1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
//! This file contains code for parsing SSR rules, which look something like `foo($a) ==>> bar($b)`.
//! We first split everything before and after the separator `==>>`. Next, both the search pattern
//! and the replacement template get tokenized by the Rust tokenizer. Tokens are then searched for
//! placeholders, which start with `$`. For replacement templates, this is the final form. For
//! search patterns, we go further and parse the pattern as each kind of thing that we can match.
//! e.g. expressions, type references etc.
use crate::errors::bail;
use crate::{SsrError, SsrPattern, SsrRule};
use rustc_hash::{FxHashMap, FxHashSet};
use std::{fmt::Display, str::FromStr};
use syntax::{ast, AstNode, SmolStr, SyntaxKind, SyntaxNode, T};
#[derive(Debug)]
pub(crate) struct ParsedRule {
pub(crate) placeholders_by_stand_in: FxHashMap<SmolStr, Placeholder>,
pub(crate) pattern: SyntaxNode,
pub(crate) template: Option<SyntaxNode>,
}
#[derive(Debug)]
pub(crate) struct RawPattern {
tokens: Vec<PatternElement>,
}
// Part of a search or replace pattern.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum PatternElement {
Token(Token),
Placeholder(Placeholder),
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Placeholder {
/// The name of this placeholder. e.g. for "$a", this would be "a"
pub(crate) ident: Var,
/// A unique name used in place of this placeholder when we parse the pattern as Rust code.
stand_in_name: String,
pub(crate) constraints: Vec<Constraint>,
}
/// Represents a `$var` in an SSR query.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct Var(pub(crate) String);
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum Constraint {
Kind(NodeKind),
Not(Box<Constraint>),
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum NodeKind {
Literal,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) struct Token {
kind: SyntaxKind,
pub(crate) text: SmolStr,
}
impl ParsedRule {
fn new(
pattern: &RawPattern,
template: Option<&RawPattern>,
) -> Result<Vec<ParsedRule>, SsrError> {
let raw_pattern = pattern.as_rust_code();
let raw_template = template.map(|t| t.as_rust_code());
let raw_template = raw_template.as_deref();
let mut builder = RuleBuilder {
placeholders_by_stand_in: pattern.placeholders_by_stand_in(),
rules: Vec::new(),
};
let raw_template_stmt = raw_template.map(ast::Stmt::parse);
if let raw_template_expr @ Some(Ok(_)) = raw_template.map(ast::Expr::parse) {
builder.try_add(ast::Expr::parse(&raw_pattern), raw_template_expr);
} else {
builder.try_add(ast::Expr::parse(&raw_pattern), raw_template_stmt.clone());
}
builder.try_add(ast::Type::parse(&raw_pattern), raw_template.map(ast::Type::parse));
builder.try_add(ast::Item::parse(&raw_pattern), raw_template.map(ast::Item::parse));
builder.try_add(ast::Path::parse(&raw_pattern), raw_template.map(ast::Path::parse));
builder.try_add(ast::Pat::parse(&raw_pattern), raw_template.map(ast::Pat::parse));
builder.try_add(ast::Stmt::parse(&raw_pattern), raw_template_stmt);
builder.build()
}
}
struct RuleBuilder {
placeholders_by_stand_in: FxHashMap<SmolStr, Placeholder>,
rules: Vec<ParsedRule>,
}
impl RuleBuilder {
fn try_add<T: AstNode, T2: AstNode>(
&mut self,
pattern: Result<T, ()>,
template: Option<Result<T2, ()>>,
) {
match (pattern, template) {
(Ok(pattern), Some(Ok(template))) => self.rules.push(ParsedRule {
placeholders_by_stand_in: self.placeholders_by_stand_in.clone(),
pattern: pattern.syntax().clone(),
template: Some(template.syntax().clone()),
}),
(Ok(pattern), None) => self.rules.push(ParsedRule {
placeholders_by_stand_in: self.placeholders_by_stand_in.clone(),
pattern: pattern.syntax().clone(),
template: None,
}),
_ => {}
}
}
fn build(mut self) -> Result<Vec<ParsedRule>, SsrError> {
if self.rules.is_empty() {
bail!("Not a valid Rust expression, type, item, path or pattern");
}
// If any rules contain paths, then we reject any rules that don't contain paths. Allowing a
// mix leads to strange semantics, since the path-based rules only match things where the
// path refers to semantically the same thing, whereas the non-path-based rules could match
// anything. Specifically, if we have a rule like `foo ==>> bar` we only want to match the
// `foo` that is in the current scope, not any `foo`. However "foo" can be parsed as a
// pattern (IDENT_PAT -> NAME -> IDENT). Allowing such a rule through would result in
// renaming everything called `foo` to `bar`. It'd also be slow, since without a path, we'd
// have to use the slow-scan search mechanism.
