1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
|
//! An NFA-based parser, which is porting from rustc mbe parsing code
//!
//! See https://github.com/rust-lang/rust/blob/70b18bc2cbac4712020019f5bf57c00905373205/compiler/rustc_expand/src/mbe/macro_parser.rs
//! Here is a quick intro to how the parser works, copied from rustc:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
use std::rc::Rc;
use crate::{
expander::{Binding, Bindings, Fragment},
parser::{Op, OpDelimited, OpDelimitedIter, RepeatKind, Separator},
tt_iter::TtIter,
ExpandError, MetaTemplate,
};
use super::ExpandResult;
use parser::FragmentKind::*;
use smallvec::{smallvec, SmallVec};
use syntax::SmolStr;
impl Bindings {
fn push_optional(&mut self, name: &SmolStr) {
// FIXME: Do we have a better way to represent an empty token ?
// Insert an empty subtree for empty token
let tt = tt::Subtree::default().into();
self.inner.insert(name.clone(), Binding::Fragment(Fragment::Tokens(tt)));
}
fn push_empty(&mut self, name: &SmolStr) {
self.inner.insert(name.clone(), Binding::Empty);
}
fn bindings(&self) -> impl Iterator<Item = &Binding> {
self.inner.values()
}
}
macro_rules! err {
() => {
ExpandError::BindingError(format!(""))
};
($($tt:tt)*) => {
ExpandError::BindingError(format!($($tt)*))
};
}
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub(super) struct Match {
pub(super) bindings: Bindings,
/// We currently just keep the first error and count the rest to compare matches.
pub(super) err: Option<ExpandError>,
pub(super) err_count: usize,
/// How many top-level token trees were left to match.
pub(super) unmatched_tts: usize,
/// The number of bound variables
pub(super) bound_count: usize,
}
impl Match {
fn add_err(&mut self, err: ExpandError) {
let prev_err = self.err.take();
self.err = prev_err.or(Some(err));
self.err_count += 1;
}
}
/// Matching errors are added to the `Match`.
pub(super) fn match_(pattern: &MetaTemplate, input: &tt::Subtree) -> Match {
let mut res = match_loop(pattern, input);
res.bound_count = count(res.bindings.bindings());
return res;
fn count<'a>(bindings: impl Iterator<Item = &'a Binding>) -> usize {
bindings
.map(|it| match it {
Binding::Fragment(_) => 1,
Binding::Empty => 1,
Binding::Nested(it) => count(it.iter()),
})
.sum()
}
}
#[derive(Debug, Clone)]
enum BindingKind {
Empty(SmolStr),
Optional(SmolStr),
Fragment(SmolStr, Fragment),
Nested(usize, usize),
}
#[derive(Debug, Clone)]
struct BindingsIdx(usize, usize);
#[derive(Debug, Clone)]
enum LinkNode<T> {
Node(T),
Parent { idx: usize, len: usize },
}
#[derive(Default)]
struct BindingsBuilder {
nodes: Vec<Vec<LinkNode<Rc<BindingKind>>>>,
nested: Vec<Vec<LinkNode<usize>>>,
}
impl BindingsBuilder {
fn alloc(&mut self) -> BindingsIdx {
let idx = self.nodes.len();
self.nodes.push(Vec::new());
let nidx = self.nested.len();
self.nested.push(Vec::new());
BindingsIdx(idx, nidx)
}
fn copy(&mut self, bindings: &BindingsIdx) -> BindingsIdx {
let idx = copy_parent(bindings.0, &mut self.nodes);
let nidx = copy_parent(bindings.1, &mut self.nested);
return BindingsIdx(idx, nidx);
fn copy_parent<T>(idx: usize, target: &mut Vec<Vec<LinkNode<T>>>) -> usize
where
T: Clone,
{
let new_idx = target.len();
let len = target[idx].len();
if len < 4 {
target.push(target[idx].clone())
} else {
target.push(vec![LinkNode::Parent { idx, len }]);
}
new_idx
}
}
fn push_empty(&mut self, idx: &mut BindingsIdx, var: &SmolStr) {
self.nodes[idx.0].push(LinkNode::Node(Rc::new(BindingKind::Empty(var.clone()))));
}
