1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
use hir::db::HirDatabase;
use ra_text_edit::TextEditBuilder;
use ra_db::FileRange;
use ra_syntax::{
SourceFile, TextRange, AstNode, TextUnit, SyntaxNode, SyntaxElement, SyntaxToken,
algo::{find_token_at_offset, find_node_at_offset, find_covering_element, TokenAtOffset},
};
use ra_fmt::{leading_indent, reindent};
use crate::{AssistLabel, AssistAction, AssistId};
#[derive(Clone, Debug)]
pub(crate) enum Assist {
Unresolved(Vec<AssistLabel>),
Resolved(Vec<(AssistLabel, AssistAction)>),
}
/// `AssistCtx` allows to apply an assist or check if it could be applied.
///
/// Assists use a somewhat over-engineered approach, given the current needs. The
/// assists workflow consists of two phases. In the first phase, a user asks for
/// the list of available assists. In the second phase, the user picks a
/// particular assist and it gets applied.
///
/// There are two peculiarities here:
///
/// * first, we ideally avoid computing more things then necessary to answer
/// "is assist applicable" in the first phase.
/// * second, when we are applying assist, we don't have a guarantee that there
/// weren't any changes between the point when user asked for assists and when
/// they applied a particular assist. So, when applying assist, we need to do
/// all the checks from scratch.
///
/// To avoid repeating the same code twice for both "check" and "apply"
/// functions, we use an approach reminiscent of that of Django's function based
/// views dealing with forms. Each assist receives a runtime parameter,
/// `should_compute_edit`. It first check if an edit is applicable (potentially
/// computing info required to compute the actual edit). If it is applicable,
/// and `should_compute_edit` is `true`, it then computes the actual edit.
///
/// So, to implement the original assists workflow, we can first apply each edit
/// with `should_compute_edit = false`, and then applying the selected edit
/// again, with `should_compute_edit = true` this time.
///
/// Note, however, that we don't actually use such two-phase logic at the
/// moment, because the LSP API is pretty awkward in this place, and it's much
/// easier to just compute the edit eagerly :-)#[derive(Debug, Clone)]
#[derive(Debug)]
pub(crate) struct AssistCtx<'a, DB> {
pub(crate) db: &'a DB,
pub(crate) frange: FileRange,
source_file: &'a SourceFile,
should_compute_edit: bool,
assist: Assist,
}
impl<'a, DB> Clone for AssistCtx<'a, DB> {
fn clone(&self) -> Self {
AssistCtx {
db: self.db,
frange: self.frange,
source_file: self.source_file,
should_compute_edit: self.should_compute_edit,
assist: self.assist.clone(),
}
}
}
impl<'a, DB: HirDatabase> AssistCtx<'a, DB> {
pub(crate) fn with_ctx<F, T>(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T
where
F: FnOnce(AssistCtx<DB>) -> T,
{
let source_file = &db.parse(frange.file_id);
let assist =
if should_compute_edit { Assist::Resolved(vec![]) } else { Assist::Unresolved(vec![]) };
let ctx = AssistCtx { db, frange, source_file, should_compute_edit, assist };
f(ctx)
}
pub(crate) fn add_action(
&mut self,
id: AssistId,
label: impl Into<String>,
f: impl FnOnce(&mut AssistBuilder),
) -> &mut Self {
let label = AssistLabel { label: label.into(), id };
match &mut self.assist {
Assist::Unresolved(labels) => labels.push(label),
Assist::Resolved(labels_actions) => {
let action = {
let mut edit = AssistBuilder::default();
f(&mut edit);
edit.build()
};
labels_actions.push((label, action));
}
}
self
}
pub(crate) fn build(self) -> Option<Assist> {
Some(self.assist)
}
pub(crate) fn token_at_offset(&self) -> TokenAtOffset<SyntaxToken<'a>> {
find_token_at_offset(self.source_file.syntax(), self.frange.range.start())
}
pub(crate) fn node_at_offset<N: AstNode>(&self) -> Option<&'a N> {
find_node_at_offset(self.source_file.syntax(), self.frange.range.start())
}
pub(crate) fn covering_element(&self) -> SyntaxElement<'a> {
find_covering_element(self.source_file.syntax(), self.frange.range)
}
pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement<'a> {
find_covering_element(self.source_file.syntax(), range)
}
}
#[derive(Default)]
pub(crate) struct AssistBuilder {
edit: TextEditBuilder,
cursor_position: Option<TextUnit>,
target: Option<TextRange>,
}
impl AssistBuilder {
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
self.edit.replace(range, replace_with.into())
}
pub(crate) fn replace_node_and_indent(
&mut self,
node: &SyntaxNode,
replace_with: impl Into<String>,
) {
let mut replace_with = replace_with.into();
if let Some(indent) = leading_indent(node) {
replace_with = reindent(&replace_with, indent)
}
self.replace(node.range(), replace_with)
}
#[allow(unused)]
pub(crate) fn delete(&mut self, range: TextRange) {
self.edit.delete(range)
}
pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into<String>) {
self.edit.insert(offset, text.into())
}
pub(crate) fn set_cursor(&mut self, offset: TextUnit) {
self.cursor_position = Some(offset)
}
pub(crate) fn target(&mut self, target: TextRange) {
self.target = Some(target)
}
fn build(self) -> AssistAction {
AssistAction {
edit: self.edit.finish(),
cursor_position: self.cursor_position,
target: self.target,
}
}
}
|