aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_assists/src/handlers/add_explicit_type.rs
blob: a63ef48b1d060505d3782f2a2a551aa6ce2f93c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use hir::HirDisplay;
use ra_syntax::{
    ast::{self, AstNode, LetStmt, NameOwner, TypeAscriptionOwner},
    TextRange,
};

use crate::{Assist, AssistCtx, AssistId};

// Assist: add_explicit_type
//
// Specify type for a let binding.
//
// ```
// fn main() {
//     let x<|> = 92;
// }
// ```
// ->
// ```
// fn main() {
//     let x: i32 = 92;
// }
// ```
pub(crate) fn add_explicit_type(ctx: AssistCtx) -> Option<Assist> {
    let stmt = ctx.find_node_at_offset::<LetStmt>()?;
    let expr = stmt.initializer()?;
    let pat = stmt.pat()?;
    // Must be a binding
    let pat = match pat {
        ast::Pat::BindPat(bind_pat) => bind_pat,
        _ => return None,
    };
    let pat_range = pat.syntax().text_range();
    // The binding must have a name
    let name = pat.name()?;
    let name_range = name.syntax().text_range();
    let stmt_range = stmt.syntax().text_range();
    let eq_range = stmt.eq_token()?.text_range();
    // Assist should only be applicable if cursor is between 'let' and '='
    let let_range = TextRange::from_to(stmt_range.start(), eq_range.start());
    let cursor_in_range = ctx.frange.range.is_subrange(&let_range);
    if !cursor_in_range {
        return None;
    }
    // Assist not applicable if the type has already been specified
    // and it has no placeholders
    let ascribed_ty = stmt.ascribed_type();
    if let Some(ref ty) = ascribed_ty {
        if ty.syntax().descendants().find_map(ast::PlaceholderType::cast).is_none() {
            return None;
        }
    }
    // Infer type
    let ty = ctx.sema.type_of_expr(&expr)?;
    // Assist not applicable if the type is unknown
    if ty.contains_unknown() {
        return None;
    }

    let db = ctx.db;
    ctx.add_assist(
        AssistId("add_explicit_type"),
        format!("Insert explicit type '{}'", ty.display(db)),
        |edit| {
            edit.target(pat_range);
            if let Some(ascribed_ty) = ascribed_ty {
                edit.replace(ascribed_ty.syntax().text_range(), format!("{}", ty.display(db)));
            } else {
                edit.insert(name_range.end(), format!(": {}", ty.display(db)));
            }
        },
    )
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::helpers::{check_assist, check_assist_not_applicable, check_assist_target};

    #[test]
    fn add_explicit_type_target() {
        check_assist_target(add_explicit_type, "fn f() { let a<|> = 1; }", "a");
    }

    #[test]
    fn add_explicit_type_works_for_simple_expr() {
        check_assist(
            add_explicit_type,
            "fn f() { let a<|> = 1; }",
            "fn f() { let a<|>: i32 = 1; }",
        );
    }

    #[test]
    fn add_explicit_type_works_for_underscore() {
        check_assist(
            add_explicit_type,
            "fn f() { let a<|>: _ = 1; }",
            "fn f() { let a<|>: i32 = 1; }",
        );
    }

    #[test]
    fn add_explicit_type_works_for_nested_underscore() {
        check_assist(
            add_explicit_type,
            r#"
            enum Option<T> {
                Some(T),
                None
            }

            fn f() {
                let a<|>: Option<_> = Option::Some(1);
            }"#,
            r#"
            enum Option<T> {
                Some(T),
                None
            }

            fn f() {
                let a<|>: Option<i32> = Option::Some(1);
            }"#,
        );
    }

    #[test]
    fn add_explicit_type_works_for_macro_call() {
        check_assist(
            add_explicit_type,
            "macro_rules! v { () => {0u64} } fn f() { let a<|> = v!(); }",
            "macro_rules! v { () => {0u64} } fn f() { let a<|>: u64 = v!(); }",
        );
    }

    #[test]
    fn add_explicit_type_works_for_macro_call_recursive() {
        check_assist(
            add_explicit_type,
            "macro_rules! u { () => {0u64} } macro_rules! v { () => {u!()} } fn f() { let a<|> = v!(); }",
            "macro_rules! u { () => {0u64} } macro_rules! v { () => {u!()} } fn f() { let a<|>: u64 = v!(); }",
        );
    }

    #[test]
    fn add_explicit_type_not_applicable_if_ty_not_inferred() {
        check_assist_not_applicable(add_explicit_type, "fn f() { let a<|> = None; }");
    }

    #[test]
    fn add_explicit_type_not_applicable_if_ty_already_specified() {
        check_assist_not_applicable(add_explicit_type, "fn f() { let a<|>: i32 = 1; }");
    }

    #[test]
    fn add_explicit_type_not_applicable_if_specified_ty_is_tuple() {
        check_assist_not_applicable(add_explicit_type, "fn f() { let a<|>: (i32, i32) = (3, 4); }");
    }

    #[test]
    fn add_explicit_type_not_applicable_if_cursor_after_equals() {
        check_assist_not_applicable(
            add_explicit_type,
            "fn f() {let a =<|> match 1 {2 => 3, 3 => 5};}",
        )
    }

    #[test]
    fn add_explicit_type_not_applicable_if_cursor_before_let() {
        check_assist_not_applicable(
            add_explicit_type,
            "fn f() <|>{let a = match 1 {2 => 3, 3 => 5};}",
        )
    }
}