fn push_optional(&mut self, idx: &mut BindingsIdx, var: &SmolStr) {
self.nodes[idx.0].push(LinkNode::Node(Rc::new(BindingKind::Optional(var.clone()))));
}
fn push_fragment(&mut self, idx: &mut BindingsIdx, var: &SmolStr, fragment: Fragment) {
self.nodes[idx.0]
.push(LinkNode::Node(Rc::new(BindingKind::Fragment(var.clone(), fragment))));
}
fn push_nested(&mut self, parent: &mut BindingsIdx, child: &BindingsIdx) {
let BindingsIdx(idx, nidx) = self.copy(child);
self.nodes[parent.0].push(LinkNode::Node(Rc::new(BindingKind::Nested(idx, nidx))));
}
fn push_default(&mut self, idx: &mut BindingsIdx) {
self.nested[idx.1].push(LinkNode::Node(idx.0));
let new_idx = self.nodes.len();
self.nodes.push(Vec::new());
idx.0 = new_idx;
}
fn build(self, idx: &BindingsIdx) -> Bindings {
let mut bindings = Bindings::default();
self.build_inner(&mut bindings, &self.nodes[idx.0]);
bindings
}
fn build_inner(&self, bindings: &mut Bindings, link_nodes: &[LinkNode<Rc<BindingKind>>]) {
let mut nodes = Vec::new();
self.collect_nodes(link_nodes, &mut nodes);
for cmd in nodes {
match &**cmd {
BindingKind::Empty(name) => {
bindings.push_empty(name);
}
BindingKind::Optional(name) => {
bindings.push_optional(name);
}
BindingKind::Fragment(name, fragment) => {
bindings.inner.insert(name.clone(), Binding::Fragment(fragment.clone()));
}
BindingKind::Nested(idx, nested_idx) => {
let mut nested_nodes = Vec::new();
self.collect_nested(*idx, *nested_idx, &mut nested_nodes);
for (idx, iter) in nested_nodes.into_iter().enumerate() {
for (key, value) in &iter.inner {
let bindings = bindings
.inner
.entry(key.clone())
.or_insert_with(|| Binding::Nested(Vec::new()));
if let Binding::Nested(it) = bindings {
// insert empty nested bindings before this one
while it.len() < idx {
it.push(Binding::Nested(Vec::new()));
}
it.push(value.clone());
}
}
}
}
}
}
}
fn collect_nested_ref<'a>(
&'a self,
id: usize,
len: usize,
nested_refs: &mut Vec<&'a Vec<LinkNode<Rc<BindingKind>>>>,
) {
self.nested[id].iter().take(len).for_each(|it| match it {
LinkNode::Node(id) => nested_refs.push(&self.nodes[*id]),
LinkNode::Parent { idx, len } => self.collect_nested_ref(*idx, *len, nested_refs),
});
}
fn collect_nested(&self, idx: usize, nested_idx: usize, nested: &mut Vec<Bindings>) {
let last = &self.nodes[idx];
let mut nested_refs = Vec::new();
self.nested[nested_idx].iter().for_each(|it| match *it {
LinkNode::Node(idx) => nested_refs.push(&self.nodes[idx]),
LinkNode::Parent { idx, len } => self.collect_nested_ref(idx, len, &mut nested_refs),
});
nested_refs.push(last);
nested_refs.into_iter().for_each(|iter| {
let mut child_bindings = Bindings::default();
self.build_inner(&mut child_bindings, iter);
nested.push(child_bindings)
})
}
fn collect_nodes_ref<'a>(
&'a self,
id: usize,
len: usize,
nodes: &mut Vec<&'a Rc<BindingKind>>,
) {
self.nodes[id].iter().take(len).for_each(|it| match it {
LinkNode::Node(it) => nodes.push(it),
LinkNode::Parent { idx, len } => self.collect_nodes_ref(*idx, *len, nodes),
});
}
fn collect_nodes<'a>(
&'a self,
link_nodes: &'a [LinkNode<Rc<BindingKind>>],
nodes: &mut Vec<&'a Rc<BindingKind>>,
) {
link_nodes.iter().for_each(|it| match it {
LinkNode::Node(it) => nodes.push(it),
LinkNode::Parent { idx, len } => self.collect_nodes_ref(*idx, *len, nodes),
});
}
}
#[derive(Debug, Clone)]
struct MatchState<'t> {
/// The position of the "dot" in this matcher
dot: OpDelimitedIter<'t>,
/// Token subtree stack
/// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
/// that where the bottom of the stack is the outermost matcher.
