aboutsummaryrefslogtreecommitdiff
path: root/crates/hir_ty/src/utils.rs
blob: 42d7af146542410ead4e77ff70946c3380170598 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
use std::sync::Arc;

use chalk_ir::DebruijnIndex;
use hir_def::{
    adt::VariantData,
    db::DefDatabase,
    generics::{
        GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget,
    },
    path::Path,
    resolver::{HasResolver, TypeNs},
    type_ref::TypeRef,
    AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId, VariantId,
};
use hir_expand::name::{name, Name};

use crate::{db::HirDatabase, TraitRef, TypeWalk, WhereClause};

fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
    let resolver = trait_.resolver(db);
    // returning the iterator directly doesn't easily work because of
    // lifetime problems, but since there usually shouldn't be more than a
    // few direct traits this should be fine (we could even use some kind of
    // SmallVec if performance is a concern)
    let generic_params = db.generic_params(trait_.into());
    let trait_self = generic_params.find_trait_self_param();
    generic_params
        .where_predicates
        .iter()
        .filter_map(|pred| match pred {
            WherePredicate::ForLifetime { target, bound, .. }
            | WherePredicate::TypeBound { target, bound } => match target {
                WherePredicateTypeTarget::TypeRef(TypeRef::Path(p))
                    if p == &Path::from(name![Self]) =>
                {
                    bound.as_path()
                }
                WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => {
                    bound.as_path()
                }
                _ => None,
            },
            WherePredicate::Lifetime { .. } => None,
        })
        .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
            Some(TypeNs::TraitId(t)) => Some(t),
            _ => None,
        })
        .collect()
}

fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
    // returning the iterator directly doesn't easily work because of
    // lifetime problems, but since there usually shouldn't be more than a
    // few direct traits this should be fine (we could even use some kind of
    // SmallVec if performance is a concern)
    let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
    let trait_self = match generic_params.find_trait_self_param() {
        Some(p) => TypeParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
        None => return Vec::new(),
    };
    db.generic_predicates_for_param(trait_self)
        .iter()
        .filter_map(|pred| {
            pred.as_ref().filter_map(|pred| match pred.skip_binders() {
                // FIXME: how to correctly handle higher-ranked bounds here?
                WhereClause::Implemented(tr) => {
                    Some(tr.clone().shift_bound_vars_out(DebruijnIndex::ONE))
                }
                _ => None,
            })
        })
        .map(|pred| pred.subst(&trait_ref.substitution))
        .collect()
}

/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
    // we need to take care a bit here to avoid infinite loops in case of cycles
    // (i.e. if we have `trait A: B; trait B: A;`)
    let mut result = vec![trait_];
    let mut i = 0;
    while i < result.len() {
        let t = result[i];
        // yeah this is quadratic, but trait hierarchies should be flat
        // enough that this doesn't matter
        for tt in direct_super_traits(db, t) {
            if !result.contains(&tt) {
                result.push(tt);
            }
        }
        i += 1;
    }
    result
}

/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> Vec<TraitRef> {
    // we need to take care a bit here to avoid infinite loops in case of cycles
    // (i.e. if we have `trait A: B; trait B: A;`)
    let mut result = vec![trait_ref];
    let mut i = 0;
    while i < result.len() {
        let t = &result[i];
        // yeah this is quadratic, but trait hierarchies should be flat
        // enough that this doesn't matter
        for tt in direct_super_trait_refs(db, t) {
            if !result.iter().any(|tr| tr.trait_id == tt.trait_id) {
                result.push(tt);
            }
        }
        i += 1;
    }
    result
}

pub(super) fn associated_type_by_name_including_super_traits(
    db: &dyn HirDatabase,
    trait_ref: TraitRef,
    name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
    all_super_trait_refs(db, trait_ref).into_iter().find_map(|t| {
        let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
        Some((t, assoc_type))
    })
}

pub(super) fn variant_data(db: &dyn DefDatabase, var: VariantId) -> Arc<VariantData> {
    match var {
        VariantId::StructId(it) => db.struct_data(it).variant_data.clone(),
        VariantId::UnionId(it) => db.union_data(it).variant_data.clone(),
        VariantId::EnumVariantId(it) => {
            db.enum_data(it.parent).variants[it.local_id].variant_data.clone()
        }
    }
}

/// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices).
/// The underlying values are cloned if there are other strong references.
pub(crate) fn make_mut_slice<T: Clone>(a: &mut Arc<[T]>) -> &mut [T] {
    if Arc::get_mut(a).is_none() {
        *a = a.iter().cloned().collect();
    }
    Arc::get_mut(a).unwrap()
}

pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
    let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
    Generics { def, params: db.generic_params(def), parent_generics }
}

#[derive(Debug)]
pub(crate) struct Generics {
    def: GenericDefId,
    pub(crate) params: Arc<GenericParams>,
    parent_generics: Option<Box<Generics>>,
}

impl Generics {
    pub(crate) fn iter<'a>(
        &'a self,
    ) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
        self.parent_generics
            .as_ref()
            .into_iter()
            .flat_map(|it| {
                it.params
                    .types
                    .iter()
                    .map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
            })
            .chain(
                self.params
                    .types
                    .iter()
                    .map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)),
            )
    }

    pub(crate) fn iter_parent<'a>(
        &'a self,
    ) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
        self.parent_generics.as_ref().into_iter().flat_map(|it| {
            it.params
                .types
                .iter()
                .map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
        })
    }

    pub(crate) fn len(&self) -> usize {
        self.len_split().0
    }

    /// (total, parents, child)
    pub(crate) fn len_split(&self) -> (usize, usize, usize) {
        let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
        let child = self.params.types.len();
        (parent + child, parent, child)
    }

    /// (parent total, self param, type param list, impl trait)
    pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) {
        let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
        let self_params = self
            .params
            .types
            .iter()
            .filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf)
            .count();
        let list_params = self
            .params
            .types
            .iter()
            .filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList)
            .count();
        let impl_trait_params = self
            .params
            .types
            .iter()
            .filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait)
            .count();
        (parent, self_params, list_params, impl_trait_params)
    }

    pub(crate) fn param_idx(&self, param: TypeParamId) -> Option<usize> {
        Some(self.find_param(param)?.0)
    }

    fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> {
        if param.parent == self.def {
            let (idx, (_local_id, data)) = self
                .params
                .types
                .iter()
                .enumerate()
                .find(|(_, (idx, _))| *idx == param.local_id)
                .unwrap();
            let (_total, parent_len, _child) = self.len_split();
            Some((parent_len + idx, data))
        } else {
            self.parent_generics.as_ref().and_then(|g| g.find_param(param))
        }
    }
}

fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
    let container = match def {
        GenericDefId::FunctionId(it) => it.lookup(db).container,
        GenericDefId::TypeAliasId(it) => it.lookup(db).container,
        GenericDefId::ConstId(it) => it.lookup(db).container,
        GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
        GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
    };

    match container {
        AssocContainerId::ImplId(it) => Some(it.into()),
        AssocContainerId::TraitId(it) => Some(it.into()),
        AssocContainerId::ModuleId(_) => None,
    }
}