1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
use std::sync::Arc;
use ra_syntax::{
ast::{self, NameOwner},
SmolStr,
};
use relative_path::RelativePathBuf;
use rustc_hash::{FxHashMap, FxHashSet};
use crate::{
db,
descriptors::DescriptorDatabase,
input::{SourceRoot, SourceRootId},
Cancelable, FileId, FileResolverImp,
};
use super::{
LinkData, LinkId, ModuleData, ModuleId, ModuleSource, ModuleSourceNode,
ModuleTree, Problem,
};
#[derive(Clone, Hash, PartialEq, Eq, Debug)]
pub(crate) enum Submodule {
Declaration(SmolStr),
Definition(SmolStr, ModuleSource),
}
impl Submodule {
fn name(&self) -> &SmolStr {
match self {
Submodule::Declaration(name) => name,
Submodule::Definition(name, _) => name,
}
}
}
pub(crate) fn submodules(
db: &impl DescriptorDatabase,
source: ModuleSource,
) -> Cancelable<Arc<Vec<Submodule>>> {
db::check_canceled(db)?;
let file_id = source.file_id();
let submodules = match source.resolve(db) {
ModuleSourceNode::SourceFile(it) => collect_submodules(file_id, it.borrowed()),
ModuleSourceNode::Module(it) => it
.borrowed()
.item_list()
.map(|it| collect_submodules(file_id, it))
.unwrap_or_else(Vec::new),
};
return Ok(Arc::new(submodules));
fn collect_submodules<'a>(
file_id: FileId,
root: impl ast::ModuleItemOwner<'a>,
) -> Vec<Submodule> {
modules(root)
.map(|(name, m)| {
if m.has_semi() {
Submodule::Declaration(name)
} else {
let src = ModuleSource::new_inline(file_id, m);
Submodule::Definition(name, src)
}
})
.collect()
}
}
pub(crate) fn modules<'a>(
root: impl ast::ModuleItemOwner<'a>,
) -> impl Iterator<Item = (SmolStr, ast::Module<'a>)> {
root.items()
.filter_map(|item| match item {
ast::ModuleItem::Module(m) => Some(m),
_ => None,
})
.filter_map(|module| {
let name = module.name()?.text();
Some((name, module))
})
}
pub(crate) fn module_tree(
db: &impl DescriptorDatabase,
source_root: SourceRootId,
) -> Cancelable<Arc<ModuleTree>> {
db::check_canceled(db)?;
let res = create_module_tree(db, source_root)?;
Ok(Arc::new(res))
}
fn create_module_tree<'a>(
db: &impl DescriptorDatabase,
source_root: SourceRootId,
) -> Cancelable<ModuleTree> {
let mut tree = ModuleTree::default();
let mut roots = FxHashMap::default();
let mut visited = FxHashSet::default();
let source_root = db.source_root(source_root);
for &file_id in source_root.files.iter() {
let source = ModuleSource::SourceFile(file_id);
if visited.contains(&source) {
continue; // TODO: use explicit crate_roots here
}
assert!(!roots.contains_key(&file_id));
let module_id = build_subtree(
db,
&source_root,
&mut tree,
&mut visited,
&mut roots,
None,
source,
)?;
roots.insert(file_id, module_id);
}
Ok(tree)
}
fn build_subtree(
db: &impl DescriptorDatabase,
source_root: &SourceRoot,
tree: &mut ModuleTree,
visited: &mut FxHashSet<ModuleSource>,
roots: &mut FxHashMap<FileId, ModuleId>,
parent: Option<LinkId>,
source: ModuleSource,
) -> Cancelable<ModuleId> {
visited.insert(source);
let id = tree.push_mod(ModuleData {
source,
parent,
children: Vec::new(),
});
for sub in db._submodules(source)?.iter() {
let link = tree.push_link(LinkData {
name: sub.name().clone(),
owner: id,
points_to: Vec::new(),
problem: None,
});
let (points_to, problem) = match sub {
Submodule::Declaration(name) => {
let (points_to, problem) =
resolve_submodule(source, &name, &source_root.file_resolver);
let points_to = points_to
.into_iter()
.map(|file_id| match roots.remove(&file_id) {
Some(module_id) => {
tree.mods[module_id].parent = Some(link);
Ok(module_id)
}
None => build_subtree(
db,
source_root,
tree,
visited,
roots,
Some(link),
ModuleSource::SourceFile(file_id),
),
})
.collect::<Cancelable<Vec<_>>>()?;
(points_to, problem)
}
Submodule::Definition(_name, submodule_source) => {
let points_to = build_subtree(
db,
source_root,
tree,
visited,
roots,
Some(link),
*submodule_source,
)?;
(vec![points_to], None)
}
};
tree.links[link].points_to = points_to;
tree.links[link].problem = problem;
}
Ok(id)
}
fn resolve_submodule(
source: ModuleSource,
name: &SmolStr,
file_resolver: &FileResolverImp,
) -> (Vec<FileId>, Option<Problem>) {
let file_id = match source {
ModuleSource::SourceFile(it) => it,
ModuleSource::Module(..) => {
// TODO
return (Vec::new(), None);
}
};
let mod_name = file_resolver.file_stem(file_id);
let is_dir_owner = mod_name == "mod" || mod_name == "lib" || mod_name == "main";
let file_mod = RelativePathBuf::from(format!("../{}.rs", name));
let dir_mod = RelativePathBuf::from(format!("../{}/mod.rs", name));
let points_to: Vec<FileId>;
let problem: Option<Problem>;
if is_dir_owner {
points_to = [&file_mod, &dir_mod]
.iter()
.filter_map(|path| file_resolver.resolve(file_id, path))
.collect();
problem = if points_to.is_empty() {
Some(Problem::UnresolvedModule {
candidate: file_mod,
})
} else {
None
}
} else {
points_to = Vec::new();
problem = Some(Problem::NotDirOwner {
move_to: RelativePathBuf::from(format!("../{}/mod.rs", mod_name)),
candidate: file_mod,
});
}
(points_to, problem)
}
|