1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
//! Name resolution algorithm. The end result of the algorithm is an `ItemMap`:
//! a map which maps each module to its scope: the set of items visible in the
//! module. That is, we only resolve imports here, name resolution of item
//! bodies will be done in a separate step.
//!
//! Like Rustc, we use an interactive per-crate algorithm: we start with scopes
//! containing only directly defined items, and then iteratively resolve
//! imports.
//!
//! To make this work nicely in the IDE scenario, we place `InputModuleItems`
//! in between raw syntax and name resolution. `InputModuleItems` are computed
//! using only the module's syntax, and it is all directly defined items plus
//! imports. The plan is to make `InputModuleItems` independent of local
//! modifications (that is, typing inside a function should not change IMIs),
//! so that the results of name resolution can be preserved unless the module
//! structure itself is modified.
pub(crate) mod lower;
use crate::nameres::lower::*;
use std::sync::Arc;
use rustc_hash::{FxHashMap, FxHashSet};
use ra_syntax::SyntaxKind::*;
use ra_db::SourceRootId;
use crate::{
DefId, DefLoc, DefKind,
Path, PathKind,
HirDatabase, Crate,
Name,
module_tree::{ModuleId, ModuleTree},
};
/// `ItemMap` is the result of name resolution. It contains, for each
/// module, the set of visible items.
// FIXME: currenty we compute item map per source-root. We should do it per crate instead.
#[derive(Default, Debug, PartialEq, Eq)]
pub struct ItemMap {
pub per_module: FxHashMap<ModuleId, ModuleScope>,
}
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct ModuleScope {
items: FxHashMap<Name, Resolution>,
}
impl ModuleScope {
pub fn entries<'a>(&'a self) -> impl Iterator<Item = (&'a Name, &'a Resolution)> + 'a {
self.items.iter()
}
pub fn get(&self, name: &Name) -> Option<&Resolution> {
self.items.get(name)
}
}
/// `Resolution` is basically `DefId` atm, but it should account for stuff like
/// multiple namespaces, ambiguity and errors.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Resolution {
/// None for unresolved
pub def_id: PerNs<DefId>,
/// ident by which this is imported into local scope.
pub import: Option<ImportId>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Namespace {
Types,
Values,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct PerNs<T> {
pub types: Option<T>,
pub values: Option<T>,
}
impl<T> PerNs<T> {
pub fn none() -> PerNs<T> {
PerNs {
types: None,
values: None,
}
}
pub fn values(t: T) -> PerNs<T> {
PerNs {
types: None,
values: Some(t),
}
}
pub fn types(t: T) -> PerNs<T> {
PerNs {
types: Some(t),
values: None,
}
}
pub fn both(types: T, values: T) -> PerNs<T> {
PerNs {
types: Some(types),
values: Some(values),
}
}
pub fn is_none(&self) -> bool {
self.types.is_none() && self.values.is_none()
}
pub fn take(self, namespace: Namespace) -> Option<T> {
match namespace {
Namespace::Types => self.types,
Namespace::Values => self.values,
}
}
pub fn take_types(self) -> Option<T> {
self.take(Namespace::Types)
}
pub fn take_values(self) -> Option<T> {
self.take(Namespace::Values)
}
pub fn get(&self, namespace: Namespace) -> Option<&T> {
self.as_ref().take(namespace)
}
pub fn as_ref(&self) -> PerNs<&T> {
PerNs {
types: self.types.as_ref(),
values: self.values.as_ref(),
}
}
pub fn and_then<U>(self, f: impl Fn(T) -> Option<U>) -> PerNs<U> {
PerNs {
types: self.types.and_then(&f),
values: self.values.and_then(&f),
}
}
pub fn map<U>(self, f: impl Fn(T) -> U) -> PerNs<U> {
PerNs {
types: self.types.map(&f),
values: self.values.map(&f),
}
}
}
pub(crate) struct Resolver<'a, DB> {
db: &'a DB,
input: &'a FxHashMap<ModuleId, Arc<LoweredModule>>,
source_root: SourceRootId,
module_tree: Arc<ModuleTree>,
processed_imports: FxHashSet<(ModuleId, ImportId)>,
result: ItemMap,
}
impl<'a, DB> Resolver<'a, DB>
where
DB: HirDatabase,
{
pub(crate) fn new(
db: &'a DB,
input: &'a FxHashMap<ModuleId, Arc<LoweredModule>>,
source_root: SourceRootId,
module_tree: Arc<ModuleTree>,
) -> Resolver<'a, DB> {
Resolver {
db,
input,
source_root,
module_tree,
processed_imports: FxHashSet::default(),
result: ItemMap::default(),
}
}
pub(crate) fn resolve(mut self) -> ItemMap {
for (&module_id, items) in self.input.iter() {
self.populate_module(module_id, Arc::clone(items));
}
loop {
let processed_imports_count = self.processed_imports.len();
for &module_id in self.input.keys() {
self.db.check_canceled();
self.resolve_imports(module_id);
}
if processed_imports_count == self.processed_imports.len() {
// no new imports resolved
break;
}
}
self.result
}
fn populate_module(&mut self, module_id: ModuleId, input: Arc<LoweredModule>) {
let mut module_items = ModuleScope::default();
// Populate extern crates prelude
{
let root_id = module_id.crate_root(&self.module_tree);
let file_id = root_id.source(&self.module_tree).file_id;
let crate_graph = self.db.crate_graph();
