1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
//! Transcriber takes a template, like `fn $ident() {}`, a set of bindings like
//! `$ident => foo`, interpolates variables in the template, to get `fn foo() {}`
use syntax::SmolStr;
use super::ExpandResult;
use crate::{
mbe_expander::{Binding, Bindings, Fragment},
parser::{Op, RepeatKind, Separator},
ExpandError, MetaTemplate,
};
impl Bindings {
fn contains(&self, name: &str) -> bool {
self.inner.contains_key(name)
}
fn get(&self, name: &str, nesting: &mut [NestingState]) -> Result<&Fragment, ExpandError> {
let mut b = self.inner.get(name).ok_or_else(|| {
ExpandError::BindingError(format!("could not find binding `{}`", name))
})?;
for nesting_state in nesting.iter_mut() {
nesting_state.hit = true;
b = match b {
Binding::Fragment(_) => break,
Binding::Nested(bs) => bs.get(nesting_state.idx).ok_or_else(|| {
nesting_state.at_end = true;
ExpandError::BindingError(format!("could not find nested binding `{}`", name))
})?,
Binding::Empty => {
nesting_state.at_end = true;
return Err(ExpandError::BindingError(format!(
"could not find empty binding `{}`",
name
)));
}
};
}
match b {
Binding::Fragment(it) => Ok(it),
Binding::Nested(_) => Err(ExpandError::BindingError(format!(
"expected simple binding, found nested binding `{}`",
name
))),
Binding::Empty => Err(ExpandError::BindingError(format!(
"expected simple binding, found empty binding `{}`",
name
))),
}
}
}
pub(super) fn transcribe(
template: &MetaTemplate,
bindings: &Bindings,
) -> ExpandResult<tt::Subtree> {
assert!(template.delimiter == None);
let mut ctx = ExpandCtx { bindings: &bindings, nesting: Vec::new() };
let mut arena: Vec<tt::TokenTree> = Vec::new();
expand_subtree(&mut ctx, template, &mut arena)
}
#[derive(Debug)]
struct NestingState {
idx: usize,
/// `hit` is currently necessary to tell `expand_repeat` if it should stop
/// because there is no variable in use by the current repetition
hit: bool,
/// `at_end` is currently necessary to tell `expand_repeat` if it should stop
/// because there is no more value avaible for the current repetition
at_end: bool,
}
#[derive(Debug)]
struct ExpandCtx<'a> {
bindings: &'a Bindings,
nesting: Vec<NestingState>,
}
fn expand_subtree(
ctx: &mut ExpandCtx,
template: &MetaTemplate,
arena: &mut Vec<tt::TokenTree>,
) -> ExpandResult<tt::Subtree> {
// remember how many elements are in the arena now - when returning, we want to drain exactly how many elements we added. This way, the recursive uses of the arena get their own "view" of the arena, but will reuse the allocation
let start_elements = arena.len();
let mut err = None;
for op in template.iter() {
let op = match op {
Ok(op) => op,
Err(e) => {
err = Some(e.clone());
break;
}
};
match op {
Op::Leaf(tt) => arena.push(tt.clone().into()),
Op::Subtree(tt) => {
let ExpandResult { value: tt, err: e } = expand_subtree(ctx, &tt, arena);
err = err.or(e);
arena.push(tt.into());
}
Op::Var { name, id, .. } => {
let ExpandResult { value: fragment, err: e } = expand_var(ctx, &name, *id);
err = err.or(e);
push_fragment(arena, fragment);
}
Op::Repeat { subtree, kind, separator } => {
let ExpandResult { value: fragment, err: e } =
expand_repeat(ctx, subtree, *kind, separator, arena);
err = err.or(e);
push_fragment(arena, fragment)
}
}
}
// drain the elements added in this instance of expand_subtree
let tts = arena.drain(start_elements..arena.len()).collect();
ExpandResult { value: tt::Subtree { delimiter: template.delimiter, token_trees: tts }, err }
}
fn expand_var(ctx: &mut ExpandCtx, v: &SmolStr, id: tt::TokenId) -> ExpandResult<Fragment> {
// We already handle $crate case in mbe parser
debug_assert!(v != "crate");
if !ctx.bindings.contains(v) {
// Note that it is possible to have a `$var` inside a macro which is not bound.