stack: SmallVec<[OpDelimitedIter<'t>; 4]>,
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
/// before we enter the repetition.
up: Option<Box<MatchState<'t>>>,
/// The separator if we are in a repetition.
sep: Option<Separator>,
/// The KleeneOp of this sequence if we are in a repetition.
sep_kind: Option<RepeatKind>,
/// Number of tokens of seperator parsed
sep_parsed: Option<usize>,
/// Matched meta variables bindings
bindings: BindingsIdx,
/// Cached result of meta variable parsing
meta_result: Option<(TtIter<'t>, ExpandResult<Option<Fragment>>)>,
/// Is error occuried in this state, will `poised` to "parent"
is_error: bool,
}
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
///
/// For more info about the how this happens, see the module-level doc comments and the inline
/// comments of this function.
///
/// # Parameters
///
/// - `src`: the current token of the parser.
/// - `stack`: the "parent" frames of the token tree
/// - `res`: the match result to store errors
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
/// successful execution of this function.
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
/// the function `parse`.
/// - `eof_items`: the set of items that would be valid if this was the EOF.
/// - `bb_items`: the set of items that are waiting for the black-box parser.
/// - `error_items`: the set of items in errors, used for error-resilient parsing
fn match_loop_inner<'t>(
src: TtIter<'t>,
stack: &[TtIter<'t>],
res: &mut Match,
bindings_builder: &mut BindingsBuilder,
cur_items: &mut SmallVec<[MatchState<'t>; 1]>,
bb_items: &mut SmallVec<[MatchState<'t>; 1]>,
next_items: &mut Vec<MatchState<'t>>,
eof_items: &mut SmallVec<[MatchState<'t>; 1]>,
error_items: &mut SmallVec<[MatchState<'t>; 1]>,
) {
macro_rules! try_push {
($items: expr, $it:expr) => {
if $it.is_error {
error_items.push($it);
} else {
$items.push($it);
}
};
}
while let Some(mut item) = cur_items.pop() {
while item.dot.is_eof() {
match item.stack.pop() {
Some(frame) => {
item.dot = frame;
item.dot.next();
}
None => break,
}
}
let op = match item.dot.peek() {
None => {
// We are at or past the end of the matcher of `item`.
if item.up.is_some() {
if item.sep_parsed.is_none() {
// Get the `up` matcher
let mut new_pos = *item.up.clone().unwrap();
new_pos.bindings = bindings_builder.copy(&new_pos.bindings);
// Add matches from this repetition to the `matches` of `up`
bindings_builder.push_nested(&mut new_pos.bindings, &item.bindings);
// Move the "dot" past the repetition in `up`
new_pos.dot.next();
new_pos.is_error = new_pos.is_error || item.is_error;
cur_items.push(new_pos);
}
// Check if we need a separator.
// We check the separator one by one
let sep_idx = *item.sep_parsed.as_ref().unwrap_or(&0);
let sep_len = item.sep.as_ref().map_or(0, Separator::tt_count);
if item.sep.is_some() && sep_idx != sep_len {
let sep = item.sep.as_ref().unwrap();
if src.clone().expect_separator(sep, sep_idx) {
item.dot.next();
item.sep_parsed = Some(sep_idx + 1);
try_push!(next_items, item);
}
}
// We don't need a separator. Move the "dot" back to the beginning of the matcher
// and try to match again UNLESS we are only allowed to have _one_ repetition.
else if item.sep_kind != Some(RepeatKind::ZeroOrOne) {
item.dot = item.dot.reset();
item.sep_parsed = None;
bindings_builder.push_default(&mut item.bindings);
cur_items.push(item);
}
} else {
// If we are not in a repetition, then being at the end of a matcher means that we have
// reached the potential end of the input.
try_push!(eof_items, item);
}
continue;
}
Some(it) => it,
};
// We are in the middle of a matcher.
