1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
//! Patterns telling us certain facts about current syntax element, they are used in completion context
use hir::Semantics;
use ide_db::RootDatabase;
use syntax::{
algo::non_trivia_sibling,
ast::{self, ArgListOwner, LoopBodyOwner},
match_ast, AstNode, Direction, SyntaxElement,
SyntaxKind::*,
SyntaxNode, SyntaxToken, TextRange, TextSize, T,
};
#[cfg(test)]
use crate::tests::{check_pattern_is_applicable, check_pattern_is_not_applicable};
/// Immediate previous node to what we are completing.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum ImmediatePrevSibling {
IfExpr,
TraitDefName,
ImplDefType,
Visibility,
Attribute,
}
/// Direct parent "thing" of what we are currently completing.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum ImmediateLocation {
Use,
UseTree,
Impl,
Trait,
RecordField,
RefExpr,
IdentPat,
BlockExpr,
ItemList,
// Fake file ast node
Attribute(ast::Attr),
// Fake file ast node
ModDeclaration(ast::Module),
// Original file ast node
MethodCall {
receiver: Option<ast::Expr>,
has_parens: bool,
},
// Original file ast node
FieldAccess {
receiver: Option<ast::Expr>,
receiver_is_ambiguous_float_literal: bool,
},
// Original file ast node
// Only set from a type arg
GenericArgList(ast::GenericArgList),
// Original file ast node
/// The record expr of the field name we are completing
RecordExpr(ast::RecordExpr),
// Original file ast node
/// The record pat of the field name we are completing
RecordPat(ast::RecordPat),
}
pub(crate) fn determine_prev_sibling(name_like: &ast::NameLike) -> Option<ImmediatePrevSibling> {
let node = match name_like {
ast::NameLike::NameRef(name_ref) => maximize_name_ref(name_ref),
ast::NameLike::Name(n) => n.syntax().clone(),
ast::NameLike::Lifetime(lt) => lt.syntax().clone(),
};
let node = match node.parent().and_then(ast::MacroCall::cast) {
// When a path is being typed after the name of a trait/type of an impl it is being
// parsed as a macro, so when the trait/impl has a block following it an we are between the
// name and block the macro will attach the block to itself so maximizing fails to take
// that into account
// FIXME path expr and statement have a similar problem with attrs
Some(call)
if call.excl_token().is_none()
&& call.token_tree().map_or(false, |t| t.l_curly_token().is_some())
&& call.semicolon_token().is_none() =>
{
call.syntax().clone()
}
_ => node,
};
let prev_sibling = non_trivia_sibling(node.into(), Direction::Prev)?.into_node()?;
if prev_sibling.kind() == ERROR {
let prev_sibling = prev_sibling.first_child()?;
let res = match_ast! {
match prev_sibling {
// vis followed by random ident will always error the parser
ast::Visibility(_it) => ImmediatePrevSibling::Visibility,
_ => return None,
}
};
return Some(res);
}
let res = match_ast! {
match prev_sibling {
ast::ExprStmt(it) => {
let node = it.expr().filter(|_| it.semicolon_token().is_none())?.syntax().clone();
match_ast! {
match node {
ast::IfExpr(_it) => ImmediatePrevSibling::IfExpr,
_ => return None,
}
}
},
ast::Trait(it) => if it.assoc_item_list().is_none() {
ImmediatePrevSibling::TraitDefName
} else {
return None
},
ast::Impl(it) => if it.assoc_item_list().is_none()
&& (it.for_token().is_none() || it.self_ty().is_some()) {
ImmediatePrevSibling::ImplDefType
} else {
return None
},
ast::Attr(_it) => ImmediatePrevSibling::Attribute,
_ => return None,
}
};
Some(res)
}
pub(crate) fn determine_location(
sema: &Semantics<RootDatabase>,
original_file: &SyntaxNode,
offset: TextSize,
name_like: &ast::NameLike,
) -> Option<ImmediateLocation> {
let node = match name_like {
ast::NameLike::NameRef(name_ref) => {
if ast::RecordExprField::for_field_name(name_ref).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordExpr);
}
if ast::RecordPatField::for_field_name_ref(name_ref).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordPat);
}
maximize_name_ref(name_ref)
}
ast::NameLike::Name(name) => {
if ast::RecordPatField::for_field_name(name).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordPat);
}
name.syntax().clone()
}
ast::NameLike::Lifetime(lt) => lt.syntax().clone(),
};
let parent = match node.parent() {
Some(parent) => match ast::MacroCall::cast(parent.clone()) {
// When a path is being typed in an (Assoc)ItemList the parser will always emit a macro_call.
// This is usually fine as the node expansion code above already accounts for that with
// the ancestors call, but there is one exception to this which is that when an attribute
// precedes it the code above will not walk the Path to the parent MacroCall as their ranges differ.
