1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
pub(super) mod imp;
pub(super) mod nameres;
use ra_syntax::{
algo::generate,
ast::{self, AstNode, NameOwner},
SyntaxNode,
};
use ra_arena::{Arena, RawId, impl_arena_id};
use relative_path::RelativePathBuf;
use crate::{Name, HirDatabase, SourceItemId, SourceFileItemId, HirFileId};
pub use self::nameres::{ModuleScope, Resolution, Namespace, PerNs};
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ModuleId(RawId);
impl_arena_id!(ModuleId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct LinkId(RawId);
impl_arena_id!(LinkId);
/// Physically, rust source is organized as a set of files, but logically it is
/// organized as a tree of modules. Usually, a single file corresponds to a
/// single module, but it is not nessary the case.
///
/// Module encapsulate the logic of transitioning from the fuzzy world of files
/// (which can have multiple parents) to the precise world of modules (which
/// always have one parent).
#[derive(Default, Debug, PartialEq, Eq)]
pub struct ModuleTree {
mods: Arena<ModuleId, ModuleData>,
links: Arena<LinkId, LinkData>,
}
impl ModuleTree {
pub(crate) fn modules<'a>(&'a self) -> impl Iterator<Item = ModuleId> + 'a {
self.mods.iter().map(|(id, _)| id)
}
pub(crate) fn modules_with_sources<'a>(
&'a self,
) -> impl Iterator<Item = (ModuleId, ModuleSource)> + 'a {
self.mods.iter().map(|(id, m)| (id, m.source))
}
}
/// `ModuleSource` is the syntax tree element that produced this module:
/// either a file, or an inlinde module.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ModuleSource(pub(crate) SourceItemId);
/// An owned syntax node for a module. Unlike `ModuleSource`,
/// this holds onto the AST for the whole file.
pub(crate) enum ModuleSourceNode {
SourceFile(ast::SourceFileNode),
Module(ast::ModuleNode),
}
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub enum Problem {
UnresolvedModule {
candidate: RelativePathBuf,
},
NotDirOwner {
move_to: RelativePathBuf,
candidate: RelativePathBuf,
},
}
impl ModuleId {
pub(crate) fn source(self, tree: &ModuleTree) -> ModuleSource {
tree.mods[self].source
}
pub(crate) fn parent_link(self, tree: &ModuleTree) -> Option<LinkId> {
tree.mods[self].parent
}
pub(crate) fn parent(self, tree: &ModuleTree) -> Option<ModuleId> {
let link = self.parent_link(tree)?;
Some(tree.links[link].owner)
}
pub(crate) fn crate_root(self, tree: &ModuleTree) -> ModuleId {
generate(Some(self), move |it| it.parent(tree))
.last()
.unwrap()
}
pub(crate) fn child(self, tree: &ModuleTree, name: &Name) -> Option<ModuleId> {
let link = tree.mods[self]
.children
.iter()
.map(|&it| &tree.links[it])
.find(|it| it.name == *name)?;
Some(*link.points_to.first()?)
}
fn children<'a>(self, tree: &'a ModuleTree) -> impl Iterator<Item = (Name, ModuleId)> + 'a {
tree.mods[self].children.iter().filter_map(move |&it| {
let link = &tree.links[it];
let module = *link.points_to.first()?;
Some((link.name.clone(), module))
})
}
pub(crate) fn problems(
self,
tree: &ModuleTree,
db: &impl HirDatabase,
) -> Vec<(SyntaxNode, Problem)> {
tree.mods[self]
.children
.iter()
.filter_map(|&it| {
let p = tree.links[it].problem.clone()?;
let s = it.bind_source(tree, db);
let s = s.borrowed().name().unwrap().syntax().owned();
Some((s, p))
})
.collect()
}
}
impl LinkId {
pub(crate) fn owner(self, tree: &ModuleTree) -> ModuleId {
tree.links[self].owner
}
pub(crate) fn name(self, tree: &ModuleTree) -> &Name {
&tree.links[self].name
}
pub(crate) fn bind_source<'a>(
self,
tree: &ModuleTree,
db: &impl HirDatabase,
) -> ast::ModuleNode {
let owner = self.owner(tree);
match owner.source(tree).resolve(db) {
ModuleSourceNode::SourceFile(root) => {
let ast = imp::modules(root.borrowed())
.find(|(name, _)| name == &tree.links[self].name)
.unwrap()
.1;
ast.owned()
}
ModuleSourceNode::Module(it) => it,
}
}
}
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct ModuleData {
source: ModuleSource,
parent: Option<LinkId>,
children: Vec<LinkId>,
}
impl ModuleSource {
// precondition: item_id **must** point to module
fn new(file_id: HirFileId, item_id: Option<SourceFileItemId>) -> ModuleSource {
let source_item_id = SourceItemId { file_id, item_id };
ModuleSource(source_item_id)
}
pub(crate) fn new_file(file_id: HirFileId) -> ModuleSource {
ModuleSource::new(file_id, None)
}
pub(crate) fn new_inline(
db: &impl HirDatabase,
file_id: HirFileId,
m: ast::Module,
) -> ModuleSource {
assert!(!m.has_semi());
let file_items = db.file_items(file_id);
let item_id = file_items.id_of(file_id, m.syntax());
ModuleSource::new(file_id, Some(item_id))
}
pub(crate) fn file_id(self) -> HirFileId {
self.0.file_id
}
pub(crate) fn resolve(self, db: &impl HirDatabase) -> ModuleSourceNode {
let syntax_node = db.file_item(self.0);
let syntax_node = syntax_node.borrowed();
if let Some(file) = ast::SourceFile::cast(syntax_node) {
return ModuleSourceNode::SourceFile(file.owned());
}
let module = ast::Module::cast(syntax_node).unwrap();
ModuleSourceNode::Module(module.owned())
}
}
#[derive(Hash, Debug, PartialEq, Eq)]
struct LinkData {
owner: ModuleId,
name: Name,
points_to: Vec<ModuleId>,
problem: Option<Problem>,
}
impl ModuleTree {
fn push_mod(&mut self, data: ModuleData) -> ModuleId {
self.mods.alloc(data)
}
fn push_link(&mut self, data: LinkData) -> LinkId {
let owner = data.owner;
let id = self.links.alloc(data);
self.mods[owner].children.push(id);
id
}
}
|