match op {
OpDelimited::Op(Op::Repeat { tokens, kind, separator }) => {
if matches!(kind, RepeatKind::ZeroOrMore | RepeatKind::ZeroOrOne) {
let mut new_item = item.clone();
new_item.bindings = bindings_builder.copy(&new_item.bindings);
new_item.dot.next();
let mut vars = Vec::new();
collect_vars(&mut vars, tokens);
for var in vars {
bindings_builder.push_empty(&mut new_item.bindings, &var);
}
cur_items.push(new_item);
}
cur_items.push(MatchState {
dot: tokens.iter_delimited(None),
stack: Default::default(),
up: Some(Box::new(item)),
sep: separator.clone(),
sep_kind: Some(*kind),
sep_parsed: None,
bindings: bindings_builder.alloc(),
meta_result: None,
is_error: false,
})
}
OpDelimited::Op(Op::Subtree { tokens, delimiter }) => {
if let Ok(subtree) = src.clone().expect_subtree() {
if subtree.delimiter_kind() == delimiter.map(|it| it.kind) {
item.stack.push(item.dot);
item.dot = tokens.iter_delimited(delimiter.as_ref());
cur_items.push(item);
}
}
}
OpDelimited::Op(Op::Var { kind, name, .. }) => {
if let Some(kind) = kind {
let mut fork = src.clone();
let match_res = match_meta_var(kind.as_str(), &mut fork);
match match_res.err {
None => {
// Some meta variables are optional (e.g. vis)
if match_res.value.is_some() {
item.meta_result = Some((fork, match_res));
try_push!(bb_items, item);
} else {
bindings_builder.push_optional(&mut item.bindings, name);
item.dot.next();
cur_items.push(item);
}
}
Some(err) => {
res.add_err(err);
if let Some(fragment) = match_res.value {
bindings_builder.push_fragment(&mut item.bindings, name, fragment);
}
item.is_error = true;
error_items.push(item);
}
}
}
}
OpDelimited::Op(Op::Leaf(leaf)) => {
if let Err(err) = match_leaf(leaf, &mut src.clone()) {
res.add_err(err);
item.is_error = true;
} else {
item.dot.next();
}
try_push!(next_items, item);
}
OpDelimited::Open => {
if matches!(src.clone().next(), Some(tt::TokenTree::Subtree(..))) {
item.dot.next();
try_push!(next_items, item);
}
}
OpDelimited::Close => {
let is_delim_closed = src.peek_n(0).is_none() && !stack.is_empty();
if is_delim_closed {
item.dot.next();
try_push!(next_items, item);
}
}
}
}
}
fn match_loop(pattern: &MetaTemplate, src: &tt::Subtree) -> Match {
let mut src = TtIter::new(src);
let mut stack: SmallVec<[TtIter; 1]> = SmallVec::new();
let mut res = Match::default();
let mut error_recover_item = None;
let mut bindings_builder = BindingsBuilder::default();
let mut cur_items = smallvec![MatchState {
dot: pattern.iter_delimited(None),
stack: Default::default(),
up: None,
sep: None,
sep_kind: None,
sep_parsed: None,
bindings: bindings_builder.alloc(),
is_error: false,
meta_result: None,
}];
let mut next_items = vec![];
loop {
let mut bb_items = SmallVec::new();
let mut eof_items = SmallVec::new();
let mut error_items = SmallVec::new();
stdx::always!(next_items.is_empty());
match_loop_inner(
src.clone(),
&stack,
&mut res,
&mut bindings_builder,
&mut cur_items,
&mut bb_items,
&mut next_items,
&mut eof_items,
&mut error_items,
);
stdx::always!(cur_items.is_empty());
if !error_items.is_empty() {
error_recover_item = error_items.pop().map(|it| it.bindings);
} else if !eof_items.is_empty() {
error_recover_item = Some(eof_items[0].bindings.clone());
}
// We need to do some post processing after the `match_loop_inner`.
// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
// either the parse is ambiguous (which should never happen) or there is a syntax error.
if src.peek_n(0).is_none() && stack.is_empty() {
if eof_items.len() == 1 {
// remove all errors, because it is the correct answer !
res = Match::default();
res.bindings = bindings_builder.build(&eof_items[0].bindings);
} else {
// Error recovery
if let Some(item) = error_recover_item {
res.bindings = bindings_builder.build(&item);
}
res.add_err(ExpandError::UnexpectedToken);
}
return res;
}
// If there are no possible next positions AND we aren't waiting for the black-box parser,
// then there is a syntax error.
