true;
    }
    let refed = Canonical {
        binders: deref_chain[0].binders.clone(),
        value: TyKind::Ref(Mutability::Not, static_lifetime(), deref_chain[0].value.clone())
            .intern(&Interner),
    };
    if iterate_method_candidates_by_receiver(
        &refed,
        deref_chain,
        db,
        env.clone(),
        krate,
        &traits_in_scope,
        visible_from_module,
        name,
        &mut callback,
    ) {
        return true;
    }
    let ref_muted = Canonical {
        binders: deref_chain[0].binders.clone(),
        value: TyKind::Ref(Mutability::Mut, static_lifetime(), deref_chain[0].value.clone())
            .intern(&Interner),
    };
    if iterate_method_candidates_by_receiver(
        &ref_muted,
        deref_chain,
        db,
        env,
        krate,
        &traits_in_scope,
        visible_from_module,
        name,
        &mut callback,
    ) {
        return true;
    }
    false
}

fn iterate_method_candidates_by_receiver(
    receiver_ty: &Canonical<Ty>,
    rest_of_deref_chain: &[Canonical<Ty>],
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: Option<&Name>,
    mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    // We're looking for methods with *receiver* type receiver_ty. These could
    // be found in any of the derefs of receiver_ty, so we have to go through
    // that.
    for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
        if iterate_inherent_methods(
            self_ty,
            db,
            name,
            Some(receiver_ty),
            krate,
            visible_from_module,
            &mut callback,
        ) {
            return true;
        }
    }
    for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
        if iterate_trait_method_candidates(
            self_ty,
            db,
            env.clone(),
            krate,
            &traits_in_scope,
            name,
            Some(receiver_ty),
            &mut callback,
        ) {
            return true;
        }
    }
    false
}

fn iterate_method_candidates_for_self_ty(
    self_ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    visible_from_module: Option<ModuleId>,
    name: Option<&Name>,
    mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    if iterate_inherent_methods(self_ty, db, name, None, krate, visible_from_module, &mut callback)
    {
        return true;
    }
    iterate_trait_method_candidates(self_ty, db, env, krate, traits_in_scope, name, None, callback)
}

fn iterate_trait_method_candidates(
    self_ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    traits_in_scope: &FxHashSet<TraitId>,
    name: Option<&Name>,
    receiver_ty: Option<&Canonical<Ty>>,
    callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    // if ty is `dyn Trait`, the trait doesn't need to be in scope
    let inherent_trait =
        self_ty.value.dyn_trait().into_iter().flat_map(|t| all_super_traits(db.upcast(), t));
    let env_traits = if let TyKind::Placeholder(_) = self_ty.value.kind(&Interner) {
        // if we have `T: Trait` in the param env, the trait doesn't need to be in scope
        env.traits_in_scope_from_clauses(&self_ty.value)
            .flat_map(|t| all_super_traits(db.upcast(), t))
            .collect()
    } else {
        Vec::new()
    };
    let traits =
        inherent_trait.chain(env_traits.into_iter()).chain(traits_in_scope.iter().copied());
    'traits: for t in traits {
        let data = db.trait_data(t);

        // we'll be lazy about checking whether the type implements the
        // trait, but if we find out it doesn't, we'll skip the rest of the
        // iteration
        let mut known_implemented = false;
        for (_name, item) in data.items.iter() {
            // Don't pass a `visible_from_module` down to `is_valid_candidate`,
            // since only inherent methods should be included into visibility checking.
            if !is_valid_candidate(db, name, receiver_ty, *item, self_ty, None) {
                continue;
            }
            if !known_implemented {
                let goal = generic_implements_goal(db, env.clone(), t, self_ty.clone());
                if db.trait_solve(krate, goal).is_none() {
                    continue 'traits;
                }
            }
            known_implemented = true;
            // FIXME: we shouldn't be ignoring the binders here
            if callback(&self_ty.value, *item) {
                return true;
            }
        }
    }
    false
}