// For example:
// ```
// macro_rules! foo {
// ($a:ident, $b:ident, $c:tt) => {
// macro_rules! bar {
// ($bi:ident) => {
// fn $bi() -> u8 {$c}
// }
// }
// }
// ```
// We just treat it a normal tokens
let tt = tt::Subtree {
delimiter: None,
token_trees: vec![
tt::Leaf::from(tt::Punct { char: '$', spacing: tt::Spacing::Alone, id }).into(),
tt::Leaf::from(tt::Ident { text: v.clone(), id }).into(),
],
}
.into();
ExpandResult::ok(Fragment::Tokens(tt))
} else {
ctx.bindings.get(&v, &mut ctx.nesting).map_or_else(
|e| ExpandResult { value: Fragment::Tokens(tt::TokenTree::empty()), err: Some(e) },
|b| ExpandResult::ok(b.clone()),
)
}
}
fn expand_repeat(
ctx: &mut ExpandCtx,
template: &MetaTemplate,
kind: RepeatKind,
separator: &Option<Separator>,
arena: &mut Vec<tt::TokenTree>,
) -> ExpandResult<Fragment> {
let mut buf: Vec<tt::TokenTree> = Vec::new();
ctx.nesting.push(NestingState { idx: 0, at_end: false, hit: false });
// Dirty hack to make macro-expansion terminate.
// This should be replaced by a proper macro-by-example implementation
let limit = 65536;
let mut has_seps = 0;
let mut counter = 0;
loop {
let ExpandResult { value: mut t, err: e } = expand_subtree(ctx, template, arena);
let nesting_state = ctx.nesting.last_mut().unwrap();
if nesting_state.at_end || !nesting_state.hit {
break;
}
nesting_state.idx += 1;
nesting_state.hit = false;
counter += 1;
if counter == limit {
log::warn!(
"expand_tt excced in repeat pattern exceed limit => {:#?}\n{:#?}",
template,
ctx
);
break;
}
if e.is_some() {
continue;
}
t.delimiter = None;
push_subtree(&mut buf, t);
if let Some(ref sep) = separator {
match sep {
Separator::Ident(ident) => {
has_seps = 1;
buf.push(tt::Leaf::from(ident.clone()).into());
}
Separator::Literal(lit) => {
has_seps = 1;
buf.push(tt::Leaf::from(lit.clone()).into());
}
Separator::Puncts(puncts) => {
has_seps = puncts.len();
for punct in puncts {
buf.push(tt::Leaf::from(*punct).into());
}
}
}
}
if RepeatKind::ZeroOrOne == kind {
break;
}
}
ctx.nesting.pop().unwrap();
for _ in 0..has_seps {
buf.pop();
}
// Check if it is a single token subtree without any delimiter
// e.g {Delimiter:None> ['>'] /Delimiter:None>}
let tt = tt::Subtree { delimiter: None, token_trees: buf }.into();
if RepeatKind::OneOrMore == kind && counter == 0 {
return ExpandResult {
value: Fragment::Tokens(tt),
err: Some(ExpandError::UnexpectedToken),
};
}
ExpandResult::ok(Fragment::Tokens(tt))
}
fn push_fragment(buf: &mut Vec<tt::TokenTree>, fragment: Fragment) {
match fragment {
Fragment::Tokens(tt::TokenTree::Subtree(tt)) => push_subtree(buf, tt),
Fragment::Tokens(tt) | Fragment::Ast(tt) => buf.push(tt),
}
}
fn push_subtree(buf: &mut Vec<tt::TokenTree>, tt: tt::Subtree) {
match tt.delimiter {
None => buf.extend(tt.token_trees),
_ => buf.push(tt.into()),
}
}
|