//
// Another possibility is that we need to call out to parse some rust nonterminal
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
if (bb_items.is_empty() && next_items.is_empty())
|| (!bb_items.is_empty() && !next_items.is_empty())
|| bb_items.len() > 1
{
res.unmatched_tts += src.len();
while let Some(it) = stack.pop() {
src = it;
res.unmatched_tts += src.len();
}
res.add_err(err!("leftover tokens"));
if let Some(error_reover_item) = error_recover_item {
res.bindings = bindings_builder.build(&error_reover_item);
}
return res;
}
// Dump all possible `next_items` into `cur_items` for the next iteration.
else if !next_items.is_empty() {
// Now process the next token
cur_items.extend(next_items.drain(..));
match src.next() {
Some(tt::TokenTree::Subtree(subtree)) => {
stack.push(src.clone());
src = TtIter::new(subtree);
}
None if !stack.is_empty() => src = stack.pop().unwrap(),
_ => (),
}
}
// Finally, we have the case where we need to call the black-box parser to get some
// nonterminal.
else {
stdx::always!(bb_items.len() == 1);
let mut item = bb_items.pop().unwrap();
if let Some(OpDelimited::Op(Op::Var { name, .. })) = item.dot.peek() {
let (iter, match_res) = item.meta_result.take().unwrap();
match match_res.value {
Some(fragment) => {
bindings_builder.push_fragment(&mut item.bindings, name, fragment);
}
None if match_res.err.is_none() => {
bindings_builder.push_optional(&mut item.bindings, name);
}
_ => {}
}
if let Some(err) = match_res.err {
res.add_err(err);
}
src = iter.clone();
item.dot.next();
} else {
unreachable!()
}
cur_items.push(item);
}
stdx::always!(!cur_items.is_empty());
}
}
fn match_leaf(lhs: &tt::Leaf, src: &mut TtIter) -> Result<(), ExpandError> {
let rhs = match src.expect_leaf() {
Ok(l) => l,
Err(()) => {
return Err(err!("expected leaf: `{}`", lhs));
}
};
match (lhs, rhs) {
(
tt::Leaf::Punct(tt::Punct { char: lhs, .. }),
tt::Leaf::Punct(tt::Punct { char: rhs, .. }),
) if lhs == rhs => (),
(
tt::Leaf::Ident(tt::Ident { text: lhs, .. }),
tt::Leaf::Ident(tt::Ident { text: rhs, .. }),
) if lhs == rhs => (),
(
tt::Leaf::Literal(tt::Literal { text: lhs, .. }),
tt::Leaf::Literal(tt::Literal { text: rhs, .. }),
) if lhs == rhs => (),
_ => {
return Err(ExpandError::UnexpectedToken);
}
}
Ok(())
}
fn match_meta_var(kind: &str, input: &mut TtIter) -> ExpandResult<Option<Fragment>> {
let fragment = match kind {
"path" => Path,
"expr" => Expr,
"ty" => Type,
"pat" | "pat_param" => Pattern, // FIXME: edition2021
"stmt" => Statement,
"block" => Block,
"meta" => MetaItem,
"item" => Item,
_ => {
let tt_result = match kind {
"ident" => input
.expect_ident()
.map(|ident| Some(tt::Leaf::from(ident.clone()).into()))
.map_err(|()| err!("expected ident")),
"tt" => input.expect_tt().map(Some).map_err(|()| err!()),
"lifetime" => {
input.expect_lifetime().map(Some).map_err(|()| err!("expected lifetime"))
}
"literal" => {
let neg = input.eat_char('-');
input
.expect_literal()
.map(|literal| {
let lit = literal.clone();
match neg {
None => Some(lit.into()),
Some(neg) => Some(tt::TokenTree::Subtree(tt::Subtree {
delimiter: None,
token_trees: vec![neg, lit.into()],
})),
}
})
.map_err(|()| err!())
}
// `vis` is optional
"vis" => match input.eat_vis() {
Some(vis) => Ok(Some(vis)),
None => Ok(None),
},
_ => Err(ExpandError::UnexpectedToken),
};
return tt_result.map(|it| it.map(Fragment::Tokens)).into();