fn iterate_inherent_methods(
    self_ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    name: Option<&Name>,
    receiver_ty: Option<&Canonical<Ty>>,
    krate: CrateId,
    visible_from_module: Option<ModuleId>,
    callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
    let def_crates = match def_crates(db, &self_ty.value, krate) {
        Some(k) => k,
        None => return false,
    };
    for krate in def_crates {
        let impls = db.inherent_impls_in_crate(krate);

        for &impl_def in impls.for_self_ty(&self_ty.value) {
            for &item in db.impl_data(impl_def).items.iter() {
                if !is_valid_candidate(db, name, receiver_ty, item, self_ty, visible_from_module) {
                    continue;
                }
                // we have to check whether the self type unifies with the type
                // that the impl is for. If we have a receiver type, this
                // already happens in `is_valid_candidate` above; if not, we
                // check it here
                if receiver_ty.is_none() && inherent_impl_substs(db, impl_def, self_ty).is_none() {
                    cov_mark::hit!(impl_self_type_match_without_receiver);
                    continue;
                }
                if callback(&self_ty.value, item) {
                    return true;
                }
            }
        }
    }
    false
}

/// Returns the self type for the index trait call.
pub fn resolve_indexing_op(
    db: &dyn HirDatabase,
    ty: &Canonical<Ty>,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    index_trait: TraitId,
) -> Option<Canonical<Ty>> {
    let ty = InEnvironment { goal: ty.clone(), environment: env.env.clone() };
    let deref_chain = autoderef_method_receiver(db, krate, ty);
    for ty in deref_chain {
        let goal = generic_implements_goal(db, env.clone(), index_trait, ty.clone());
        if db.trait_solve(krate, goal).is_some() {
            return Some(ty);
        }
    }
    None
}

fn is_valid_candidate(
    db: &dyn HirDatabase,
    name: Option<&Name>,
    receiver_ty: Option<&Canonical<Ty>>,
    item: AssocItemId,
    self_ty: &Canonical<Ty>,
    visible_from_module: Option<ModuleId>,
) -> bool {
    match item {
        AssocItemId::FunctionId(m) => {
            let data = db.function_data(m);
            if let Some(name) = name {
                if &data.name != name {
                    return false;
                }
            }
            if let Some(receiver_ty) = receiver_ty {
                if !data.has_self_param() {
                    return false;
                }
                let transformed_receiver_ty = match transform_receiver_ty(db, m, self_ty) {
                    Some(ty) => ty,
                    None => return false,
                };
                if transformed_receiver_ty != receiver_ty.value {
                    return false;
                }
            }
            if let Some(from_module) = visible_from_module {
                if !db.function_visibility(m).is_visible_from(db.upcast(), from_module) {
                    cov_mark::hit!(autoderef_candidate_not_visible);
                    return false;
                }
            }

            true
        }
        AssocItemId::ConstId(c) => {
            let data = db.const_data(c);
            name.map_or(true, |name| data.name.as_ref() == Some(name)) && receiver_ty.is_none()
        }
        _ => false,
    }
}

pub(crate) fn inherent_impl_substs(
    db: &dyn HirDatabase,
    impl_id: ImplId,
    self_ty: &Canonical<Ty>,
) -> Option<Substitution> {
    // we create a var for each type parameter of the impl; we need to keep in
    // mind here that `self_ty` might have vars of its own
    let self_ty_vars = self_ty.binders.len(&Interner);
    let vars = TyBuilder::subst_for_def(db, impl_id)
        .fill_with_bound_vars(DebruijnIndex::INNERMOST, self_ty_vars)
        .build();
    let self_ty_with_vars = db.impl_self_ty(impl_id).substitute(&Interner, &vars);
    let mut kinds = self_ty.binders.interned().to_vec();
    kinds.extend(
        iter::repeat(chalk_ir::WithKind::new(
            chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General),
            UniverseIndex::ROOT,
        ))
        .take(vars.len(&Interner)),
    );
    let tys = Canonical {
        binders: CanonicalVarKinds::from_iter(&Interner, kinds),
        value: (self_ty_with_vars, self_ty.value.clone()),
    };
    let substs = super::infer::unify(&tys)?;
    // We only want the substs for the vars we added, not the ones from self_ty.
    // Also, if any of the vars we added are still in there, we replace them by
    // Unknown. I think this can only really happen if self_ty contained
    // Unknown, and in that case we want the result to contain Unknown in those
    // places again.
    let suffix =
        Substitution::from_iter(&Interner, substs.iter(&Interner).cloned().skip(self_ty_vars));
    Some(fallback_bound_vars(suffix, self_ty_vars))
}