if self.rules.iter().any(|rule| contains_path(&rule.pattern)) {
let old_len = self.rules.len();
self.rules.retain(|rule| contains_path(&rule.pattern));
if self.rules.len() < old_len {
cov_mark::hit!(pattern_is_a_single_segment_path);
}
}
Ok(self.rules)
}
}
/// Returns whether there are any paths in `node`.
fn contains_path(node: &SyntaxNode) -> bool {
node.kind() == SyntaxKind::PATH
|| node.descendants().any(|node| node.kind() == SyntaxKind::PATH)
}
impl FromStr for SsrRule {
type Err = SsrError;
fn from_str(query: &str) -> Result<SsrRule, SsrError> {
let mut it = query.split("==>>");
let pattern = it.next().expect("at least empty string").trim();
let template = it
.next()
.ok_or_else(|| SsrError("Cannot find delimiter `==>>`".into()))?
.trim()
.to_string();
if it.next().is_some() {
return Err(SsrError("More than one delimiter found".into()));
}
let raw_pattern = pattern.parse()?;
let raw_template = template.parse()?;
let parsed_rules = ParsedRule::new(&raw_pattern, Some(&raw_template))?;
let rule = SsrRule { pattern: raw_pattern, template: raw_template, parsed_rules };
validate_rule(&rule)?;
Ok(rule)
}
}
impl FromStr for RawPattern {
type Err = SsrError;
fn from_str(pattern_str: &str) -> Result<RawPattern, SsrError> {
Ok(RawPattern { tokens: parse_pattern(pattern_str)? })
}
}
impl RawPattern {
/// Returns this search pattern as Rust source code that we can feed to the Rust parser.
fn as_rust_code(&self) -> String {
let mut res = String::new();
for t in &self.tokens {
res.push_str(match t {
PatternElement::Token(token) => token.text.as_str(),
PatternElement::Placeholder(placeholder) => placeholder.stand_in_name.as_str(),
});
}
res
}
pub(crate) fn placeholders_by_stand_in(&self) -> FxHashMap<SmolStr, Placeholder> {
let mut res = FxHashMap::default();
for t in &self.tokens {
if let PatternElement::Placeholder(placeholder) = t {
res.insert(SmolStr::new(placeholder.stand_in_name.clone()), placeholder.clone());
}
}
res
}
}
impl FromStr for SsrPattern {
type Err = SsrError;
fn from_str(pattern_str: &str) -> Result<SsrPattern, SsrError> {
let raw_pattern = pattern_str.parse()?;
let parsed_rules = ParsedRule::new(&raw_pattern, None)?;
Ok(SsrPattern { raw: raw_pattern, parsed_rules })
}
}
/// Returns `pattern_str`, parsed as a search or replace pattern. If `remove_whitespace` is true,
/// then any whitespace tokens will be removed, which we do for the search pattern, but not for the
/// replace pattern.
fn parse_pattern(pattern_str: &str) -> Result<Vec<PatternElement>, SsrError> {
let mut res = Vec::new();
let mut placeholder_names = FxHashSet::default();
let mut tokens = tokenize(pattern_str)?.into_iter();
while let Some(token) = tokens.next() {
if token.kind == T![$] {
let placeholder = parse_placeholder(&mut tokens)?;
if !placeholder_names.insert(placeholder.ident.clone()) {
bail!("Placeholder `{}` repeats more than once", placeholder.ident);
}
res.push(PatternElement::Placeholder(placeholder));
} else {
res.push(PatternElement::Token(token));
}
}
Ok(res)
}
/// Checks for errors in a rule. e.g. the replace pattern referencing placeholders that the search
/// pattern didn't define.