}
};
let result = input.expect_fragment(fragment);
result.map(|tt| if kind == "expr" { tt.map(Fragment::Ast) } else { tt.map(Fragment::Tokens) })
}
fn collect_vars(buf: &mut Vec<SmolStr>, pattern: &MetaTemplate) {
for op in pattern.iter() {
match op {
Op::Var { name, .. } => buf.push(name.clone()),
Op::Leaf(_) => (),
Op::Subtree { tokens, .. } => collect_vars(buf, tokens),
Op::Repeat { tokens, .. } => collect_vars(buf, tokens),
}
}
}
impl<'a> TtIter<'a> {
fn expect_separator(&mut self, separator: &Separator, idx: usize) -> bool {
let mut fork = self.clone();
let ok = match separator {
Separator::Ident(lhs) if idx == 0 => match fork.expect_ident_or_underscore() {
Ok(rhs) => rhs.text == lhs.text,
_ => false,
},
Separator::Literal(lhs) if idx == 0 => match fork.expect_literal() {
Ok(rhs) => match rhs {
tt::Leaf::Literal(rhs) => rhs.text == lhs.text,
tt::Leaf::Ident(rhs) => rhs.text == lhs.text,
tt::Leaf::Punct(_) => false,
},
_ => false,
},
Separator::Puncts(lhss) if idx < lhss.len() => match fork.expect_punct() {
Ok(rhs) => rhs.char == lhss[idx].char,
_ => false,
},
_ => false,
};
if ok {
*self = fork;
}
ok
}
fn expect_tt(&mut self) -> Result<tt::TokenTree, ()> {
match self.peek_n(0) {
Some(tt::TokenTree::Leaf(tt::Leaf::Punct(punct))) if punct.char == '\'' => {
return self.expect_lifetime();
}
_ => (),
}
let tt = self.next().ok_or(())?.clone();
let punct = match tt {
tt::TokenTree::Leaf(tt::Leaf::Punct(punct)) if punct.spacing == tt::Spacing::Joint => {
punct
}
_ => return Ok(tt),
};
let (second, third) = match (self.peek_n(0), self.peek_n(1)) {
(
Some(tt::TokenTree::Leaf(tt::Leaf::Punct(p2))),
Some(tt::TokenTree::Leaf(tt::Leaf::Punct(p3))),
) if p2.spacing == tt::Spacing::Joint => (p2.char, Some(p3.char)),
(Some(tt::TokenTree::Leaf(tt::Leaf::Punct(p2))), _) => (p2.char, None),
_ => return Ok(tt),
};
match (punct.char, second, third) {
('.', '.', Some('.'))
| ('.', '.', Some('='))
| ('<', '<', Some('='))
| ('>', '>', Some('=')) => {
let tt2 = self.next().unwrap().clone();
let tt3 = self.next().unwrap().clone();
Ok(tt::Subtree { delimiter: None, token_trees: vec![tt, tt2, tt3] }.into())
}
('-', '=', _)
| ('-', '>', _)
| (':', ':', _)
| ('!', '=', _)
| ('.', '.', _)
| ('*', '=', _)
| ('/', '=', _)
| ('&', '&', _)
| ('&', '=', _)
| ('%', '=', _)
| ('^', '=', _)
| ('+', '=', _)
| ('<', '<', _)
| ('<', '=', _)
| ('=', '=', _)
| ('=', '>', _)
| ('>', '=', _)
| ('>', '>', _)
| ('|', '=', _)
| ('|', '|', _) => {
let tt2 = self.next().unwrap().clone();
Ok(tt::Subtree { delimiter: None, token_trees: vec![tt, tt2] }.into())
}
_ => Ok(tt),
}
}
fn expect_lifetime(&mut self) -> Result<tt::TokenTree, ()> {
let punct = self.expect_punct()?;
if punct.char != '\'' {
return Err(());
}
let ident = self.expect_ident_or_underscore()?;
Ok(tt::Subtree {
delimiter: None,
token_trees: vec![
tt::Leaf::Punct(*punct).into(),
tt::Leaf::Ident(ident.clone()).into(),
],
}
.into())
}
fn eat_vis(&mut self) -> Option<tt::TokenTree> {
let mut fork = self.clone();
match fork.expect_fragment(Visibility) {
ExpandResult { value: tt, err: None } => {
*self = fork;
tt
}
ExpandResult { value: _, err: Some(_) } => None,
}
}
fn eat_char(&mut self, c: char) -> Option<tt::TokenTree> {
let mut fork = self.clone();
match fork.expect_char(c) {
Ok(_) => {
let tt = self.next().cloned();
*self = fork;
tt
}
Err(_) => None,
}
}
}
|