// FIXME path expr and statement have a similar problem
Some(call)
if call.excl_token().is_none()
&& call.token_tree().is_none()
&& call.semicolon_token().is_none() =>
{
call.syntax().parent()?
}
_ => parent,
},
// SourceFile
None => {
return match node.kind() {
MACRO_ITEMS | SOURCE_FILE => Some(ImmediateLocation::ItemList),
_ => None,
}
}
};
let res = match_ast! {
match parent {
ast::IdentPat(_it) => ImmediateLocation::IdentPat,
ast::Use(_it) => ImmediateLocation::Use,
ast::UseTree(_it) => ImmediateLocation::UseTree,
ast::UseTreeList(_it) => ImmediateLocation::UseTree,
ast::BlockExpr(_it) => ImmediateLocation::BlockExpr,
ast::SourceFile(_it) => ImmediateLocation::ItemList,
ast::ItemList(_it) => ImmediateLocation::ItemList,
ast::RefExpr(_it) => ImmediateLocation::RefExpr,
ast::RecordField(_it) => ImmediateLocation::RecordField,
ast::AssocItemList(it) => match it.syntax().parent().map(|it| it.kind()) {
Some(IMPL) => ImmediateLocation::Impl,
Some(TRAIT) => ImmediateLocation::Trait,
_ => return None,
},
ast::GenericArgList(_it) => sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::GenericArgList)?,
ast::Module(it) => {
if it.item_list().is_none() {
ImmediateLocation::ModDeclaration(it)
} else {
return None;
}
},
ast::Attr(it) => ImmediateLocation::Attribute(it),
ast::FieldExpr(it) => {
let receiver = it
.expr()
.map(|e| e.syntax().text_range())
.and_then(|r| find_node_with_range(original_file, r));
let receiver_is_ambiguous_float_literal = if let Some(ast::Expr::Literal(l)) = &receiver {
match l.kind() {
ast::LiteralKind::FloatNumber { .. } => l.token().text().ends_with('.'),
_ => false,
}
} else {
false
};
ImmediateLocation::FieldAccess {
receiver,
receiver_is_ambiguous_float_literal,
}
},
ast::MethodCallExpr(it) => ImmediateLocation::MethodCall {
receiver: it
.receiver()
.map(|e| e.syntax().text_range())
.and_then(|r| find_node_with_range(original_file, r)),
has_parens: it.arg_list().map_or(false, |it| it.l_paren_token().is_some())
},
_ => return None,
}
};
Some(res)
}
fn maximize_name_ref(name_ref: &ast::NameRef) -> SyntaxNode {
// Maximize a nameref to its enclosing path if its the last segment of said path
if let Some(segment) = name_ref.syntax().parent().and_then(ast::PathSegment::cast) {
let p = segment.parent_path();
if p.parent_path().is_none() {
if let Some(it) = p
.syntax()
.ancestors()
.take_while(|it| it.text_range() == p.syntax().text_range())
.last()
{
return it;
}
}
}
name_ref.syntax().clone()
}
fn find_node_with_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
syntax.covering_element(range).ancestors().find_map(N::cast)
}
pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool {
// Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`,
// where we only check the first parent with different text range.
element
.ancestors()
.find(|it| it.kind() == IMPL)
.map(|it| ast::Impl::cast(it).unwrap())
.map(|it| it.trait_().is_some())
.unwrap_or(false)
}
#[test]
fn test_inside_impl_trait_block() {
check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block);
check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block);
check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block);
check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block);
}
pub(crate) fn previous_token(element: SyntaxElement) -> Option<SyntaxToken> {
element.into_token().and_then(previous_non_trivia_token)
}
/// Check if the token previous to the previous one is `for`.
/// For example, `for _ i$0` => true.
pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool {
element
.into_token()
.and_then(previous_non_trivia_token)
.and_then(previous_non_trivia_token)
.filter(|it| it.kind() == T![for])
.is_some()
}
#[test]
fn test_for_is_prev2() {
check_pattern_is_applicable(r"for i i$0", for_is_prev2);
}
pub(crate) fn is_in_loop_body(node: &SyntaxNode) -> bool {
node.ancestors()
.take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR)
.find_map(|it| {
let loop_body = match_ast! {
match it {
ast::ForExpr(it) => it.loop_body(),
ast::WhileExpr(it) => it.loop_body(),
ast::LoopExpr(it) => it.loop_body(),
_ => None,
}
};
loop_body.filter(|it| it.syntax().text_range().contains_range(node.text_range()))
})
.is_some()
}
fn previous_non_trivia_token(token: SyntaxToken) -> Option<SyntaxToken> {
let mut token = token.prev_token();
while let Some(inner) = token.clone() {
if !inner.kind().is_trivia() {
return Some(inner);
} else {
token = inner.prev_token();
}
}
None
}
#[cfg(test)]
mod tests {
use syntax::algo::find_node_at_offset;
use crate::tests::position;
use super::*;
fn check_location(code: &str, loc: impl Into<Option<ImmediateLocation>>) {
let (db, pos) = position(code);
let sema = Semantics::new(&db);
let original_file = sema.parse(pos.file_id);
let name_like = find_node_at_offset(original_file.syntax(), pos.offset).unwrap();
assert_eq!(
determine_location(&sema, original_file.syntax(), pos.offset, &name_like),
loc.into()
);
}
fn check_prev_sibling(code: &str, sibling: impl Into<Option<ImmediatePrevSibling>>) {
check_pattern_is_applicable(code, |e| {
let name = &e.parent().and_then(ast::NameLike::cast).expect("Expected a namelike");
assert_eq!(determine_prev_sibling(name), sibling.into());
true
});
}
#[test]
fn test_trait_loc() {
check_location(r"trait A { f$0 }", ImmediateLocation::Trait);
check_location(r"trait A { #[attr] f$0 }", ImmediateLocation::Trait);
check_location(r"trait A { f$0 fn f() {} }", ImmediateLocation::Trait);
check_location(r"trait A { fn f() {} f$0 }", ImmediateLocation::Trait);
check_location(r"trait A$0 {}", None);
check_location(r"trait A { fn f$0 }", None);
}
#[test]
fn test_impl_loc() {
check_location(r"impl A { f$0 }", ImmediateLocation::Impl);
check_location(r"impl A { #[attr] f$0 }", ImmediateLocation::Impl);
check_location(r"impl A { f$0 fn f() {} }", ImmediateLocation::Impl);
check_location(r"impl A { fn f() {} f$0 }", ImmediateLocation::Impl);
check_location(r"impl A$0 {}", None);
check_location(r"impl A { fn f$0 }", None);
}
#[test]
fn test_use_loc() {
check_location(r"use f$0", ImmediateLocation::Use);
check_location(r"use f$0;", ImmediateLocation::Use);
check_location(r"use f::{f$0}", ImmediateLocation::UseTree);
check_location(r"use {f$0}", ImmediateLocation::UseTree);
}
#[test]
fn test_record_field_loc() {
check_location(r"struct Foo { f$0 }", ImmediateLocation::RecordField);
check_location(r"struct Foo { f$0 pub f: i32}", ImmediateLocation::RecordField);
check_location(r"struct Foo { pub f: i32, f$0 }", ImmediateLocation::RecordField);
}
#[test]
fn test_block_expr_loc() {
check_location(r"fn my_fn() { let a = 2; f$0 }", ImmediateLocation::BlockExpr);
check_location(r"fn my_fn() { f$0 f }", ImmediateLocation::BlockExpr);
}
#[test]
fn test_ident_pat_loc() {
check_location(r"fn my_fn(m$0) {}", ImmediateLocation::IdentPat);
check_location(r"fn my_fn() { let m$0 }", ImmediateLocation::IdentPat);
check_location(r"fn my_fn(&m$0) {}", ImmediateLocation::IdentPat);
check_location(r"fn my_fn() { let &m$0 }", ImmediateLocation::IdentPat);
}
#[test]
fn test_ref_expr_loc() {
check_location(r"fn my_fn() { let x = &m$0 foo; }", ImmediateLocation::RefExpr);
}
#[test]
fn test_item_list_loc() {
check_location(r"i$0", ImmediateLocation::ItemList);
check_location(r"#[attr] i$0", ImmediateLocation::ItemList);
check_location(r"fn f() {} i$0", ImmediateLocation::ItemList);
check_location(r"mod foo { f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo { #[attr] f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo { fn f() {} f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo$0 {}", None);
}
#[test]
fn test_impl_prev_sibling() {
check_prev_sibling(r"impl A w$0 ", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A w$0 {}", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for A w$0 ", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for A w$0 {}", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for w$0 {}", None);
check_prev_sibling(r"impl A for w$0", None);
}
#[test]
fn test_trait_prev_sibling() {
check_prev_sibling(r"trait A w$0 ", ImmediatePrevSibling::TraitDefName);
check_prev_sibling(r"trait A w$0 {}", ImmediatePrevSibling::TraitDefName);
}
#[test]
fn test_if_expr_prev_sibling() {
check_prev_sibling(r"fn foo() { if true {} w$0", ImmediatePrevSibling::IfExpr);
check_prev_sibling(r"fn foo() { if true {}; w$0", None);
}
#[test]
fn test_vis_prev_sibling() {
check_prev_sibling(r"pub w$0", ImmediatePrevSibling::Visibility);
}
#[test]
fn test_attr_prev_sibling() {
check_prev_sibling(r"#[attr] w$0", ImmediatePrevSibling::Attribute);
}
}
|