fn validate_rule(rule: &SsrRule) -> Result<(), SsrError> {
let mut defined_placeholders = FxHashSet::default();
for p in &rule.pattern.tokens {
if let PatternElement::Placeholder(placeholder) = p {
defined_placeholders.insert(&placeholder.ident);
}
}
let mut undefined = Vec::new();
for p in &rule.template.tokens {
if let PatternElement::Placeholder(placeholder) = p {
if !defined_placeholders.contains(&placeholder.ident) {
undefined.push(placeholder.ident.to_string());
}
if !placeholder.constraints.is_empty() {
bail!("Replacement placeholders cannot have constraints");
}
}
}
if !undefined.is_empty() {
bail!("Replacement contains undefined placeholders: {}", undefined.join(", "));
}
Ok(())
}
fn tokenize(source: &str) -> Result<Vec<Token>, SsrError> {
let mut start = 0;
let (raw_tokens, errors) = syntax::tokenize(source);
if let Some(first_error) = errors.first() {
bail!("Failed to parse pattern: {}", first_error);
}
let mut tokens: Vec<Token> = Vec::new();
for raw_token in raw_tokens {
let token_len = usize::from(raw_token.len);
tokens.push(Token {
kind: raw_token.kind,
text: SmolStr::new(&source[start..start + token_len]),
});
start += token_len;
}
Ok(tokens)
}
fn parse_placeholder(tokens: &mut std::vec::IntoIter<Token>) -> Result<Placeholder, SsrError> {
let mut name = None;
let mut constraints = Vec::new();
if let Some(token) = tokens.next() {
match token.kind {
SyntaxKind::IDENT => {
name = Some(token.text);
}
T!['{'] => {
let token =
tokens.next().ok_or_else(|| SsrError::new("Unexpected end of placeholder"))?;
if token.kind == SyntaxKind::IDENT {
name = Some(token.text);
}
loop {
let token = tokens
.next()
.ok_or_else(|| SsrError::new("Placeholder is missing closing brace '}'"))?;
match token.kind {
T![:] => {
constraints.push(parse_constraint(tokens)?);
}
T!['}'] => break,
_ => bail!("Unexpected token while parsing placeholder: '{}'", token.text),
}
}
}
_ => {
bail!("Placeholders should either be $name or ${{name:constraints}}");
}
}
}
let name = name.ok_or_else(|| SsrError::new("Placeholder ($) with no name"))?;
Ok(Placeholder::new(name, constraints))
}
fn parse_constraint(tokens: &mut std::vec::IntoIter<Token>) -> Result<Constraint, SsrError> {
let constraint_type = tokens
.next()
.ok_or_else(|| SsrError::new("Found end of placeholder while looking for a constraint"))?
.text
.to_string();
match constraint_type.as_str() {
"kind" => {
expect_token(tokens, "(")?;
let t = tokens.next().ok_or_else(|| {
SsrError::new("Unexpected end of constraint while looking for kind")
})?;
if t.kind != SyntaxKind::IDENT {
bail!("Expected ident, found {:?} while parsing kind constraint", t.kind);
}
expect_token(tokens, ")")?;
Ok(Constraint::Kind(NodeKind::from(&t.text)?))
}
"not" => {
expect_token(tokens, "(")?;
let sub = parse_constraint(tokens)?;
expect_token(tokens, ")")?;
Ok(Constraint::Not(Box::new(sub)))
}
x => bail!("Unsupported constraint type '{}'", x),
}
}
fn expect_token(tokens: &mut std::vec::IntoIter<Token>, expected: &str) -> Result<(), SsrError> {
if let Some(t) = tokens.next() {
if t.text == expected {
return Ok(());
}
bail!("Expected {} found {}", expected, t.text);
}
bail!("Expected {} found end of stream", expected);
}
impl NodeKind {
fn from(name: &SmolStr) -> Result<NodeKind, SsrError> {
Ok(match name.as_str() {
"literal" => NodeKind::Literal,
_ => bail!("Unknown node kind '{}'", name),
})
}
}
impl Placeholder {
fn new(name: SmolStr, constraints: Vec<Constraint>) -> Self {
Self {
stand_in_name: format!("__placeholder_{}", name),
constraints,
ident: Var(name.to_string()),
}
}
}
impl Display for Var {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "${}", self.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parser_happy_case() {
fn token(kind: SyntaxKind, text: &str) -> PatternElement {
PatternElement::Token(Token { kind, text: SmolStr::new(text) })
}
fn placeholder(name: &str) -> PatternElement {
PatternElement::Placeholder(Placeholder::new(SmolStr::new(name), Vec::new()))
}
let result: SsrRule = "foo($a, $b) ==>> bar($b, $a)".parse().unwrap();
assert_eq!(
result.pattern.tokens,
vec![
token(SyntaxKind::IDENT, "foo"),
token(T!['('], "("),
placeholder("a"),
token(T![,], ","),
token(SyntaxKind::WHITESPACE, " "),
placeholder("b"),
token(T![')'], ")"),
]
);
assert_eq!(
result.template.tokens,
vec![
token(SyntaxKind::IDENT, "bar"),
token(T!['('], "("),
placeholder("b"),
token(T![,], ","),
token(SyntaxKind::WHITESPACE, " "),
placeholder("a"),
token(T![')'], ")"),
]
);
}
}
|