1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
use std::sync::Arc;
use arrayvec::ArrayVec;
use relative_path::RelativePathBuf;
use ra_db::{FileId, SourceRoot};
use ra_syntax::{
SyntaxNode, TreeArc,
algo::generate,
ast::{self, AstNode, NameOwner},
};
use ra_arena::{Arena, RawId, impl_arena_id};
use test_utils::tested_by;
use crate::{
Name, AsName, HirDatabase, SourceItemId, HirFileId, Problem, SourceFileItems, ModuleSource,
PersistentHirDatabase,
Crate,
ids::SourceFileItemId,
};
impl ModuleSource {
pub(crate) fn new(
db: &impl PersistentHirDatabase,
file_id: HirFileId,
decl_id: Option<SourceFileItemId>,
) -> ModuleSource {
match decl_id {
Some(item_id) => {
let module = db.file_item(SourceItemId { file_id, item_id });
let module = ast::Module::cast(&*module).unwrap();
assert!(module.item_list().is_some(), "expected inline module");
ModuleSource::Module(module.to_owned())
}
None => {
let source_file = db.hir_parse(file_id);
ModuleSource::SourceFile(source_file)
}
}
}
}
#[derive(Clone, Hash, PartialEq, Eq, Debug)]
pub struct Submodule {
name: Name,
is_declaration: bool,
decl_id: SourceFileItemId,
}
impl Submodule {
pub(crate) fn submodules_query(
db: &impl PersistentHirDatabase,
file_id: HirFileId,
decl_id: Option<SourceFileItemId>,
) -> Arc<Vec<Submodule>> {
db.check_canceled();
let file_items = db.file_items(file_id);
let module_source = ModuleSource::new(db, file_id, decl_id);
let submodules = match module_source {
ModuleSource::SourceFile(source_file) => {
collect_submodules(file_id, &file_items, &*source_file)
}
ModuleSource::Module(module) => {
collect_submodules(file_id, &file_items, module.item_list().unwrap())
}
};
return Arc::new(submodules);
fn collect_submodules(
file_id: HirFileId,
file_items: &SourceFileItems,
root: &impl ast::ModuleItemOwner,
) -> Vec<Submodule> {
root.items()
.filter_map(|item| match item.kind() {
ast::ModuleItemKind::Module(m) => Some(m),
_ => None,
})
.filter_map(|module| {
let name = module.name()?.as_name();
if !module.has_semi() && module.item_list().is_none() {
tested_by!(name_res_works_for_broken_modules);
return None;
}
let sub = Submodule {
name,
is_declaration: module.has_semi(),
decl_id: file_items.id_of(file_id, module.syntax()),
};
Some(sub)
})
.collect()
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ModuleId(RawId);
impl_arena_id!(ModuleId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct LinkId(RawId);
impl_arena_id!(LinkId);
/// Physically, rust source is organized as a set of files, but logically it is
/// organized as a tree of modules. Usually, a single file corresponds to a
/// single module, but it is not neccessarily always the case.
///
/// `ModuleTree` encapsulates the logic of transitioning from the fuzzy world of files
/// (which can have multiple parents) to the precise world of modules (which
/// always have one parent).
#[derive(Default, Debug, PartialEq, Eq)]
pub struct ModuleTree {
mods: Arena<ModuleId, ModuleData>,
links: Arena<LinkId, LinkData>,
}
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct ModuleData {
file_id: HirFileId,
/// Points to `ast::Module`, `None` for the whole file.
decl_id: Option<SourceFileItemId>,
parent: Option<LinkId>,
children: Vec<LinkId>,
}
#[derive(Hash, Debug, PartialEq, Eq)]
struct LinkData {
source: SourceItemId,
owner: ModuleId,
name: Name,
points_to: Vec<ModuleId>,
problem: Option<Problem>,
}
impl ModuleTree {
pub(crate) fn module_tree_query(
db: &impl PersistentHirDatabase,
krate: Crate,
) -> Arc<ModuleTree> {
db.check_canceled();
let mut res = ModuleTree::default();
res.init_crate(db, krate);
Arc::new(res)
}
pub(crate) fn modules<'a>(&'a self) -> impl Iterator<Item = ModuleId> + 'a {
self.mods.iter().map(|(id, _)| id)
}
pub(crate) fn find_module_by_source(
&self,
file_id: HirFileId,
decl_id: Option<SourceFileItemId>,
) -> Option<ModuleId> {
let (res, _) =
self.mods.iter().find(|(_, m)| (m.file_id, m.decl_id) == (file_id, decl_id))?;
Some(res)
}
fn init_crate(&mut self, db: &impl PersistentHirDatabase, krate: Crate) {
let crate_graph = db.crate_graph();
let file_id = crate_graph.crate_root(krate.crate_id);
let source_root_id = db.file_source_root(file_id);
let source_root = db.source_root(source_root_id);
self.init_subtree(db, &source_root, None, file_id.into(), None);
