aboutsummaryrefslogtreecommitdiff
path: root/crates/libsyntax2/src/algo/mod.rs
blob: 2640d60ea0e489b0341b0b573d2c24ba62e55241 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
pub mod walk;
pub mod visit;

use {
    SyntaxNodeRef, TextUnit, TextRange,
    text_utils::{contains_offset_nonstrict, is_subrange},
};

pub fn find_leaf_at_offset(node: SyntaxNodeRef, offset: TextUnit) -> LeafAtOffset {
    let range = node.range();
    assert!(
        contains_offset_nonstrict(range, offset),
        "Bad offset: range {:?} offset {:?}", range, offset
    );
    if range.is_empty() {
        return LeafAtOffset::None;
    }

    if node.is_leaf() {
        return LeafAtOffset::Single(node);
    }

    let mut children = node.children()
        .filter(|child| {
            let child_range = child.range();
            !child_range.is_empty() && contains_offset_nonstrict(child_range, offset)
        });

    let left = children.next().unwrap();
    let right = children.next();
    assert!(children.next().is_none());
    return if let Some(right) = right {
        match (find_leaf_at_offset(left, offset), find_leaf_at_offset(right, offset)) {
            (LeafAtOffset::Single(left), LeafAtOffset::Single(right)) =>
                LeafAtOffset::Between(left, right),
            _ => unreachable!()
        }
    } else {
        find_leaf_at_offset(left, offset)
    };
}

#[derive(Clone, Copy, Debug)]
pub enum LeafAtOffset<'a> {
    None,
    Single(SyntaxNodeRef<'a>),
    Between(SyntaxNodeRef<'a>, SyntaxNodeRef<'a>)
}

impl<'a> LeafAtOffset<'a> {
    pub fn right_biased(self) -> Option<SyntaxNodeRef<'a>> {
        match self {
            LeafAtOffset::None => None,
            LeafAtOffset::Single(node) => Some(node),
            LeafAtOffset::Between(_, right) => Some(right)
        }
    }

    pub fn left_biased(self) -> Option<SyntaxNodeRef<'a>> {
        match self {
            LeafAtOffset::None => None,
            LeafAtOffset::Single(node) => Some(node),
            LeafAtOffset::Between(left, _) => Some(left)
        }
    }
}

impl<'f> Iterator for LeafAtOffset<'f> {
    type Item = SyntaxNodeRef<'f>;

    fn next(&mut self) -> Option<SyntaxNodeRef<'f>> {
        match *self {
            LeafAtOffset::None => None,
            LeafAtOffset::Single(node) => { *self = LeafAtOffset::None; Some(node) }
            LeafAtOffset::Between(left, right) => { *self = LeafAtOffset::Single(right); Some(left) }
        }
    }
}

pub fn find_covering_node(root: SyntaxNodeRef, range: TextRange) -> SyntaxNodeRef {
    assert!(is_subrange(root.range(), range));
    let (left, right) = match (
        find_leaf_at_offset(root, range.start()).right_biased(),
        find_leaf_at_offset(root, range.end()).left_biased()
    ) {
        (Some(l), Some(r)) => (l, r),
        _ => return root
    };

    common_ancestor(left, right)
}

pub fn ancestors<'a>(node: SyntaxNodeRef<'a>) -> impl Iterator<Item=SyntaxNodeRef<'a>> {
    generate(Some(node), |&node| node.parent())
}

#[derive(Debug)]
pub enum Direction {
    Forward,
    Backward,
}

pub fn siblings<'a>(
    node: SyntaxNodeRef<'a>,
    direction: Direction
) -> impl Iterator<Item=SyntaxNodeRef<'a>> {
    generate(Some(node), move |&node| match direction {
        Direction::Forward => node.next_sibling(),
        Direction::Backward => node.prev_sibling(),
    })
}

fn common_ancestor<'a>(n1: SyntaxNodeRef<'a>, n2: SyntaxNodeRef<'a>) -> SyntaxNodeRef<'a> {
    for p in ancestors(n1) {
        if ancestors(n2).any(|a| a == p) {
            return p;
        }
    }
    panic!("Can't find common ancestor of {:?} and {:?}", n1, n2)
}

fn generate<T>(seed: Option<T>, step: impl Fn(&T) -> Option<T>) -> impl Iterator<Item=T> {
    ::itertools::unfold(seed, move |slot| {
        slot.take().map(|curr| {
            *slot = step(&curr);
            curr
        })
    })
}