aboutsummaryrefslogtreecommitdiff
path: root/crates/ide_completion/src/patterns.rs
blob: 04f2c532b119d077ffc6f49dd5b02942c904825f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! Patterns telling us certain facts about current syntax element, they are used in completion context

use syntax::{
    algo::non_trivia_sibling,
    ast::{self, LoopBodyOwner},
    match_ast, AstNode, Direction, NodeOrToken, SyntaxElement,
    SyntaxKind::{self, *},
    SyntaxNode, SyntaxToken, T,
};

#[cfg(test)]
use crate::test_utils::{check_pattern_is_applicable, check_pattern_is_not_applicable};

pub(crate) fn has_trait_parent(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element)
        .filter(|it| it.kind() == ASSOC_ITEM_LIST)
        .and_then(|it| it.parent())
        .filter(|it| it.kind() == TRAIT)
        .is_some()
}
#[test]
fn test_has_trait_parent() {
    check_pattern_is_applicable(r"trait A { f$0 }", has_trait_parent);
}

pub(crate) fn has_impl_parent(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element)
        .filter(|it| it.kind() == ASSOC_ITEM_LIST)
        .and_then(|it| it.parent())
        .filter(|it| it.kind() == IMPL)
        .is_some()
}
#[test]
fn test_has_impl_parent() {
    check_pattern_is_applicable(r"impl A { f$0 }", has_impl_parent);
}

pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool {
    // Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`,
    // where we only check the first parent with different text range.
    element
        .ancestors()
        .find(|it| it.kind() == IMPL)
        .map(|it| ast::Impl::cast(it).unwrap())
        .map(|it| it.trait_().is_some())
        .unwrap_or(false)
}
#[test]
fn test_inside_impl_trait_block() {
    check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block);
    check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block);
    check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block);
    check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block);
}

pub(crate) fn has_field_list_parent(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element).filter(|it| it.kind() == RECORD_FIELD_LIST).is_some()
}
#[test]
fn test_has_field_list_parent() {
    check_pattern_is_applicable(r"struct Foo { f$0 }", has_field_list_parent);
    check_pattern_is_applicable(r"struct Foo { f$0 pub f: i32}", has_field_list_parent);
}

pub(crate) fn has_block_expr_parent(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element).filter(|it| it.kind() == BLOCK_EXPR).is_some()
}
#[test]
fn test_has_block_expr_parent() {
    check_pattern_is_applicable(r"fn my_fn() { let a = 2; f$0 }", has_block_expr_parent);
}

pub(crate) fn has_bind_pat_parent(element: SyntaxElement) -> bool {
    element.ancestors().any(|it| it.kind() == IDENT_PAT)
}

#[test]
fn test_has_bind_pat_parent() {
    check_pattern_is_applicable(r"fn my_fn(m$0) {}", has_bind_pat_parent);
    check_pattern_is_applicable(r"fn my_fn() { let m$0 }", has_bind_pat_parent);
}

pub(crate) fn has_ref_parent(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element)
        .filter(|it| it.kind() == REF_PAT || it.kind() == REF_EXPR)
        .is_some()
}
#[test]
fn test_has_ref_parent() {
    check_pattern_is_applicable(r"fn my_fn(&m$0) {}", has_ref_parent);
    check_pattern_is_applicable(r"fn my() { let &m$0 }", has_ref_parent);
}

pub(crate) fn has_item_list_or_source_file_parent(element: SyntaxElement) -> bool {
    match not_same_range_ancestor(element) {
        Some(it) => it.kind() == SOURCE_FILE || it.kind() == ITEM_LIST,
        None => true,
    }
}
#[test]
fn test_has_item_list_or_source_file_parent() {
    check_pattern_is_applicable(r"i$0", has_item_list_or_source_file_parent);
    check_pattern_is_applicable(r"mod foo { f$0 }", has_item_list_or_source_file_parent);
}

pub(crate) fn is_match_arm(element: SyntaxElement) -> bool {
    not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some()
        && previous_sibling_or_ancestor_sibling(element)
            .and_then(|it| it.into_token())
            .filter(|it| it.kind() == FAT_ARROW)
            .is_some()
}
#[test]
fn test_is_match_arm() {
    check_pattern_is_applicable(r"fn my_fn() { match () { () => m$0 } }", is_match_arm);
}

pub(crate) fn previous_token(element: SyntaxElement) -> Option<SyntaxToken> {
    element.into_token().and_then(|it| previous_non_trivia_token(it))
}

/// Check if the token previous to the previous one is `for`.
/// For example, `for _ i$0` => true.
pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool {
    element
        .into_token()
        .and_then(|it| previous_non_trivia_token(it))
        .and_then(|it| previous_non_trivia_token(it))
        .filter(|it| it.kind() == T![for])
        .is_some()
}
#[test]
fn test_for_is_prev2() {
    check_pattern_is_applicable(r"for i i$0", for_is_prev2);
}

pub(crate) fn has_prev_sibling(element: SyntaxElement, kind: SyntaxKind) -> bool {
    previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == kind).is_some()
}
#[test]
fn test_has_impl_as_prev_sibling() {
    check_pattern_is_applicable(r"impl A w$0 {}", |it| has_prev_sibling(it, IMPL));
}

pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool {
    element
        .ancestors()
        .take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR)
        .find_map(|it| {
            let loop_body = match_ast! {
                match it {
                    ast::ForExpr(it) => it.loop_body(),
                    ast::WhileExpr(it) => it.loop_body(),
                    ast::LoopExpr(it) => it.loop_body(),
                    _ => None,
                }
            };
            loop_body.filter(|it| it.syntax().text_range().contains_range(element.text_range()))
        })
        .is_some()
}

fn not_same_range_ancestor(element: SyntaxElement) -> Option<SyntaxNode> {
    element
        .ancestors()
        .take_while(|it| it.text_range() == element.text_range())
        .last()
        .and_then(|it| it.parent())
}

fn previous_non_trivia_token(token: SyntaxToken) -> Option<SyntaxToken> {
    let mut token = token.prev_token();
    while let Some(inner) = token.clone() {
        if !inner.kind().is_trivia() {
            return Some(inner);
        } else {
            token = inner.prev_token();
        }
    }
    None
}

fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option<SyntaxElement> {
    let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev);
    if let Some(sibling) = token_sibling {
        Some(sibling)
    } else {
        // if not trying to find first ancestor which has such a sibling
        let range = element.text_range();
        let top_node = element.ancestors().take_while(|it| it.text_range() == range).last()?;
        let prev_sibling_node = top_node.ancestors().find(|it| {
            non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some()
        })?;
        non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev)
    }
}