}
fn init_subtree(
&mut self,
db: &impl PersistentHirDatabase,
source_root: &SourceRoot,
parent: Option<LinkId>,
file_id: HirFileId,
decl_id: Option<SourceFileItemId>,
) -> ModuleId {
let is_root = parent.is_none();
let id = self.alloc_mod(ModuleData { file_id, decl_id, parent, children: Vec::new() });
for sub in db.submodules(file_id, decl_id).iter() {
let link = self.alloc_link(LinkData {
source: SourceItemId { file_id, item_id: sub.decl_id },
name: sub.name.clone(),
owner: id,
points_to: Vec::new(),
problem: None,
});
let (points_to, problem) = if sub.is_declaration {
let (points_to, problem) = resolve_submodule(db, file_id, &sub.name, is_root);
let points_to = points_to
.into_iter()
.map(|file_id| {
self.init_subtree(db, source_root, Some(link), file_id.into(), None)
})
.collect::<Vec<_>>();
(points_to, problem)
} else {
let points_to =
self.init_subtree(db, source_root, Some(link), file_id, Some(sub.decl_id));
(vec![points_to], None)
};
self.links[link].points_to = points_to;
self.links[link].problem = problem;
}
id
}
fn alloc_mod(&mut self, data: ModuleData) -> ModuleId {
self.mods.alloc(data)
}
fn alloc_link(&mut self, data: LinkData) -> LinkId {
let owner = data.owner;
let id = self.links.alloc(data);
self.mods[owner].children.push(id);
id
}
}
impl ModuleId {
pub(crate) fn file_id(self, tree: &ModuleTree) -> HirFileId {
tree.mods[self].file_id
}
pub(crate) fn decl_id(self, tree: &ModuleTree) -> Option<SourceFileItemId> {
tree.mods[self].decl_id
}
pub(crate) fn parent_link(self, tree: &ModuleTree) -> Option<LinkId> {
tree.mods[self].parent
}
pub(crate) fn parent(self, tree: &ModuleTree) -> Option<ModuleId> {
let link = self.parent_link(tree)?;
Some(tree.links[link].owner)
}
pub(crate) fn crate_root(self, tree: &ModuleTree) -> ModuleId {
generate(Some(self), move |it| it.parent(tree)).last().unwrap()
}
pub(crate) fn child(self, tree: &ModuleTree, name: &Name) -> Option<ModuleId> {
let link = tree.mods[self]
.children
.iter()
.map(|&it| &tree.links[it])
.find(|it| it.name == *name)?;
Some(*link.points_to.first()?)
}
pub(crate) fn children<'a>(
self,
tree: &'a ModuleTree,
) -> impl Iterator<Item = (Name, ModuleId)> + 'a {
tree.mods[self].children.iter().filter_map(move |&it| {
let link = &tree.links[it];
let module = *link.points_to.first()?;
Some((link.name.clone(), module))
})
}
pub(crate) fn problems(
self,
tree: &ModuleTree,
db: &impl HirDatabase,
) -> Vec<(TreeArc<SyntaxNode>, Problem)> {
tree.mods[self]
.children
.iter()
.filter_map(|&link| {
let p = tree.links[link].problem.clone()?;
let s = link.source(tree, db);
let s = s.name().unwrap().syntax().to_owned();
Some((s, p))
})
.collect()
}
}
impl LinkId {
pub(crate) fn owner(self, tree: &ModuleTree) -> ModuleId {
tree.links[self].owner
}
pub(crate) fn name(self, tree: &ModuleTree) -> &Name {
&tree.links[self].name
}
pub(crate) fn source(
self,
tree: &ModuleTree,
db: &impl PersistentHirDatabase,
) -> TreeArc<ast::Module> {
let syntax_node = db.file_item(tree.links[self].source);
ast::Module::cast(&syntax_node).unwrap().to_owned()
}
}
fn resolve_submodule(
db: &impl PersistentHirDatabase,
file_id: HirFileId,
name: &Name,
is_root: bool,
) -> (Vec<FileId>, Option<Problem>) {
// FIXME: handle submodules of inline modules properly
let file_id = file_id.original_file(db);
let source_root_id = db.file_source_root(file_id);
let path = db.file_relative_path(file_id);
let root = RelativePathBuf::default();
let dir_path = path.parent().unwrap_or(&root);
let mod_name = path.file_stem().unwrap_or("unknown");
let is_dir_owner = is_root || mod_name == "mod";
let file_mod = dir_path.join(format!("{}.rs", name));
let dir_mod = dir_path.join(format!("{}/mod.rs", name));
let file_dir_mod = dir_path.join(format!("{}/{}.rs", mod_name, name));
let mut candidates = ArrayVec::<[_; 2]>::new();
if is_dir_owner {
candidates.push(file_mod.clone());
candidates.push(dir_mod);
} else {
candidates.push(file_dir_mod.clone());
};
let sr = db.source_root(source_root_id);
let points_to = candidates
.into_iter()
.filter_map(|path| sr.files.get(&path))
.map(|&it| it)
.collect::<Vec<_>>();
let problem = if points_to.is_empty() {
Some(Problem::UnresolvedModule {
candidate: if is_dir_owner { file_mod } else { file_dir_mod },
})
} else {
None
};
(points_to, problem)
}
|