if let Some(crate_id) = crate_graph.crate_id_for_crate_root(file_id.as_original_file())
{
let krate = Crate::new(crate_id);
for dep in krate.dependencies(self.db) {
if let Some(module) = dep.krate.root_module(self.db) {
let def_id = module.def_id;
self.add_module_item(
&mut module_items,
dep.name.clone(),
PerNs::types(def_id),
);
}
}
};
}
for (import_id, import_data) in input.imports.iter() {
if let Some(segment) = import_data.path.segments.iter().last() {
if !import_data.is_glob {
module_items.items.insert(
segment.name.clone(),
Resolution {
def_id: PerNs::none(),
import: Some(import_id),
},
);
}
}
}
// Populate explicitly declared items, except modules
for item in input.items.iter() {
if item.kind == MODULE {
continue;
}
// depending on the item kind, the location can define something in
// the values namespace, the types namespace, or both
let kind = DefKind::for_syntax_kind(item.kind);
let def_id = kind.map(|k| {
let def_loc = DefLoc {
kind: k,
source_root_id: self.source_root,
module_id,
source_item_id: item.id,
};
def_loc.id(self.db)
});
let resolution = Resolution {
def_id,
import: None,
};
module_items.items.insert(item.name.clone(), resolution);
}
// Populate modules
for (name, module_id) in module_id.children(&self.module_tree) {
let def_loc = DefLoc {
kind: DefKind::Module,
source_root_id: self.source_root,
module_id,
source_item_id: module_id.source(&self.module_tree),
};
let def_id = def_loc.id(self.db);
self.add_module_item(&mut module_items, name, PerNs::types(def_id));
}
self.result.per_module.insert(module_id, module_items);
}
fn add_module_item(&self, module_items: &mut ModuleScope, name: Name, def_id: PerNs<DefId>) {
let resolution = Resolution {
def_id,
import: None,
};
module_items.items.insert(name, resolution);
}
fn resolve_imports(&mut self, module_id: ModuleId) {
for (import_id, import_data) in self.input[&module_id].imports.iter() {
if self.processed_imports.contains(&(module_id, import_id)) {
// already done
continue;
}
if self.resolve_import(module_id, import_id, import_data) {
log::debug!("import {:?} resolved (or definite error)", import_id);
self.processed_imports.insert((module_id, import_id));
}
}
}
fn resolve_import(
&mut self,
module_id: ModuleId,
import_id: ImportId,
import: &ImportData,
) -> bool {
log::debug!("resolving import: {:?}", import);
if import.is_glob {
return false;
};
let mut curr: ModuleId = match import.path.kind {
PathKind::Plain | PathKind::Self_ => module_id,
PathKind::Super => {
match module_id.parent(&self.module_tree) {
Some(it) => it,
None => {
// TODO: error
log::debug!("super path in root module");
return true; // this can't suddenly resolve if we just resolve some other imports
}
}
}
PathKind::Crate => module_id.crate_root(&self.module_tree),
PathKind::Abs => {
// TODO: absolute use is not supported for now
return false;
}
};
for (i, segment) in import.path.segments.iter().enumerate() {
let is_last = i == import.path.segments.len() - 1;
let def_id = match self.result.per_module[&curr].items.get(&segment.name) {
Some(res) if !res.def_id.is_none() => res.def_id,
_ => {
log::debug!("path segment {:?} not found", segment.name);
return false;
}
};
if !is_last {
let type_def_id = if let Some(d) = def_id.take(Namespace::Types) {
d
} else {
log::debug!(
"path segment {:?} resolved to value only, but is not last",
segment.name
);
return false;
};
curr = match type_def_id.loc(self.db) {
DefLoc {
kind: DefKind::Module,
module_id: target_module_id,
source_root_id,
..
} => {
if source_root_id == self.source_root {
target_module_id
} else {
let module = crate::code_model_api::Module::new(type_def_id);
let path = Path {
segments: import.path.segments[i + 1..].iter().cloned().collect(),
kind: PathKind::Crate,
};
log::debug!("resolving {:?} in other source root", path);
let def_id = module.resolve_path(self.db, &path);
if !def_id.is_none() {
let last_segment = path.segments.last().unwrap();
self.update(module_id, |items| {
let res = Resolution {
def_id,
import: Some(import_id),
};
items.items.insert(last_segment.name.clone(), res);
});
log::debug!(
"resolved import {:?} ({:?}) cross-source root to {:?}",
last_segment.name,
import,
def_id.map(|did| did.loc(self.db))
);
return true;
} else {
log::debug!("rest of path did not resolve in other source root");
return true;
}
}
}
_ => {
log::debug!(
"path segment {:?} resolved to non-module {:?}, but is not last",
segment.name,
type_def_id.loc(self.db)
);
return true; // this resolved to a non-module, so the path won't ever resolve
}
}
} else {
log::debug!(
"resolved import {:?} ({:?}) within source root to {:?}",
segment.name,
import,
def_id.map(|did| did.loc(self.db))
);
self.update(module_id, |items| {
let res = Resolution {
def_id,
import: Some(import_id),
};
items.items.insert(segment.name.clone(), res);
})
}
}
true
}
fn update(&mut self, module_id: ModuleId, f: impl FnOnce(&mut ModuleScope)) {
let module_items = self.result.per_module.get_mut(&module_id).unwrap();
f(module_items)
}
}
#[cfg(test)]
mod tests;
|