/// This replaces any 'free' Bound vars in `s` (i.e. those with indices past
/// num_vars_to_keep) by `TyKind::Unknown`.
fn fallback_bound_vars(s: Substitution, num_vars_to_keep: usize) -> Substitution {
    crate::fold_free_vars(s, |bound, binders| {
        if bound.index >= num_vars_to_keep && bound.debruijn == DebruijnIndex::INNERMOST {
            TyKind::Error.intern(&Interner)
        } else {
            bound.shifted_in_from(binders).to_ty(&Interner)
        }
    })
}

fn transform_receiver_ty(
    db: &dyn HirDatabase,
    function_id: FunctionId,
    self_ty: &Canonical<Ty>,
) -> Option<Ty> {
    let substs = match function_id.lookup(db.upcast()).container {
        AssocContainerId::TraitId(_) => TyBuilder::subst_for_def(db, function_id)
            .push(self_ty.value.clone())
            .fill_with_unknown()
            .build(),
        AssocContainerId::ImplId(impl_id) => {
            let impl_substs = inherent_impl_substs(db, impl_id, &self_ty)?;
            TyBuilder::subst_for_def(db, function_id)
                .use_parent_substs(&impl_substs)
                .fill_with_unknown()
                .build()
        }
        AssocContainerId::ModuleId(_) => unreachable!(),
    };
    let sig = db.callable_item_signature(function_id.into());
    Some(sig.map(|s| s.params()[0].clone()).substitute(&Interner, &substs))
}

pub fn implements_trait(
    ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    trait_: TraitId,
) -> bool {
    let goal = generic_implements_goal(db, env, trait_, ty.clone());
    let solution = db.trait_solve(krate, goal);

    solution.is_some()
}

pub fn implements_trait_unique(
    ty: &Canonical<Ty>,
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    krate: CrateId,
    trait_: TraitId,
) -> bool {
    let goal = generic_implements_goal(db, env, trait_, ty.clone());
    let solution = db.trait_solve(krate, goal);

    matches!(solution, Some(crate::Solution::Unique(_)))
}

/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn generic_implements_goal(
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    trait_: TraitId,
    self_ty: Canonical<Ty>,
) -> Canonical<InEnvironment<super::DomainGoal>> {
    let mut kinds = self_ty.binders.interned().to_vec();
    let trait_ref = TyBuilder::trait_ref(db, trait_)
        .push(self_ty.value)
        .fill_with_bound_vars(DebruijnIndex::INNERMOST, kinds.len())
        .build();
    kinds.extend(
        iter::repeat(chalk_ir::WithKind::new(
            chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General),
            UniverseIndex::ROOT,
        ))
        .take(trait_ref.substitution.len(&Interner) - 1),
    );
    let obligation = trait_ref.cast(&Interner);
    Canonical {
        binders: CanonicalVarKinds::from_iter(&Interner, kinds),
        value: InEnvironment::new(&env.env, obligation),
    }
}

fn autoderef_method_receiver(
    db: &dyn HirDatabase,
    krate: CrateId,
    ty: InEnvironment<Canonical<Ty>>,
) -> Vec<Canonical<Ty>> {
    let mut deref_chain: Vec<_> = autoderef::autoderef(db, Some(krate), ty).collect();
    // As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!)
    if let Some(TyKind::Array(parameters, _)) =
        deref_chain.last().map(|ty| ty.value.kind(&Interner))
    {
        let kinds = deref_chain.last().unwrap().binders.clone();
        let unsized_ty = TyKind::Slice(parameters.clone()).intern(&Interner);
        deref_chain.push(Canonical { value: unsized_ty, binders: kinds })
    }
    deref_chain
}